Variational Methods & Optimal Control

Matthew Roughan <matthew.roughan@adelaide.edu.au>

Discipline of Applied Mathematics School of Mathematical Sciences University of Adelaide

April 14, 2016

Variational Methods & Optimal Control: lecture 20 - p.1/32

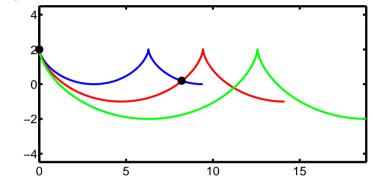
Broken Extremals

Until now we have required that extremal curves have at least two well-defined derivatives. Obviously this is not always true (see for instance Snell's law). In this lecture we consider the alternatives.

Broken extremals

Broken extremals are continuous extremals for which the gradient has a discontinuity at one of more points.

If a variational problem has a smooth extremal (that therefore satisfies the E-L equations), this will be better than a broken one, e.g. Brachystochrone.



Variational Methods & Optimal Control: lecture 20 – p.3/32

Broken extremals

But some problems don't admit smooth extremals

Example: Find y(x) to minimize

$$F\{y\} = \int_{-1}^{1} y^2 (1 - y')^2 \, dx$$

subject to y(-1) = 0 and y(1) = 1.

Broken extremals example

There is no explicit x dependence inside the integral, so we can find $H(y,y') = y' \frac{\partial f}{\partial y'} - f = const$ $y'y^{2}(-2)(1-y') - y^{2}(1-y')^{2} = -c_{1}$ $y^{2}(1-y')(-1+y'-2y') = -c_{1}$ $y^{2}(1-y')(-1-y') = -c_{1}$ $y^{2}(1-y')(-1-y') = c_{1}$

If $c_1 = 0$ we get the singular solutions

$$y = 0$$
 and $y = \pm x + B$

Neither of these satisfies both end-points conditions y(-1) = 0 and y(1) = 1, so $c_1 \neq 0$ (we think)

Variational Methods & Optimal Control: lecture 20 - p.5/32

Broken extremals example

Given $c_1 \neq 0$

$$y^{2}(1-y^{2}) = c_{1}$$

$$y^{2} = \frac{y^{2}-c_{1}}{y^{2}}$$

$$\frac{dy}{dx} = \pm \frac{1}{y}\sqrt{y^{2}-c_{1}}$$

$$dx = \pm \frac{y}{\sqrt{y^{2}-c_{1}}}dy$$

$$x = \pm \sqrt{y^{2}-c_{1}}+c_{2}$$

$$(x-c_{2})^{2} = y^{2}-c_{1}$$

The solution is a rectangular hyperbola

Broken extremals example

Find c_1 and c_2 from

$$(x - c_2)^2 = y^2 - c_1$$

using the end-points.

$$y(-1) = 0 \Rightarrow (-1-c_2)^2 = -c_1$$

 $y(1) = 1 \Rightarrow (1-c_2)^2 = 1-c_1$

Combine the two equations

$$(1-c_2)^2 = 1 + (1+c_2)^2$$

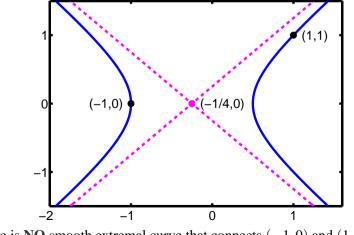
which has solutions $c_2 = -1/4$, and so $c_1 = -9/16$

$$y^2 = (x + 1/4)^2 - 9/16$$

Variational Methods & Optimal Control: lecture 20-p.7/32

Broken extremals example

The end-points are on opposite branches of the hyperbola!



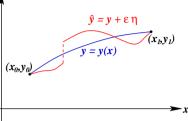
There is NO smooth extremal curve that connects (-1,0) and (1,1)

Broken extremal

sometimes there is no smooth extremal we must seek a broken extremal still want a continuous extremal what should we do? ▷ previous smoothness results suggest that we should use a У Meaning: we can extend our results smooth extremal when we can, and so we will try to minimize to piecewise smooth curves (where a the number of corners. smooth result exists), not just curves ▷ We'll start by looking for curves with one corner with 2 continuous derivatives. \triangleright But can we apply E-L equations? Variational Methods & Optimal Control: lecture 20 - p.9/32 Proof sketch **Broken** extremal If we have an extremal like this, can we use E-L equations? y curve $\hat{y} \in B_{\varepsilon}(y)$ we know $F\{\hat{y}\} > F\{y\}$. by rounding off the edges of the discontinuity. (x_1, y_1) (x_0, y_0) exist. x^* r Variational Methods & Optimal Control: lecture 20 - p.10/32 Variational Methods & Optimal Control: lecture 20 - p.12/32

