Variational Methods & Optimal Control

lecture 09

Matthew Roughan <matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

April 14, 2016

Variational Methods & Optimal Control: lecture 09 – p.1/??

Extensions

Now we consider extensions to the simple E-L equations presented so far:

- when f includes higher-order derivatives, e.g., f(x, y, y', y''), e.g., the shape of a bent bar.
- when there are several dependent variables (i.e., y is a vector), e.g., calculating a particles trajectory.
- when there are several independent variables (i.e., x is a vector), e.g. calculating extremal surface.

Extension 1: higher-order derivatives

When f includes higher-order derivatives then the E-L equations can be extended, e.g., if the function includes a y'' term, i.e., f(x, y, y', y''), then

$$\frac{\partial f}{\partial y} - \frac{d}{dx}\frac{\partial f}{\partial y'} + \frac{d^2}{dx^2}\frac{\partial f}{\partial y''} = 0$$

but now we now need extra edge conditions. A simple example we will consider is the shape of a bent bar.

Standard Euler-Lagrange equation

Theorem 2.2.1: Let $F : C^2[x_0, x_1] \to \mathbb{R}$ be a functional of the form

$$F\{y\} = \int_{x_0}^{x_1} f(x, y, y') \, dx,$$

where *f* has continuous partial derivatives of second order with respect to *x*, *y*, and *y'*, and $x_0 < x_1$. Let

$$S = \left\{ y \in C^2[x_0, x_1] \mid y(x_0) = y_0 \text{ and } y(x_1) = y_1 \right\},\$$

where y_0 and y_1 are real numbers. If $y \in S$ is an extremal for F, then for all $x \in [x_0, x_1]$

$$\frac{d}{dx}\left(\frac{\partial f}{\partial y'}\right) - \frac{\partial f}{\partial y} = 0$$

Variational Methods & Optimal Control: lecture 09 – p.4/??

Higher-order derivatives

Let $F : C^2[x_0, x_1] \to \mathbb{R}$ be a functional of the form

$$F\{y\} = \int_{x_0}^{x_1} f(x, y, y', y'') \, dx,$$

where *f* has continuous partial derivatives of second order with respect to *x*, *y*, *y'*, and *y''*, and $x_0 < x_1$. As before, the necessary condition for the extremum is that the first variation be zero, e.g.

$$\delta F(\eta, y) = 0$$

Taylor's theorem

As before we perturb y to get $\hat{y} = y + \epsilon \eta$ Once again we apply Taylor's theorem to derive

$$f(x, y + \varepsilon \eta, y' + \varepsilon \eta', y'' + \varepsilon \eta'') = f(x, y, y', y'') + \varepsilon \left[\eta \frac{\partial f}{\partial y} + \eta' \frac{\partial f}{\partial y'} + \eta'' \frac{\partial f}{\partial y''} \right] + O(\varepsilon^2)$$

and hence that

$$F\{y+\varepsilon\eta\} = \int_{x_0}^{x_1} f(x,y,y',y'') + \varepsilon \left[\eta \frac{\partial f}{\partial y} + \eta' \frac{\partial f}{\partial y'} + \eta'' \frac{\partial f}{\partial y''}\right] dx + O(\varepsilon^2)$$

First Variation

So, now the first variation will be given by

$$\begin{split} \delta F(\eta, y) &= \lim_{\varepsilon \to 0} \frac{F\{y + \varepsilon \eta\} - F\{y\}}{\varepsilon} \\ &= \int_{x_0}^{x_1} \left[\eta \frac{\partial f}{\partial y} + \eta' \frac{\partial f}{\partial y'} + \eta'' \frac{\partial f}{\partial y''} \right] dx \\ &= \left[\eta \frac{\partial f}{\partial y'} \right]_{x_0}^{x_1} + \left[\eta' \frac{\partial f}{\partial y''} \right]_{x_0}^{x_1} + \int_{x_0}^{x_1} \left[\eta \frac{\partial f}{\partial y} - \eta \frac{d}{dx} \frac{\partial f}{\partial y'} - \eta' \frac{d}{dx} \frac{\partial f}{\partial y''} \right] dx \\ &= \left[\eta \frac{\partial f}{\partial y'} \right]_{x_0}^{x_1} + \left[\eta' \frac{\partial f}{\partial y''} \right]_{x_0}^{x_1} - \left[\eta \frac{d}{dx} \frac{\partial f}{\partial y''} \right]_{x_0}^{x_1} \\ &+ \int_{x_0}^{x_1} \left[\eta \frac{\partial f}{\partial y} - \eta \frac{d}{dx} \frac{\partial f}{\partial y'} + \eta \frac{d^2}{dx^2} \frac{\partial f}{\partial y''} \right] dx \end{split}$$

Variational Methods & Optimal Control: lecture 09 – p.7/??

