Variational Methods \& Optimal Control

lecture 09
Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

April 14, 2016

Extensions

Now we consider extensions to the simple E-L equations presented so far:
■ when f includes higher-order derivatives, e.g., $f\left(x, y, y^{\prime}, y^{\prime \prime}\right)$, e.g., the shape of a bent bar.
■ when there are several dependent variables (i.e., y is a vector), e.g., calculating a particles trajectory.
■ when there are several independent variables (i.e., x is a vector), e.g. calculating extremal surface.

Extension 1: higher-order derivatives

When f includes higher-order derivatives then the E-L equations can be extended, e.g., if the function includes a $y^{\prime \prime}$ term, i.e., $f\left(x, y, y^{\prime}, y^{\prime \prime}\right)$, then

$$
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}+\frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}}=0
$$

but now we now need extra edge conditions. A simple example we will consider is the shape of a bent bar.

Standard Euler-Lagrange equation

Theorem 2.2.1: Let $F: C^{2}\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$ be a functional of the form

$$
F\{y\}=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x,
$$

where f has continuous partial derivatives of second order with respect to x, y, and y^{\prime}, and $x_{0}<x_{1}$. Let

$$
S=\left\{y \in C^{2}\left[x_{0}, x_{1}\right] \mid y\left(x_{0}\right)=y_{0} \text { and } y\left(x_{1}\right)=y_{1}\right\},
$$

where y_{0} and y_{1} are real numbers. If $y \in S$ is an extremal for F, then for all $x \in\left[x_{0}, x_{1}\right]$

$$
\frac{d}{d x}\left(\frac{\partial f}{\partial y^{\prime}}\right)-\frac{\partial f}{\partial y}=0
$$

Higher-order derivatives

Let $F: C^{2}\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$ be a functional of the form

$$
F\{y\}=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}, y^{\prime \prime}\right) d x,
$$

where f has continuous partial derivatives of second order with respect to x, y, y^{\prime}, and $y^{\prime \prime}$, and $x_{0}<x_{1}$. As before, the necessary condition for the extremum is that the first variation be zero, e.g.

$$
\delta F(\eta, y)=0
$$

Taylor's theorem

As before we perturb y to get $\hat{y}=y+\varepsilon \eta$
Once again we apply Taylor's theorem to derive

$$
\begin{aligned}
& f\left(x, y+\varepsilon \eta, y^{\prime}+\varepsilon \eta^{\prime}, y^{\prime \prime}+\varepsilon \eta^{\prime \prime}\right)= \\
& \quad f\left(x, y, y^{\prime}, y^{\prime \prime}\right)+\varepsilon\left[\eta \frac{\partial f}{\partial y}+\eta^{\prime} \frac{\partial f}{\partial y^{\prime}}+\eta^{\prime \prime} \frac{\partial f}{\partial y^{\prime \prime}}\right]+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

and hence that

$$
F\{y+\varepsilon \eta\}=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}, y^{\prime \prime}\right)+\varepsilon\left[\eta \frac{\partial f}{\partial y}+\eta^{\prime} \frac{\partial f}{\partial y^{\prime}}+\eta^{\prime \prime} \frac{\partial f}{\partial y^{\prime \prime}}\right] d x+O\left(\varepsilon^{2}\right)
$$

First Variation

So, now the first variation will be given by

$$
\begin{aligned}
\delta & F(\eta, y)=\lim _{\varepsilon \rightarrow 0} \frac{F\{y+\varepsilon \eta\}-F\{y\}}{\varepsilon} \\
= & \int_{x_{0}}^{x_{1}}\left[\eta \frac{\partial f}{\partial y}+\eta^{\prime} \frac{\partial f}{\partial y^{\prime}}+\eta^{\prime \prime} \frac{\partial f}{\partial y^{\prime \prime}}\right] d x \\
= & {\left[\eta \frac{\partial f}{\partial y^{\prime}}\right]_{x_{0}}^{x_{1}}+\left[\eta^{\prime} \frac{\partial f}{\partial y^{\prime \prime}}\right]_{x_{0}}^{x_{1}}+\int_{x_{0}}^{x_{1}}\left[\eta \frac{\partial f}{\partial y}-\eta \frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}-\eta^{\prime} \frac{d}{d x} \frac{\partial f}{\partial y^{\prime \prime}}\right] d x } \\
= & {\left[\eta \frac{\partial f}{\partial y^{\prime}}\right]_{x_{0}}^{x_{1}}+\left[\eta^{\prime} \frac{\partial f}{\partial y^{\prime \prime}}\right]_{x_{0}}^{x_{1}}-\left[\eta \frac{d}{d x} \frac{\partial f}{\partial y^{\prime \prime}}\right]_{x_{0}}^{x_{1}} } \\
& +\int_{x_{0}}^{x_{1}}\left[\eta \frac{\partial f}{\partial y}-\eta \frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}+\eta \frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}}\right] d x
\end{aligned}
$$

