Variational Methods \& Optimal Control

 lecture 08Matthew Roughan
matthew.roughan@adelaide.edu.au

Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

April 14, 2016

Invariance of the E-L equations

We side-track here to note that extremals found using the E-L equations don't depend on the coordinate system! This can be very useful - a change of co-ordinates can often simplify a problem dramatically.

Euler-Lagrange equation

Theorem 2.2.1: Let $F: C^{2}\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$ be a functional of the form

$$
F\{y\}=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x,
$$

where f has continuous partial derivatives of second order with respect to x, y, and y^{\prime}, and $x_{0}<x_{1}$. Let

$$
S=\left\{y \in C^{2}\left[x_{0}, x_{1}\right] \mid y\left(x_{0}\right)=y_{0} \text { and } y\left(x_{1}\right)=y_{1}\right\},
$$

where y_{0} and y_{1} are real numbers. If $y \in S$ is an extremal for F, then for all $x \in\left[x_{0}, x_{1}\right]$

$$
\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)-\frac{\partial f}{\partial y}=0
$$

Invariance of the E-L equations

The extremals found using the E-L equations don't depend on the coordinate system!

For instance take co-ordinate transform

$$
\begin{aligned}
& x=x(u, v) \\
& y=y(u, v)
\end{aligned}
$$

\square smooth: if functions x and y have continuous partial derivatives.

- non-singular: if Jacobian is non-zero

For example, the path of a particle does not depend on the coordinate system used to describe the path!

Notation

Use the notation

$$
x_{u}=\frac{\partial x}{\partial u}
$$

For example, the Jacobian for transform $x=x(u, v)$ and $y=y(u, v)$ can be written

$$
J=\left|\begin{array}{ll}
x_{u} & y_{u} \\
x_{v} & y_{v}
\end{array}\right|=x_{u} y_{v}-x_{v} y_{u}
$$

Note that if $J \neq 0$ the transform is invertible.

- treat u like the independent variable (like x)
\square treat v like the dependent variable (like y)

Transforming $d y / d x$

Treat v like a function $v(u)$. The chain rule says for $x=x(u, v)$

$$
\frac{d x}{d u}=\frac{d u}{d u} \frac{\partial x}{\partial u}+\frac{d v}{d u} \frac{\partial x}{\partial v}
$$

SO

$$
\begin{aligned}
& \frac{d x}{d u}=x_{u}+x_{v} v^{\prime} \\
& \frac{d y}{d u}=y_{u}+y_{v} v^{\prime}
\end{aligned}
$$

where $v^{\prime}=d v / d u$. So

$$
\frac{d y}{d x}=\frac{d y / d u}{d x / d u}=\frac{y_{u}+y_{v} v^{\prime}}{x_{u}+x_{v} v^{\prime}}
$$

Transforming functional

Transforming the functional, we get

$$
\begin{aligned}
F\{y\} & =\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x \\
& =\int_{u_{0}}^{u_{1}} f\left(x(u, v), y(u, v), \frac{y_{u}+y_{v} v^{\prime}}{x_{u}+x_{v} v^{\prime}}\right)\left(x_{u}+x_{v} v^{\prime}\right) d u \\
& =\int_{u_{0}}^{u_{1}} \tilde{f}\left(u, v, v^{\prime}\right) d u
\end{aligned}
$$

Relabel the functional to get

$$
\tilde{F}\{v\}=\int_{u_{0}}^{u_{1}} \tilde{f}\left(u, v, v^{\prime}\right) d u
$$

Fixed end-point problem

Find extremals of functional $F: C^{2}\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$ given by

$$
F\{y\}=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x,
$$

and the extremal is in the set S

$$
S=\left\{y \in C^{2}\left[x_{0}, x_{1}\right] \mid y\left(x_{0}\right)=y_{0} \text { and } y\left(x_{1}\right)=y_{1}\right\},
$$

Becomes, find extremals of $\tilde{F}: C^{2}\left[u_{0}, u_{1}\right] \rightarrow \mathbb{R}$ given by

$$
\tilde{F}\{v\}=\int_{u_{0}}^{u_{1}} \tilde{f}\left(u, v, v^{\prime}\right) d u
$$

and the extremal is in the set S

$$
\tilde{S}=\left\{v \in C^{2}\left[u_{0}, u_{1}\right] \mid v\left(u_{0}\right)=v_{0} \text { and } v\left(u_{1}\right)=v_{1}\right\},
$$

Relation between extremals

Theorem: Let $y \in S$ and $v \in \tilde{S}$ be two functions that satisfy the smooth, non-singular transformation $x=x(u, v)$, and $y=y(u, v)$, then y is an extremal for F if and only if v is an extremal for \tilde{F}.

