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Extensions
Now we consider extensions to the simple E-L equations presented so far:

when f includes higher-order derivatives, e.g.,f (x,y,y′,y′′), e.g., the
shape of a bent bar.

when there are several dependent variables (i.e.,y is a vector), e.g.,
calculating a particles trajectory.

when there are several independent variables (i.e.,x is a vector), e.g.
calculating extremal surface.
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Extension 1: higher-order
derivatives

When f includes higher-order derivatives then the E-L equations can be
extended, e.g., if the function includes ay′′ term, i.e.,f (x,y,y′,y′′), then

∂ f
∂y

−
d
dx

∂ f
∂y′

+
d2

dx2

∂ f
∂y′′

= 0

but now we now need extra edge conditions. A simple example wewill
consider is the shape of a bent bar.
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Standard Euler-Lagrange equation

Theorem 2.2.1: LetF : C2[x0,x1]→ IR be a functional of the form

F{y}=
∫ x1

x0

f (x,y,y′)dx,

where f has continuous partial derivatives of second order with respect to
x, y, andy′, andx0 < x1. Let

S =
{

y ∈C2[x0,x1]
∣

∣ y(x0) = y0 andy(x1) = y1
}

,

wherey0 andy1 are real numbers. Ify ∈ S is an extremal forF , then for all
x ∈ [x0,x1]

d
dx

(

∂ f
∂y′

)

−
∂ f
∂y

= 0
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Higher-order derivatives

Let F : C2[x0,x1]→ IR be a functional of the form

F{y}=
∫ x1

x0

f (x,y,y′,y′′)dx,

where f has continuous partial derivatives of second order with respect to
x, y, y′, andy′′, andx0 < x1. As before, the necessary condition for the
extremum is that the first variation be zero, e.g.

δF(η,y) = 0
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Taylor’s theorem

As before we perturby to getŷ = y+ εη
Once again we apply Taylor’s theorem to derive

f (x,y+ εη,y′+ εη′,y′′+ εη′′) =

f (x,y,y′,y′′)+ ε
[

η
∂ f
∂y

+η′ ∂ f
∂y′

+η′′ ∂ f
∂y′′

]

+O(ε2)

and hence that

F{y+ εη}=
∫ x1

x0

f (x,y,y′,y′′)+ ε
[

η
∂ f
∂y

+η′ ∂ f
∂y′

+η′′ ∂ f
∂y′′

]

dx+O(ε2)
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First Variation

So, now the first variation will be given by

δF(η,y) = lim
ε→0

F{y+ εη}−F{y}
ε

=

∫ x1

x0

[

η
∂ f
∂y

+η′ ∂ f
∂y′

+η′′ ∂ f
∂y′′

]

dx

=

[

η
∂ f
∂y′

]x1

x0

+

[

η′ ∂ f
∂y′′

]x1

x0

+
∫ x1

x0

[

η
∂ f
∂y

−η
d
dx

∂ f
∂y′

−η′ d
dx

∂ f
∂y′′

]

dx

=

[

η
∂ f
∂y′

]x1

x0

+

[

η′ ∂ f
∂y′′

]x1

x0

−

[

η
d
dx

∂ f
∂y′′

]x1

x0

+

∫ x1

x0

[

η
∂ f
∂y

−η
d
dx

∂ f
∂y′

+η
d2

dx2

∂ f
∂y′′

]

dx

Variational Methods & Optimal Control: lecture 09 – p.7/??



New boundary conditions

We require new fixed-end point conditions

y(x0) = y0 y(x1) = y1

y′(x0) = y′0 y′(x1) = y′1

which implies that

η(x0) = 0 η(x1) = 0

η′(x0) = 0 η′(x1) = 0

Which gives

δF(η,y) =
∫ x1

x0

η
[

∂ f
∂y

−
d
dx

∂ f
∂y′

+
d2

dx2

∂ f
∂y′′

]

dx
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Fixing the end-points

We now fix the derivative and value ofy at the end points.

x

y

1(x ,y )1
y = y(x)

y = y + 

0(x ,y )0

ε η
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4th Order Euler-Lagrange equation

δF(η,y) = 0 for arbitraryη satisfying the boundary conditions, so the
result is the 4th order Euler-Lagrange equation

∂ f
∂y

−
d
dx

∂ f
∂y′

+
d2

dx2

∂ f
∂y′′

= 0

This is a 4th order differential equation.
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Generalization

Let F : C2[x0,x1]→ IR be a functional of the form

F{y}=
∫ x1

x0

f (x,y,y′, . . . ,y(n))dx,

where f has continuous partial derivatives of second order with respect to
x,y,y′, . . . ,y(n), andx0 < x1, and the values ofy,y′, . . . ,y(n−1) are fixed at
the end-points, then the extremals satisfy the condition

∂ f
∂y

−
d
dx

∂ f
∂y′

+
d2

dx2

∂ f
∂y′′

+ · · ·+(−1)n dn

dxn

∂ f

∂y(n)
= 0

This is sometimes called theEuler-Poisson Equation.