New boundary conditions

We require new fixed-end point conditions

$$y(x_0) = y_0$$
 $y(x_1) = y_1$
 $y'(x_0) = y'_0$ $y'(x_1) = y'_1$

which implies that

$$\eta(x_0) = 0 \qquad \eta(x_1) = 0$$

 $\eta'(x_0) = 0 \qquad \eta'(x_1) = 0$

Which gives

$$\delta F(\eta, y) = \int_{x_0}^{x_1} \eta \left[\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'} + \frac{d^2}{dx^2} \frac{\partial f}{\partial y''} \right] dx$$

Variational Methods & Optimal Control: lecture 09 – p.8/??

Fixing the end-points

We now fix the derivative and value of *y* at the end points.

Variational Methods & Optimal Control: lecture 09 – p.9/??

4th Order Euler-Lagrange equation

 $\delta F(\eta, y) = 0$ for arbitrary η satisfying the boundary conditions, so the result is the 4th order Euler-Lagrange equation

$$\frac{\partial f}{\partial y} - \frac{d}{dx}\frac{\partial f}{\partial y'} + \frac{d^2}{dx^2}\frac{\partial f}{\partial y''} = 0$$

This is a 4th order differential equation.

Generalization

Let $F : C^2[x_0, x_1] \to \mathbb{R}$ be a functional of the form

$$F\{y\} = \int_{x_0}^{x_1} f(x, y, y', \dots, y^{(n)}) dx,$$

where *f* has continuous partial derivatives of second order with respect to $x, y, y', \ldots, y^{(n)}$, and $x_0 < x_1$, and the values of $y, y', \ldots, y^{(n-1)}$ are fixed at the end-points, then the extremals satisfy the condition

$$\frac{\partial f}{\partial y} - \frac{d}{dx}\frac{\partial f}{\partial y'} + \frac{d^2}{dx^2}\frac{\partial f}{\partial y''} + \dots + (-1)^n \frac{d^n}{dx^n}\frac{\partial f}{\partial y^{(n)}} = 0$$

This is sometimes called the **Euler-Poisson Equation**.

$$F\{y\} = \int_0^1 (1+y''^2) dx$$

subject to $y(0) = 0, y(1) = 1, y'(0) = 1, y'(1) = 1$

$$\frac{\partial f}{\partial y} = 0$$
$$\frac{d}{dx}\frac{\partial f}{\partial y'} = 0$$
$$\frac{d^2}{dx^2}\frac{\partial f}{\partial y''} = \frac{d^2}{dx^2}2y'' = 2\frac{d^4y}{dx^4}$$

Variational Methods & Optimal Control: lecture 09 – p.12/??

Example 1 (cont)

The E-P equation gives

$$\frac{d^2}{dx^2}\frac{\partial f}{\partial y''} = 2\frac{d^4y}{dx^4} = 0$$

The solution is

$$y(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3$$

Given the end-points

$$y(0) = 0 \implies c_1 = 0$$

$$y'(0) = 1 \implies c_2 = 1$$

$$y(1) = 1 \implies c_2 + c_3 + c_4 = 1$$

$$y'(1) = 1 \implies c_2 + 2c_3 + 3c_4 = 1$$

Final solution is $y(x)$

Variational Methods & Optimal Control: lecture 09 – p.13/??

= x

$$F\{y\} = \int_0^{\pi/2} \left(y''^2 - y^2 + x^2 \right) \, dx$$

subject to $y(0) = 1, y(\pi/2) = 0, y'(0) = 0, y'(\pi/2) = -1$

$$\frac{\partial f}{\partial y} = -2y$$
$$\frac{d}{dx}\frac{\partial f}{\partial y'} = 0$$
$$\frac{d^2}{dx^2}\frac{\partial f}{\partial y''} = 2\frac{d^4y}{dx^4}$$

Notice the x^2 doesn't influence the form of extremal!

Example 2 (cont)

Variational Methods & Optimal Control: lecture 09 – p.15/??