New boundary conditions

We require new fixed-end point conditions

$$
\begin{array}{rlrl}
y\left(x_{0}\right) & =y_{0} & y\left(x_{1}\right) & =y_{1} \\
y^{\prime}\left(x_{0}\right) & =y_{0}^{\prime} & y^{\prime}\left(x_{1}\right) & =y_{1}^{\prime}
\end{array}
$$

which implies that

$$
\begin{aligned}
\eta\left(x_{0}\right) & =0 & \eta\left(x_{1}\right) & =0 \\
\eta^{\prime}\left(x_{0}\right) & =0 & \eta^{\prime}\left(x_{1}\right) & =0
\end{aligned}
$$

Which gives

$$
\delta F(\eta, y)=\int_{x_{0}}^{x_{1}} \eta\left[\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}+\frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}}\right] d x
$$

Fixing the end-points

We now fix the derivative and value of y at the end points.

4th Order Euler-Lagrange equation

$\delta F(\eta, y)=0$ for arbitrary η satisfying the boundary conditions, so the result is the 4th order Euler-Lagrange equation

$$
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}+\frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}}=0
$$

This is a 4th order differential equation.

Generalization

Let $F: C^{2}\left[x_{0}, x_{1}\right] \rightarrow \mathbb{R}$ be a functional of the form

$$
F\{y\}=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}, \ldots, y^{(n)}\right) d x
$$

where f has continuous partial derivatives of second order with respect to $x, y, y^{\prime}, \ldots, y^{(n)}$, and $x_{0}<x_{1}$, and the values of $y, y^{\prime}, \ldots, y^{(n-1)}$ are fixed at the end-points, then the extremals satisfy the condition

$$
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}+\frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}}+\cdots+(-1)^{n} \frac{d^{n}}{d x^{n}} \frac{\partial f}{\partial y^{(n)}}=0
$$

This is sometimes called the Euler-Poisson Equation.

Example 1

$$
F\{y\}=\int_{0}^{1}\left(1+y^{\prime \prime 2}\right) d x
$$

subject to $y(0)=0, y(1)=1, y^{\prime}(0)=1, y^{\prime}(1)=1$

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =0 \\
\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}} & =0 \\
\frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}} & =\frac{d^{2}}{d x^{2}} 2 y^{\prime \prime}=2 \frac{d^{4} y}{d x^{4}}
\end{aligned}
$$

Example 1 (cont)

The E-P equation gives

$$
\frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}}=2 \frac{d^{4} y}{d x^{4}}=0
$$

The solution is

$$
y(x)=c_{1}+c_{2} x+c_{3} x^{2}+c_{4} x^{3}
$$

Given the end-points

$$
\begin{array}{rll}
y(0)=0 & \Rightarrow c_{1}=0 \\
y^{\prime}(0)=1 & \Rightarrow c_{2}=1 \\
y(1)=1 & \Rightarrow c_{2}+c_{3}+c_{4}=1 \quad \text { Final solution is } y(x)=x \\
y^{\prime}(1)=1 & \Rightarrow c_{2}+2 c_{3}+3 c_{4}=1
\end{array}
$$

Example 2

$$
F\{y\}=\int_{0}^{\pi / 2}\left(y^{\prime \prime 2}-y^{2}+x^{2}\right) d x
$$

subject to $y(0)=1, y(\pi / 2)=0, y^{\prime}(0)=0, y^{\prime}(\pi / 2)=-1$

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =-2 y \\
\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}} & =0 \\
\frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}} & =2 \frac{d^{4} y}{d x^{4}}
\end{aligned}
$$

Notice the x^{2} doesn't influence the form of extremal!