Smoothness theorem

Theorem: If the smooth curve y(x) gives an extremal of a functional $F\{y\}$ over the class of all admissible curves in some ε neighborhood of y, then y(x) also gives an extremal of a functional $F\{y\}$ over the class of all piecewise smooth curves in the same neighborhood.



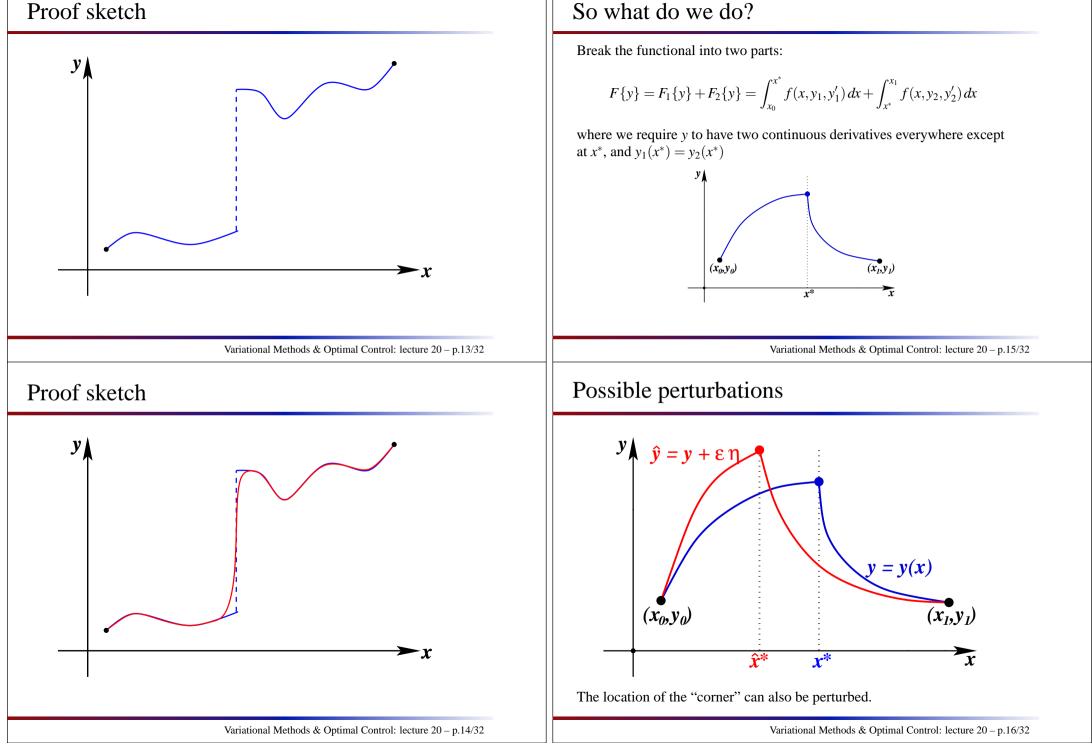
Variational Methods & Optimal Control: lecture 20 - p.11/32

The theorem assumes that there exists a smooth extremal (in this case a minimum for the purpose of illustration) y, then for any other smooth

Assume for the moment that for a piecewise smooth function $\tilde{y} \in B_{\varepsilon}(y)$ that $F\{\tilde{y}\} < F\{y\}$. We can approximate \tilde{y} by a smooth curve $\hat{y}_{\delta} \in B_{\varepsilon}(y)$

Given that we can approximate the curve \tilde{y} arbitrarily closely by a smooth curve \hat{y}_{δ} , for which we already know $F\{\hat{y}_{\delta}\} > F\{y\}$, we get a contradiction with $F{\tilde{y}} < F{y}$, and so no such alternative extremal can

Proof sketch



The First Variation: part 1

We get first component of the first variation by considering a problem with only one fixed end-point, and allowing x^* to vary, so that