Example 2 (cont)

The E-P equation gives

$$\frac{\partial f}{\partial y} + \frac{d^2}{dx^2} \frac{\partial f}{\partial y''} = -2y + 2\frac{d^4y}{dx^4} = 0$$

The solution is

$$y(x) = Ae^{x} + Be^{-x} + C\sin x + D\cos x$$

Given the end-points

$$y(0) = 1 \implies A + B + D = 1$$

$$y'(0) = 0 \implies A - B + C = 0$$

$$y(\pi/2) = 0 \implies Ae^{\pi/2} + Be^{-\pi/2} + C = 0$$

$$y'(\pi/2) = -1 \implies Ae^{\pi/2} - Be^{-\pi/2} - D = -1$$

Variational Methods & Optimal Control: lecture 09 – p.16/??

Example 2 (solution)

Variational Methods & Optimal Control: lecture 09 – p.17/??

Bent elastic beam.

Two end-points are fixed, and clamped so that they are level, e.g. y(0) = 0, y'(0) = 0, and y(d) = 0 and y'(d) = 0. The load (per unit length) on the beam is given by a function $\rho(x)$.

Variational Methods & Optimal Control: lecture 09 – p.18/??

Let $y : [0,d] \to \mathbb{R}$ describe the shape of the beam, and $\rho : [0,d] \to \mathbb{R}$ be the load per unit length on the beam.

For a bent elastic beam the potential energy from elastic forces is

$$V_1 = \frac{\kappa}{2} \int_0^d y''^2 dx, \qquad \kappa = \text{flexural rigidity}$$

The potential energy is

$$V_2 = -\int_0^d \rho(x) y(x) \, dx$$

Thus the total potential energy is

$$V = \int_0^d \frac{\kappa y''^2}{2} - \rho(x)y(x)\,dx$$

Variational Methods & Optimal Control: lecture 09 – p.19/??

The Euler-Poisson equation is

$$\frac{\partial f}{\partial y} - \frac{d}{dx}\frac{\partial f}{\partial y'} + \frac{d^2}{dx^2}\frac{\partial f}{\partial y''} = 0$$
$$-\rho(x) + \kappa y^{(4)} = 0$$
$$y^{(4)} = \frac{\rho(x)}{\kappa}$$

This DE has solution

$$y(x) = P(x) + c_3 x^3 + c_2 x^2 + c_1 x + c_0$$

where the c_k 's are the constants of integration, and P(x) is a particular solution to $P^{(4)}(x) = \rho(x)/\kappa$.

Example 3: uniform load

If the beam is uniformly loaded, then $\rho(x) = \rho$ and so

$$y(x) = \frac{\rho x^4}{4!\kappa} + c_3 x^3 + c_2 x^2 + c_1 x + c_0$$

The end-conditions imply

$$y(0) = 0 \Rightarrow c_0 = 0$$

$$y'(0) = 0 \Rightarrow c_1 = 0$$

$$y(d) = 0 \Rightarrow \frac{\rho d^4}{4!\kappa} + c_0 + c_1 d + c_2 d^2 + c_3 d^3 = 0$$

$$y'(d) = 0 \Rightarrow \frac{\rho d^3}{3!\kappa} + c_1 + 2c_2 d + 3c_3 d^2 = 0$$

Variational Methods & Optimal Control: lecture 09 – p.21/??

Example 3: uniform load

Choose a solution of the form

$$y(x) = \frac{\rho(d-x)^2 x^2}{24\kappa}$$

Then the derivative

$$y'(x) = \frac{2\rho(d-x)x^2}{12\kappa} + \frac{\rho(d-x)^2x}{12\kappa}$$

We can see that the constraints are satisfied

$$y(0) = 0$$

 $y'(0) = 0$
 $y(d) = 0$
 $y'(d) = 0$

Variational Methods & Optimal Control: lecture 09 – p.22/??

Example 3: uniform load

$$\tilde{v}(x) = -\frac{\rho(d-x)^2 x^2}{24\kappa}$$

Maximum displacement occurs at x = d/2, and is given by

$$\tilde{y}(d/2) = -\frac{\rho d^4}{384\kappa}$$

Contrast this with the catenary.

$$\tilde{y}(x) = c_1 \cosh\left(\frac{x - c_2}{c_1}\right)$$

where c_1 and c_2 are determined by the end-points (there are no physical values such as *m* or *g* in the solution).