Example 2 (cont)

Example 2 (cont)

The E-P equation gives

$$
\frac{\partial f}{\partial y}+\frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}}=-2 y+2 \frac{d^{4} y}{d x^{4}}=0
$$

The solution is

$$
y(x)=A e^{x}+B e^{-x}+C \sin x+D \cos x
$$

Given the end-points

$$
\begin{aligned}
y(0)=1 & \Rightarrow A+B+D=1 \\
y^{\prime}(0)=0 & \Rightarrow A-B+C=0 \\
y(\pi / 2)=0 & \Rightarrow A e^{\pi / 2}+B e^{-\pi / 2}+C=0 \\
y^{\prime}(\pi / 2)=-1 & \Rightarrow A e^{\pi / 2}-B e^{-\pi / 2}-D=-1
\end{aligned}
$$

Example 2 (solution)

$$
y(x)=\cos (x)
$$

Example 3

Bent elastic beam.

Two end-points are fixed, and clamped so that they are level, e.g. $y(0)=0, y^{\prime}(0)=0$, and $y(d)=0$ and $y^{\prime}(d)=0$.
The load (per unit length) on the beam is given by a function $\rho(x)$.

Example 3

Let $y:[0, d] \rightarrow \mathbb{R}$ describe the shape of the beam, and $\rho:[0, d] \rightarrow \mathbb{R}$ be the load per unit length on the beam.
For a bent elastic beam the potential energy from elastic forces is

$$
V_{1}=\frac{\kappa}{2} \int_{0}^{d} y^{\prime \prime 2} d x, \quad \kappa=\text { flexural rigidity }
$$

The potential energy is

$$
V_{2}=-\int_{0}^{d} \rho(x) y(x) d x
$$

Thus the total potential energy is

$$
V=\int_{0}^{d} \frac{\kappa y^{\prime \prime 2}}{2}-\rho(x) y(x) d x
$$

Example 3

The Euler-Poisson equation is

$$
\begin{aligned}
\frac{\partial f}{\partial y}-\frac{d}{d x} \frac{\partial f}{\partial y^{\prime}}+\frac{d^{2}}{d x^{2}} \frac{\partial f}{\partial y^{\prime \prime}} & =0 \\
-\rho(x)+\kappa y^{(4)} & =0 \\
y^{(4)} & =\frac{\rho(x)}{\kappa}
\end{aligned}
$$

This DE has solution

$$
y(x)=P(x)+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}
$$

where the c_{k} 's are the constants of integration, and $P(x)$ is a particular solution to $P^{(4)}(x)=\rho(x) / \kappa$.

Example 3: uniform load

If the beam is uniformly loaded, then $\rho(x)=\rho$ and so

$$
y(x)=\frac{\rho x^{4}}{4!\kappa}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}
$$

The end-conditions imply

$$
\begin{aligned}
y(0) & =0 \Rightarrow c_{0}=0 \\
y^{\prime}(0) & =0 \Rightarrow c_{1}=0 \\
y(d) & =0 \Rightarrow \frac{\rho d^{4}}{4!\kappa}+c_{0}+c_{1} d+c_{2} d^{2}+c_{3} d^{3}=0 \\
y^{\prime}(d) & =0 \Rightarrow \frac{\rho d^{3}}{3!\kappa}+c_{1}+2 c_{2} d+3 c_{3} d^{2}=0
\end{aligned}
$$

Example 3: uniform load

Choose a solution of the form

$$
y(x)=\frac{\rho(d-x)^{2} x^{2}}{24 \kappa}
$$

Then the derivative

$$
y^{\prime}(x)=\frac{2 \rho(d-x) x^{2}}{12 \kappa}+\frac{\rho(d-x)^{2} x}{12 \kappa}
$$

We can see that the constraints are satisfied

$$
\begin{aligned}
y(0) & =0 \\
y^{\prime}(0) & =0 \\
y(d) & =0 \\
y^{\prime}(d) & =0
\end{aligned}
$$

Example 3: uniform load

$$
\tilde{y}(x)=-\frac{\rho(d-x)^{2} x^{2}}{24 \kappa}
$$

Maximum displacement occurs at $x=d / 2$, and is given by

$$
\tilde{y}(d / 2)=-\frac{\rho d^{4}}{384 \kappa}
$$

Contrast this with the catenary.

$$
\tilde{y}(x)=c_{1} \cosh \left(\frac{x-c_{2}}{c_{1}}\right)
$$

where c_{1} and c_{2} are determined by the end-points (there are no physical values such as m or g in the solution).

