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Broken Extremals
Until now we have required that extremal curves have at leasttwo
well-defined derivatives. Obviously this is not always true(see for
instance Snell’s law). In this lecture we consider the alternatives.
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Broken extremals

Broken extremals are continuous extremals for which the gradient has a
discontinuity at one of more points.

If a variational problem has a smooth extremal (that therefore satisfies the
E-L equations), this will be better than a broken one, e.g.
Brachystochrone.
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Broken extremals

But some problems don’t admit smooth extremals

Example: Findy(x) to minimize

F{y}=
∫ 1

−1
y2(1− y′)2 dx

subject toy(−1) = 0 andy(1) = 1.
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Broken extremals example

There is no explicitx dependence inside the integral, so we can find
H(y,y′) = y′

∂ f
∂y′

− f = const

y′y2(−2)(1− y′)− y2(1− y′)2 = −c1

y2(1− y′)(−1+ y′−2y′) = −c1

y2(1− y′)(−1− y′) = −c1

y2(1− y′2) = c1

If c1 = 0 we get the singular solutions

y = 0 and y =±x+B

Neither of these satisfies both end-points conditionsy(−1) = 0 and
y(1) = 1, soc1 6= 0 (we think)
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Broken extremals example

Givenc1 6= 0

y2(1− y′2) = c1

y′2 =
y2− c1

y2

dy
dx

= ±
1
y

√

y2− c1

dx = ±
y

√

y2− c1

dy

x = ±
√

y2− c1+ c2

(x− c2)
2 = y2− c1

The solution is arectangular hyperbola
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Broken extremals example

Find c1 andc2 from

(x− c2)
2 = y2− c1

using the end-points.

y(−1) = 0 ⇒ (−1− c2)
2 = −c1

y(1) = 1 ⇒ (1− c2)
2 = 1− c1

Combine the two equations

(1− c2)
2 = 1+(1+ c2)

2

which has solutionsc2 =−1/4, and soc1 =−9/16

y2 = (x+1/4)2−9/16
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Broken extremals example

The end-points are on opposite branches of the hyperbola!
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There isNO smooth extremal curve that connects(−1,0) and(1,1)
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Broken extremal

◮ sometimes there is nosmoothextremal

◮ we must seek abroken extremal

◮ still want a continuous extremal

◮ what should we do?
⊲ previous smoothness results suggest that we should use a

smooth extremal when we can, and so we will try to minimize
the number ofcorners.

⊲ We’ll start by looking for curves with one corner
⊲ But can we apply E-L equations?
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Broken extremal

If we have an extremal like this, can we use E-L equations?
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Smoothness theorem

Theorem: If the smooth curvey(x) gives an extremal of a functional
F{y} over the class of all admissible curves in someε neighborhood ofy,
theny(x) also gives an extremal of a functionalF{y} over the class of all
piecewise smooth curvesin the same neighborhood.

Meaning: we can extend our results
to piecewise smooth curves (where a
smooth result exists), not just curves
with 2 continuous derivatives.
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1(x ,y )1
y = y(x)

y = y + 

0(x ,y )0

ε η
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Proof sketch

The theorem assumes that there exists a smooth extremal (in this case a
minimum for the purpose of illustration)y, then for any other smooth
curveŷ ∈ Bε(y) we knowF{ŷ}> F{y}.

Assume for the moment that for a piecewise smooth function ˜y ∈ Bε(y)
thatF{ỹ}< F{y}. We can approximate ˜y by a smooth curve ˆyδ ∈ Bε(y)
by rounding off the edges of the discontinuity.

Given that we can approximate the curve ˜y arbitrarily closely by a smooth
curveŷδ, for which we already knowF{ŷδ}> F{y}, we get a
contradiction withF{ỹ}< F{y}, and so no such alternative extremal can
exist.
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Proof sketch
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Proof sketch
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So what do we do?