Proof Sketch: The proof needs to show that the Euler-Lagrange equations for both problems produce the same extremals.
We can do so, by noting that

$$
\frac{d}{d u}\left(\frac{\partial \tilde{f}}{\partial \nu^{\prime}}\right)-\frac{\partial \tilde{f}}{\partial v}=J\left[\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)-\frac{\partial f}{\partial y}\right]
$$

As the transform is non-singular $J \neq 0$, so if either side is zero, the Euler-Lagrange equation is satisfied for both problems.

Some of the details

$$
\begin{aligned}
\tilde{f}\left(u, v, v^{\prime}\right)= & f\left(x(u, v), y(u, v), \frac{y_{u}+y_{v} v^{\prime}}{x_{u}+x_{v} v^{\prime}}\right)\left(x_{u}+x_{v} v^{\prime}\right) \\
\frac{\partial \tilde{f}}{\partial v}= & \left(\frac{\partial f}{\partial x} x_{v}+\frac{\partial f}{\partial y} y_{v}+\frac{\partial f}{\partial y^{\prime}} \frac{\partial}{\partial v}\left(\frac{y_{u}+y_{v} v^{\prime}}{x_{u}+x_{v} v^{\prime}}\right)\right)\left(x_{u}+x_{v} v^{\prime}\right) \\
& +f \frac{\partial}{\partial v}\left(x_{u}+x_{v} v^{\prime}\right) \\
\frac{\partial \tilde{f}}{\partial v^{\prime}}= & \frac{\partial f}{\partial y^{\prime}}\left(x_{u}+x_{v} v^{\prime}\right) \frac{\partial}{\partial v^{\prime}}\left(\frac{y_{u}+y_{v} v^{\prime}}{x_{u}+x_{v} v^{\prime}}\right)+x_{v} f \\
J= & x_{u} y_{v}-x_{v} y_{u}
\end{aligned}
$$

Example

Polar (circular) coordinates have

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

and inverse transform

$$
\begin{aligned}
r & =\sqrt{x^{2}+y^{2}} \\
\theta & =\arctan \left(\frac{y}{x}\right)
\end{aligned}
$$

Find extremals of $F\{r\}=\int_{\theta_{0}}^{\theta_{1}} \sqrt{r^{2}+r^{\prime 2}} d \theta$

Example

For the inverse transform

$$
\begin{aligned}
r_{x} & =x / \sqrt{x^{2}+y^{2}} \\
r_{y} & =y / \sqrt{x^{2}+y^{2}} \\
\theta_{x} & =\left(-y / x^{2}\right) /\left(1+(y / x)^{2}\right)=-y /\left(x^{2}+y^{2}\right) \\
\theta_{y} & =(1 / x) /\left(1+(y / x)^{2}\right)=x /\left(x^{2}+y^{2}\right)
\end{aligned}
$$

using $\frac{d}{d z} \arctan (z)=\frac{1}{1+z^{2}}$

Example

The Jacobian

$$
\begin{aligned}
J & =\operatorname{det}\left(\begin{array}{ll}
r_{x} & \theta_{x} \\
r_{y} & \theta_{y}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ll}
x / \sqrt{x^{2}+y^{2}} & -y /\left(x^{2}+y^{2}\right) \\
y / \sqrt{x^{2}+y^{2}} & x /\left(x^{2}+y^{2}\right)
\end{array}\right) \\
& =\frac{x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} \\
& =1 / \sqrt{x^{2}+y^{2}}
\end{aligned}
$$

$J \neq 0$ everywhere except $(x, y)=(0,0)$, where it is undefined.

Example

$$
\begin{aligned}
\frac{d r}{d \theta} & =\frac{r_{x}+r_{y} y^{\prime}}{\theta_{x}+\theta_{y} y^{\prime}} \\
& =\frac{x / \sqrt{x^{2}+y^{2}}+y y^{\prime} / \sqrt{x^{2}+y^{2}}}{-y /\left(x^{2}+y^{2}\right)+x y^{\prime} /\left(x^{2}+y^{2}\right)} \\
& =\sqrt{x^{2}+y^{2}} \frac{x+y y^{\prime}}{-y+x y^{\prime}} \\
r^{2}+\left(\frac{d r}{d \theta}\right)^{2} & =\left(x^{2}+y^{2}\right)+\left(x^{2}+y^{2}\right)\left(\frac{x+y y^{\prime}}{-y+x y^{\prime}}\right)^{2} \\
& =\left(x^{2}+y^{2}\right)\left[1+\left(\frac{x+y y^{\prime}}{-y+x y^{\prime}}\right)^{2}\right]
\end{aligned}
$$