Variational Methods & Optimal Control: lecture 09 – p.11/??



Example 1

F{y}=
∫ 1

0
(1+ y′′2)dx

subject toy(0) = 0,y(1) = 1,y′(0) = 1,y′(1) = 1

∂ f
∂y

= 0

d
dx

∂ f
∂y′

= 0

d2

dx2

∂ f
∂y′′

=
d2

dx2
2y′′ = 2

d4y
dx4
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Example 1 (cont)

The E-P equation gives

d2

dx2

∂ f
∂y′′

= 2
d4y
dx4

= 0

The solution is
y(x) = c1+ c2x+ c3x2+ c4x3

Given the end-points

y(0) = 0 ⇒ c1 = 0

y′(0) = 1 ⇒ c2 = 1

y(1) = 1 ⇒ c2+ c3+ c4 = 1

y′(1) = 1 ⇒ c2+2c3+3c4 = 1

Final solution isy(x) = x
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Example 2

F{y}=
∫ π/2

0

(

y′′2− y2+ x2
)

dx

subject toy(0) = 1,y(π/2) = 0,y′(0) = 0,y′(π/2) =−1

∂ f
∂y

= −2y

d
dx

∂ f
∂y′

= 0

d2

dx2

∂ f
∂y′′

= 2
d4y
dx4

Notice thex2 doesn’t influence the form of extremal!

Variational Methods & Optimal Control: lecture 09 – p.14/??



Example 2 (cont)

x

y

1

π/2
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Example 2 (cont)

The E-P equation gives

∂ f
∂y

+
d2

dx2

∂ f
∂y′′

=−2y+2
d4y
dx4

= 0

The solution is

y(x) = Aex +Be−x +Csinx+Dcosx

Given the end-points

y(0) = 1 ⇒ A+B+D = 1

y′(0) = 0 ⇒ A−B+C = 0

y(π/2) = 0 ⇒ Aeπ/2+Be−π/2+C = 0

y′(π/2) =−1 ⇒ Aeπ/2−Be−π/2−D =−1
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Example 2 (solution)

y(x) = cos(x)

x

y

1

π/2
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Example 3

Bent elastic beam.

ρ

0 d

Two end-points are fixed, and clamped so that they are level, e.g.
y(0) = 0, y′(0) = 0, andy(d) = 0 andy′(d) = 0.
The load (per unit length) on the beam is given by a functionρ(x).
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Example 3

Let y : [0,d]→ IR describe the shape of the beam, andρ : [0,d]→ IR be the
load per unit length on the beam.
For a bent elastic beam the potential energy from elastic forces is

V1 =
κ
2

∫ d

0
y′′2 dx, κ = flexural rigidity

The potential energy is

V2 =−

∫ d

0
ρ(x)y(x)dx

Thus the total potential energy is

V =
∫ d

0

κy′′2

2
−ρ(x)y(x)dx

Variational Methods & Optimal Control: lecture 09 – p.19/??



Example 3

The Euler-Poisson equation is

∂ f
∂y

−
d
dx

∂ f
∂y′

+
d2

dx2

∂ f
∂y′′

= 0

−ρ(x)+κy(4) = 0

y(4) =
ρ(x)

κ

This DE has solution

y(x) = P(x)+ c3x3+ c2x2+ c1x+ c0

where theck’s are the constants of integration, andP(x) is a particular
solution toP(4)(x) = ρ(x)/κ.
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Example 3: uniform load

If the beam is uniformly loaded, thenρ(x) = ρ and so

y(x) =
ρx4

4!κ
+ c3x3+ c2x2+ c1x+ c0

The end-conditions imply

y(0) = 0 ⇒ c0 = 0

y′(0) = 0 ⇒ c1 = 0

y(d) = 0 ⇒
ρd4

4!κ
+ c0+ c1d + c2d2+ c3d3 = 0

y′(d) = 0 ⇒
ρd3

3!κ
+ c1+2c2d+3c3d2 = 0
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Example 3: uniform load

Choose a solution of the form

y(x) =
ρ(d− x)2x2

24κ

Then the derivative

y′(x) =
2ρ(d− x)x2

12κ
+

ρ(d− x)2x
12κ 0 d

We can see that the constraints are satisfied

y(0) = 0

y′(0) = 0

y(d) = 0

y′(d) = 0
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Example 3: uniform load

ỹ(x) =−
ρ(d− x)2x2

24κ
Maximum displacement occurs atx = d/2, and is given by

ỹ(d/2) =−
ρd4

384κ

Contrast this with the catenary.

ỹ(x) = c1cosh

(

x− c2

c1

)

wherec1 andc2 are determined by the end-points (there are no physical
values such asm or g in the solution).
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