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More Optimal Control
Examples

An aerospace example: a rocket launch profile.
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Example: launching a rocket

Launch a rocket (with one stage) to deliver its payload into Low-Earth
Orbit (LEO) at some heighth above the Earth’s surface.
Assumptions:

◮ ignore drag, and curvature and rotation of Earth

◮ LEO so assume gravitational force at ground and orbit are
approximately the same

◮ thrust will generate accelerationa, which is predefined by rocket
parameters

◮ we thrust for some timeT , then follow a ballistic trajectory until
(hopefully) we reach heighth, at zero vertical velocity, and with
horizontal velocity matching the required orbital injection speed.
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Example: launching a rocket
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Example: launching a rocket
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Example: launching a rocket

Notation:
x = horizontal position

y = vertical position

u = horizontal velocity

v = vertical velocity

Initial conditionsx(0) = y(0) = u(0) = v(0) = 0. Thrust stops at timeT ,
and then at some later timeS, we reach the peak of the trajectory where

y(S) = h

u(S) = uo, orbital velocity

v(S) = 0

We don’t actually care about the final positionx(S)
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Example: launching a rocket

◮ Control: thrust profile is pre-determined. The only thing wecan
control (in this problem) is theangle of thrust.
⊲ Thrusta(t) is constant for our example.

⊲ Measure the angle of thrustθ(t) relative to horizontal.

◮ want to minimize fuel
⊲ but this is equivalent to minimizing time, e.g.,

F =

∫ t

0
adt = a

∫ T

0
1dt

◮ need to get to heighth

◮ need to get to horizontal velocityuo to enter orbit

Variational Methods & Optimal Control: lecture 23 – p.7/35

Constraint equations

Thrust component:t ≤ T

.
x = u
.
y = v
.
u = acosθ
.
v = asinθ−g

Initial point:
x(0) = y(0) = u(0) = v(0) = 0.

Final point: f ree

Ballistic component:T < t ≤ S

.
x = u
.
y = v
.
u = 0
.
v = −g

Initial point: fixed
x(T ), y(T ), u(T ), v(T )

Final point:
x(S) f ree,
y(S) = h, v(S) = 0, u(S) = uo
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1st consider ballistic component

For t ∈ [T,S] we have no control, and
.
x = u
.
y = v
.
u = 0
.
v = −g

we can calculate the top of the resulting parabola as

u(S) = u(T )

v(S) = 0

y(S) = y(T )+ v(T )2/2g

andx(T ) andx(S) are free.
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Example: co-ordinate transform

So we can change variables: make the final pointt = T , and take variables
u, v as before, and

z = y+ v2/2g.

We can differentiate this and combine with previous resultsto get the new
system DEs

.
u = acosθ
.
v = asinθ−g
.
z =

.
y+ v

.
v/g

= v(1+
.
v/g)

=
av
g

sinθ
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Example: optimization functional

Time minimization problem

T =

∫ T

0
1dt

Including Lagrange multipliers for the 3 system constraints we aim to
minimize

J{θ}=
∫ T

0
1+λu

(.
u−acosθ

)

+λv
(.
v−asinθ+g

)

+λz

(.
z−

av
g

sinθ
)

dt

subject to u(0) = 0, u(T ) = uo

v(0) = 0, v(T ) = f ree

z(0) = 0, z(T ) = h

θ(0) = f ree, θ(T ) = f ree
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Example: Euler-Lagrange equations

E-L equations

u :
∂h
∂u

−
d
dt

∂h

∂.u = 0 ⇒
.
λu = 0

v :
∂h
∂v

−
d
dt

∂h

∂.v = 0 ⇒
.
λv = −λz

a
g sinθ

z :
∂h
∂z

−
d
dt

∂h

∂.z = 0 ⇒
.
λz = 0

θ :
∂h
∂θ

−
d
dt

∂h

∂
.
θ

= 0 ⇒

aλu sinθ−λvacosθ−λz
av
g

cosθ = 0

(λ equations give back systems DEs)
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Example: solving the E-L equations