Example

$$
\begin{aligned}
r^{2}+\left(\frac{d r}{d \theta}\right)^{2} & =\left(x^{2}+y^{2}\right)\left[1+\left(\frac{x+y y^{\prime}}{-y+x y^{\prime}}\right)^{2}\right] \\
& =\left(x^{2}+y^{2}\right)\left[1+\frac{x^{2}+2 x y y^{\prime}+y^{2} y^{\prime 2}}{y^{2}-2 x y y^{\prime}+x^{2} y^{\prime 2}}\right] \\
& =\left(x^{2}+y^{2}\right)\left[\frac{y^{2}-2 x y y^{\prime}+x^{2} y^{\prime 2}+x^{2}+2 x y y^{\prime}+y^{2} y^{\prime 2}}{y^{2}-2 x y y^{\prime}+x^{2} y^{\prime 2}}\right] \\
& =\left(x^{2}+y^{2}\right)\left[\frac{x^{2}+y^{2}+\left(x^{2}+y^{2}\right) y^{\prime 2}}{y^{2}-2 x y y^{\prime}+x^{2} y^{\prime 2}}\right] \\
& =\frac{\left(x^{2}+y^{2}\right)^{2}\left(1+y^{\prime 2}\right)}{\left(-y+x y^{\prime}\right)^{2}}
\end{aligned}
$$

Example

Now

$$
\begin{aligned}
\frac{d \theta}{d x} & =\frac{\partial \theta}{\partial x}+\frac{\partial \theta}{\partial y} \frac{d y}{d x} \\
& =-\frac{y}{\left(x^{2}+y^{2}\right)}+\frac{x}{\left(x^{2}+y^{2}\right)} y^{\prime} \\
& =\frac{-y+x y^{\prime}}{\left(x^{2}+y^{2}\right)} \\
\frac{d x}{d \theta} & =\frac{\left(x^{2}+y^{2}\right)}{-y+x y^{\prime}} \\
r^{2}+\left(\frac{d r}{d \theta}\right)^{2} & =\left(1+y^{\prime 2}\right)\left(\frac{d x}{d \theta}\right)^{2}
\end{aligned}
$$

Example

Given that

$$
r^{2}+\left(\frac{d r}{d \theta}\right)^{2}=\left(1+y^{\prime 2}\right)\left(\frac{d x}{d \theta}\right)^{2}
$$

The functional can be rewritten

$$
\begin{aligned}
F\{r\} & =\int_{\theta_{0}}^{\theta_{1}} \sqrt{r^{2}+r^{\prime 2}} d \theta \\
& =\int_{\theta_{0}}^{\theta_{1}} \sqrt{1+y^{\prime 2}} \frac{d x}{d \theta} d \theta \\
\tilde{F}\{y\} & =\int_{\mathbf{x}_{0}\left(r_{0}, \theta_{0}\right)}^{\mathbf{x}_{1}\left(r_{1}, \theta_{1}\right)} \sqrt{1+y^{\prime 2}} d x
\end{aligned}
$$

which is just the functional for finding shortest paths in the plane!

Example

Given that $f\left(r, r^{\prime}\right)=\sqrt{r^{2}+r^{\prime 2}}$ does not depend explicitly on θ we can construct the constant function

$$
H\left(r, r^{\prime}\right)=r^{\prime} \frac{\partial f}{\partial r^{\prime}}-f=\frac{r^{\prime 2}}{\sqrt{r^{2}+r^{\prime 2}}}-\sqrt{r^{2}+r^{\prime 2}}=\text { const }
$$

which we can rearrange to get $r^{\prime}=r \sqrt{c_{1}^{2} r^{2}-1}$ which we can rearrange to get

$$
\theta=\int \frac{d r}{c_{1} r^{2} \sqrt{1-1 / c_{1}^{2} r^{2}}}
$$

and integrate to get

$$
\theta+c_{2}=-\sin ^{-1}\left(\frac{1}{c_{1} r}\right) \quad \text { or } \quad \operatorname{Arcos}(\theta)+B r \sin (\theta)=C
$$

Special case 4

When $f=A(x, y) y^{\prime}+B(x, y)$ we call this a degenerate case, because the E -L equations reduce to

$$
\frac{\partial A}{\partial x}-\frac{\partial B}{\partial y}=0
$$

but we can't necessarily solve these, and when they are true, the functional's value only depends on the end-points, not the actual shape of the curve.