Break the functional into two parts:

F{y}= F1{y}+F2{y}=
∫ x∗

x0

f (x,y1,y
′
1)dx+

∫ x1

x∗
f (x,y2,y

′
2)dx

where we requirey to have two continuous derivatives everywhere except
at x∗, andy1(x∗) = y2(x∗)
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Possible perturbations

1(x ,y )1

y

x

00(x ,y )

y = y(x)

x*x*

y = y + ε η

The location of the “corner” can also be perturbed.
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The First Variation: part 1

We get first component of the first variation by considering a problem
with only one fixed end-point, and allowingx∗ to vary, so that

δF1(η,y) = lim
ε→∞

1
ε

[∫ x̂∗

x0

f (x, ŷ1, ŷ
′
1)dx−

∫ x∗

x0

f (x,y1,y
′
1)dx

]

And as with transversals, we get an integral term which results in the E-L
equation, plus the additional term

p1δy−H1δx
∣

∣

∣

x∗
where δx(x∗) = X∗ and δy(y∗1) = Y ∗

H1 = y′1
∂ f
∂y′1

− f and p1 =
∂ f
∂y′1
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The First Variation: part 2

Note that, for the second component of the First Variation weget a similar
extra term, e.g.δF2(η,y) introduces the term

− p2δy+H2δx
∣

∣

∣

x∗

the sign is reversed because it corresponds to thex0 term in the transversal
problem (as opposed to thex1 term forδF1.

The combined second variation (minus the terms that result from the E-L
equation which must be zero) is

δF(η,y) = δF1(η,y)+δF2(η,y) = p1δy−H1δx− p2δy+H2δx
∣

∣

∣

x∗
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Conditions

We rearrange to give

δF(η,y) = (p1− p2)δy− (H1−H2)δx
∣

∣

∣

x∗

Note that the point of discontinuity may vary freely, so we may
independently varyδx andδy or set one or both to zero. Hence, we can
separate the condition to get two conditions

p1− p2

∣

∣

∣

x∗
= 0

H1−H2

∣

∣

∣

x∗
= 0
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Weierstrass-Erdman

We can write the conditions as

p1

∣

∣

∣

x∗
= p2

∣

∣

∣

x∗

H1

∣

∣

∣

x∗
= H2

∣

∣

∣

x∗

Called theWeierstrass-Erdman Corner Conditions

Rather than separatingy into y1 andy2 we may write the corner conditions
in terms of limits from the left and right, e.g.

p
∣

∣

∣

x∗−
= p

∣

∣

∣

x∗+

H
∣

∣

∣

x∗−
= H

∣

∣

∣

x∗+

Variational Methods & Optimal Control: lecture 20 – p.20/32



Solution

So the broken extremal solution must satisfy

◮ the E-L Equations

◮ the Weierstrass-Erdman Corner Conditions

p
∣

∣

∣

x∗−
= p

∣

∣

∣

x∗+

H
∣

∣

∣

x∗−
= H

∣

∣

∣

x∗+

must hold at any ’corner’
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Example 1

In the example considered,

p =
∂ f
∂y′

= −2y2(1− y′)

H = y′
∂ f
∂y′

− f = y2(1− y′2)

Remember thaty = 0 andy = x+A are valid solutions to the E-L
equations, and that for both of these solutionsp = H = 0, so we can put a
’corner’ where needed.