 $\delta F_1(\eta, y) = \lim_{\epsilon \to \infty} \frac{1}{\epsilon} \left[\int_{x_0}^{\hat{x}^*} f(x, \hat{y}_1, \hat{y}_1') \, dx - \int_{x_0}^{x^*} f(x, y_1, y_1') \, dx \right]$

And as with transversals, we get an integral term which results in the E-L equation, plus the additional term

 $n \delta v - H \delta r$

where

$$\delta x(x^*) = X^* \quad \text{and} \quad \delta y(y_1^*) = Y^*$$

$$H_1 = y_1' \frac{\partial f}{\partial y_1'} - f \quad \text{and} \quad p_1 = \frac{\partial f}{\partial y_1'}$$

Variational Methods & Optimal Control: lecture 20 - p.17/32

The First Variation: part 2

Note that, for the second component of the First Variation we get a similar extra term, e.g. $\delta F_2(\eta, y)$ introduces the term

$$-p_2\delta y+H_2\delta x\Big|_{x^*}$$

the sign is reversed because it corresponds to the x_0 term in the transversal problem (as opposed to the x_1 term for δF_1 .

The combined second variation (minus the terms that result from the E-L equation which must be zero) is

$$\delta F(\mathbf{\eta}, y) = \delta F_1(\mathbf{\eta}, y) + \delta F_2(\mathbf{\eta}, y) = p_1 \delta y - H_1 \delta x - p_2 \delta y + H_2 \delta x \Big|_{y^*}$$

Conditions

We rearrange to give

$$\delta F(\mathbf{\eta}, y) = (p_1 - p_2) \delta y - (H_1 - H_2) \delta x \Big|_{x}$$

Note that the point of discontinuity may vary freely, so we may independently vary δx and δy or set one or both to zero. Hence, we can separate the condition to get two conditions

$$\begin{array}{rcl} p_1 - p_2 \Big|_{x^*} &=& 0 \\ H_1 - H_2 \Big|_{x^*} &=& 0 \end{array}$$

Variational Methods & Optimal Control: lecture 20-p.19/32

Weierstrass-Erdman

We can write the conditions as

$$p_1\Big|_{x^*} = p_2\Big|_{x^*}$$
$$H_1\Big|_{x^*} = H_2\Big|_{x^*}$$

Called the Weierstrass-Erdman Corner Conditions

Rather than separating y into y_1 and y_2 we may write the corner conditions in terms of limits from the left and right, e.g.

$$\begin{array}{lll} p\Big|_{x^{*-}} &=& p\Big|_{x^{*+}} \\ H\Big|_{x^{*-}} &=& H\Big|_{x^{*+}} \end{array}$$

Solution

So the broken extremal solution must satisfy

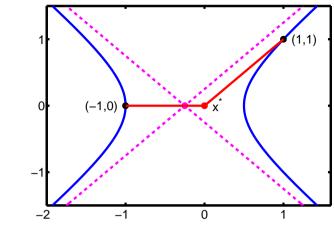
- ► the E-L Equations
- ► the Weierstrass-Erdman Corner Conditions

$$\begin{array}{lll} p\Big|_{x^{*-}} &=& p\Big|_{x^{*+}} \\ H\Big|_{x^{*-}} &=& H\Big|_{x^{*+}} \end{array}$$

must hold at any 'corner'

Example 1

The actual extremal (in red)



Obviously, this is only valid if we allow non-smooth solutions.

Variational Methods & Optimal Control: lecture 20 - p.23/32

More insight

- ► sometimes we have a constraint on where the corner can appear:
 - sometimes the discontinuity arise from the problem itself, e.g., a discontinuous boundary such as in refraction (see Fermat's principle, and Snell's law in earlier lectures)
- ▶ in these cases, we need to go back to the condition

$$\delta F(\eta, y) = (p_1 - p_2) \delta y - (H_1 - H_2) \delta x \Big|_{x^*} = 0$$

and look at whether δx or δy are forced to be zero, or if there is a relationship between them, and use that to form a constraint such as we had for transversals.