Degenerate cases

Take $f=A(x, y) y^{\prime}+B(x, y)$, so that the functional (for which we are looking for extrema) is

$$
F\{y\}=\int_{x_{0}}^{x_{1}} A(x, y) y^{\prime}+B(x, y) d x
$$

Then the Euler-Lagrange equation can be written as

$$
\begin{aligned}
\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}-\frac{\partial f}{\partial y} & =0 \\
\frac{d}{d x} A(x, y)-\left[y^{\prime} \frac{\partial A}{\partial y}+\frac{\partial B}{\partial y}\right] & =0 \\
\frac{\partial A}{\partial x}+y^{\prime} \frac{\partial A}{\partial y}-\left[y^{\prime} \frac{\partial A}{\partial y}+\frac{\partial B}{\partial y}\right] & =0
\end{aligned}
$$

Degenerate cases

So the extremals for

$$
F\{y\}=\int_{x_{0}}^{x_{1}} A(x, y) y^{\prime}+B(x, y) d x
$$

satisfy

$$
\frac{\partial A}{\partial x}-\frac{\partial B}{\partial y}=0
$$

This is not even a differential equation!

- may or may not have solutions depending on A and B

■ no arbitrary constants, so can't impose conditions
■ maybe true everywhere?

Degenerate cases

$$
\frac{\partial A}{\partial x}-\frac{\partial B}{\partial y}=0
$$

Where there is a solution, there exists a function $\phi(x, y)$ such that

$$
\begin{aligned}
& \frac{\partial \phi}{\partial y}=A \\
& \frac{\partial \phi}{\partial x}=B
\end{aligned}
$$

Thus,

$$
\frac{\partial A}{\partial x}=\frac{\partial^{2} \phi}{\partial x \partial y}=\frac{\partial^{2} \phi}{\partial y \partial x}=\frac{\partial B}{\partial y}
$$

Degenerate cases

In this case, the integrand $f(x, y)$ can be written

$$
f=\frac{\partial \phi}{\partial y} y^{\prime}+\frac{\partial \phi}{\partial x}=\frac{d \phi}{d x}
$$

So the functional can be written

$$
\begin{aligned}
F\{y\} & =\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x \\
& =\int_{x_{0}}^{x_{1}} \frac{d \phi}{d x} d x \\
& =[\phi(x, y)]_{x_{0}}^{x_{1}} \\
& =\phi\left(x_{1}, y\left(x_{1}\right)\right)-\phi\left(x_{0}, y\left(x_{0}\right)\right)
\end{aligned}
$$

So the functional depends only on the end-points!

Example

Let $f\left(x, y, y^{\prime}\right)=\left(x^{2}+3 y^{2}\right) y^{\prime}+2 x y$ so the functional is

$$
F\{y\}=\int_{x_{0}}^{x_{1}}\left[\left(x^{2}+3 y^{2}\right) y^{\prime}+2 x y\right] d x
$$

Then $A(x, y)=\left(x^{2}+3 y^{2}\right)$ and $B(x, y)=2 x y$, so the E-L equation reduces to

$$
\frac{\partial A}{\partial x}-\frac{\partial B}{\partial y}=2 x-2 x=0
$$

which is always true, for any curve y ! this is what we mean by an identity
Hence the Euler-Lagrange equation is always satisfied.

Example

If we choose $\phi(x, y)=x^{2} y+y^{3}+k$ then

$$
\begin{aligned}
& \frac{\partial \phi}{\partial y}=x^{2}+3 y^{2}=A \\
& \frac{\partial \phi}{\partial x}=2 x y=B
\end{aligned}
$$

So the functional is determined by the end-points, e.g.

$$
F\{y\}=x_{1}^{2} y_{1}+y_{1}^{3}-x_{0}^{2} y_{0}-y_{0}^{3}
$$

and this does not depend on the curve between the two end points.

Theorem

Suppose that the functional F satisfies the conditions of such that its extremals satisfy the Euler-Lagrange equation, which in this case reduces to an identity. Then the integrand must be linear in y^{\prime}, and the value of the functional is independent of the curve y (except through the end-points).

Basically this says that the degenerate case above only occurs for $f\left(x, y, y^{\prime}\right)=A(x, y) y^{\prime}+B(x, y)$.