The solution must also satisfy the end-point conditions, soy(−1) = 0 and
y(1) = 1, and therefore, as valid solution hasx∗ = 0 and

y1 = 0 for x ∈ [−1,x∗]

y2 = x for x ∈ [x∗,1]

Variational Methods & Optimal Control: lecture 20 – p.22/32

Example 1

The actual extremal (in red)
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Obviously, this is only valid if we allow non-smooth solutions.
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More insight

◮ sometimes we have a constraint on where the corner can appear:

⊲ sometimes the discontinuity arise from the problem itself,e.g.,
a discontinuous boundary such as in refraction (see Fermat’s
principle, and Snell’s law in earlier lectures)

◮ in these cases, we need to go back to the condition

δF(η,y) = (p1− p2)δy− (H1−H2)δx
∣

∣

∣

x∗
= 0

and look at whetherδx or δy are forced to be zero, or if there is a
relationship between them, and use that to form a constraintsuch as
we had for transversals.
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General strategy

◮ solve E-L equations

◮ look for solutions for each end condition

◮ match up the solutions at a cornerx∗ so that

⊲ y1(x∗) = y2(x∗)
⊲ the Weierstrass-Erdman Corner Conditions are satisfied

◮ in theory can allow more than one corner, but this would get very
painful!
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Newton’s aerodynamical problem

Find extremal of “air resistance”

F{y}=
∫ R

0

x
1+ y′2

dx,

subject toy(0) = L andy(R) = 0 with solutions
1. y = const for x ∈ [0,x1]

2. u ∈ [u1,u2]

x(u) =
c
u
(1+u2)2 = c

(

1
u
+2u+u3

)

.

y(u) = L− c

(

− lnu−A+u2+
3
4

u4

)

Tricky bit is working outu1 which sets the location of the “corner”, and
fixesA, c andu2.
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Newton’s aerodynamical problem
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Newton’s aerodynamical problem

◮ we could findu1 by trying to minimizeF as a function ofu1, but this
is hard because we only have a numerical solution to getu2.

◮ alternative is to use corner conditions
1. at the corner

(a) x∗ = x(u1) is free
(b) y = L is fixed

2. corner condition of interest is

H
∣

∣

∣

x∗−
= H

∣

∣

∣

x∗+
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Newton’s aerodynamical problem

CalculatingH

H = y′
∂ f
∂y′

− f

=
−2y′2x

(1+ y′2)2
−

x
(1+ y′2)

=
−x

(1+ y′2)2

[

2y′2+(1+ y′2)
]

=
−x

(1+ y′2)2

[

3y′2+1
]
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Newton’s aerodynamical problem

Corner condition

H =
−x

(1+ y′2)2

[

2y′2+1
]

Now on the LHS ofx1 = x∗ we havey′ = 0, so

H
∣

∣

∣

x∗−
=−x∗

On the RHS, remembery′ =−u (from Lecture 16)

H
∣

∣

∣

x∗+
=

−x∗

(1+u2)2

[

3u2+1
]
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Newton’s aerodynamical problem

H
∣

∣

∣

x∗−
= H

∣

∣

∣

x∗+

−x∗ =
−x∗

(1+u2)2

[

3u2+1
]

(1+u2)2 = 3u2+1

u4−u2 = 0

u2(u2−1) = 0

u = 0 or ±1

but−y′ = u > 0 sou = 1 is the only valid solution, hence

u1 = 1

and the rest of the solution follows from there.
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Newton’s aerodynamical problem

◮ real rockets don’t look like this
1. resistance functional is only approximate

(a) ignores friction
(b) ignores shock waves

2. rockets must pass through multiple layers of atmosphere,at
varying speeds

◮ additional constraints:
1. nose cone is tangent to rocket at joint

y′(R) =−∞

2. nose is easy to build

◮ really, we need to do CFD++

Variational Methods & Optimal Control: lecture 20 – p.32/32


	
	Broken extremals
	Broken extremals
	Broken extremals example
	Broken extremals example
	Broken extremals example
	Broken extremals example
	Broken extremal
	Broken extremal
	Smoothness theorem
	Proof sketch
	Proof sketch
	Proof sketch
	So what do we do?
	Possible perturbations
	The First Variation: part 1
	The First Variation: part 2
	Conditions
	Weierstrass-Erdman
	Solution
	Example 1
	Example 1
	More insight
	General strategy
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem
	Newton's aerodynamical problem