Variational Methods & Optimal Control: lecture 20 - p.21/32

Example 1

In the example considered,

$$p = \frac{\partial f}{\partial y'} = -2y^2(1-y')$$
$$H = y'\frac{\partial f}{\partial y'} - f = y^2(1-y'^2)$$

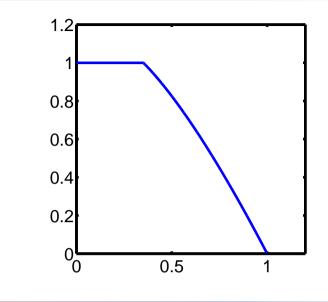
Remember that y = 0 and y = x + A are valid solutions to the E-L equations, and that for both of these solutions p = H = 0, so we can put a 'corner' where needed.

The solution must also satisfy the end-point conditions, so y(-1) = 0 and y(1) = 1, and therefore, as valid solution has $x^* = 0$ and $y_1 = 0$ for $x \in [-1, x^*]$ 0 and $y_2 = x$ for $x \in [x^*, 1]$

General strategy

- ► solve E-L equations
- ► look for solutions for each end condition
- match up the solutions at a corner x^* so that
 - $\triangleright \quad y_1(x^*) = y_2(x^*)$
 - ▷ the Weierstrass-Erdman Corner Conditions are satisfied
- ► in theory can allow more than one corner, but this would get very painful!

Newton's aerodynamical problem



Variational Methods & Optimal Control: lecture 20 - p.27/32

Variational Methods & Optimal Control: lecture 20 - p.25/32

Newton's aerodynamical problem

Find extremal of "air resistance"

$$F\{y\} = \int_0^R \frac{x}{1 + {y'}^2} \, dx$$

subject to y(0) = L and y(R) = 0 with solutions 1. y = const for $x \in [0, x_1]$

2. $u \in [u_1, u_2]$

$$x(u) = \frac{c}{u}(1+u^2)^2 = c\left(\frac{1}{u}+2u+u^3\right)$$

$$y(u) = L - c\left(-\ln u - A + u^2 + \frac{3}{4}u^4\right)$$

Tricky bit is working out u_1 which sets the location of the "corner", and fixes *A*, *c* and u_2 .

Newton's aerodynamical problem

- ▶ we could find *u*₁ by trying to minimize *F* as a function of *u*₁, but this is hard because we only have a numerical solution to get *u*₂.
- ► alternative is to use corner conditions
 - 1. at the corner
 - (a) $x^* = x(u_1)$ is free
 - (b) y = L is fixed
 - 2. corner condition of interest is

$$H\Big|_{x^{*-}} = H\Big|_{x^{*+}}$$

Newton's aerodynamical problem

Calculating H

$$H = y' \frac{\partial f}{\partial y'} - f$$

= $\frac{-2y'^2 x}{(1+y'^2)^2} - \frac{x}{(1+y'^2)}$
= $\frac{-x}{(1+y'^2)^2} [2y'^2 + (1+y'^2)]$
= $\frac{-x}{(1+y'^2)^2} [3y'^2 + 1]$

Newton's aerodynamical problem

 $H\Big|_{x^{*-}} = H\Big|_{x^{*+}}$ $-x^{*} = \frac{-x^{*}}{(1+u^{2})^{2}} [3u^{2}+1]$ $(1+u^{2})^{2} = 3u^{2}+1$ $u^{4}-u^{2} = 0$ $u^{2}(u^{2}-1) = 0$ $u = 0 \text{ or } \pm 1$

but -y' = u > 0 so u = 1 is the only valid solution, hence

$$u_1 = 1$$

and the rest of the solution follows from there.

Variational Methods & Optimal Control: lecture 20 - p.31/32

Variational Methods & Optimal Control: lecture 20 - p.29/32

Newton's aerodynamical problem

Corner condition

$$H = \frac{-x}{(1+y'^2)^2} \left[2y'^2 + 1 \right]$$

Now on the LHS of $x_1 = x^*$ we have y' = 0, so

$$H\Big|_{x^{*-}} = -x^*$$

On the RHS, remember y' = -u (from Lecture 16)

$$H\Big|_{x^{*+}} = \frac{-x^{*}}{(1+u^2)^2} \left[3u^2 + 1\right]$$

Newton's aerodynamical problem

- ► real rockets don't look like this
 - 1. resistance functional is only approximate
 - (a) ignores friction
 - (b) ignores shock waves
 - 2. rockets must pass through multiple layers of atmosphere, at varying speeds
- ► additional constraints:
 - 1. nose cone is tangent to rocket at joint

$$y'(R) = -\infty$$

- 2. nose is easy to build
- ► really, we need to do CFD++