Take thev equation, and noting that
.
v = asinθ−g

.
λv = −λz

a
g

sinθ

= −
λz

g
(
.
v+g)

λv = −
λz

g
(v+gt + c)

= −
λzv
g

−λzt +b
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Example: solving the E-L equations

Substitute

λv =−
λzv
g

−λzt +b

into theθ E-L equation (dropping the common factora)

λu sinθ−λv cosθ−λz
v
g

cosθ = 0

and we get

λu sinθ+
(

λzv
g

+λzt −b

)

cosθ−λz
v
g

cosθ = 0

λu sinθ+(λzt −b)cosθ = 0

tanθ = −(λzt −b)/λu
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Example: solution

Remember thatλu andλv andb are all constants, so the equation

tanθ =−(λzt −b)/λu

◮ angle of thrust now specified

θ = tan−1 (−(λzt −b)/λu)

◮ but we need to determine constants
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Example: end-point conditions

Final end-points conditions

T = f ree

z(T ) = h

u(T ) = uo, orbital velocity

v(T ) = f ree

θ(T ) = f ree

λu = f ree

λv = f ree

λz = f ree
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Example: natural boundary conditions

The free-end point boundary condition for

F{t,q,
.
q}=

∫
L(t,q,

.
q)dt

is n

∑
k=1

pkδqk −Hδt = 0 wherepk =
∂L

∂.qk

andH =
n

∑
k=1

.
qk pk −L

In this problem

∂L

∂
.
λk

= 0,
∂L

∂
.
θ
= 0,

∂L

∂.u = λu,
∂L

∂.v = λv,
∂L

∂.z = λz
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Example: natural boundary conditions

Considerδqk for each co-ordinate:

◮ for fixed co-ordinatesu andz, we haveδqk = 0

◮ its free forθ, λu, λv, λz, but in each case the correspondingpk = 0,
so we can ignore these.

◮ only case where it matters isδv, which we can vary, and for which
pv = λv.

Also δt is free, so we get two end-point conditions att = T .

H(T ) = 0

pv = λv(T ) = 0
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Example: natural boundary conditions

Givenλv(T ) = 0, and from previous work

λv =−
λzv
g

−λzt +b

we get

λzv(T )/g = −λzT +b

= λu tanθ(T )

v(T ) =
λug
λz

tanθ(T )
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Example: natural boundary conditions

∂L

∂
.
λk

= 0,
∂L

∂
.
θ
= 0,

∂L

∂.u = λu,
∂L

∂.v = λv,
∂L

∂.z = λz

SoH is given by

H = λu
.
u+λv

.
v+λz

.
z−L

SubstituteL, and the system DEs, and we get

H = λu
.
u+λv

.
v+λz

.
z−1

The end-point condition att = T is therefore

λu
.
u+λv

.
v+λz

.
z = 1
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Example: natural boundary conditions

Substitute

λv = −λzv/g−λzt +b

= −λzv/g+λu tanθ
.
u = acosθ
.
v = asinθ−g
.
z =

av
g

sinθ

Into
λu

.
u+λv

.
v+λz

.
z = 1

and we get
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Example: natural boundary conditions

We get

λu
.
u+λv

.
v+λz

.
z = 1

λuacosθ+(−λzv/g+λu tanθ)(asinθ−g)+λz
av
g

sinθ = 1

λuacosθ+λzv+λua tanθsinθ−gλu tanθ = 1

λua(cosθ+ tanθsinθ)+λzv−gλu tanθ = 1

λua

(

cos2 θ+sin2 θ
cosθ

)

+λzv−gλu tanθ = 1

λuasecθ+λzv−gλu tanθ = 1

all evaluated att = T . Combine withgλu tanθ = λzv and

λz = cos(θ(T ))/a

Variational Methods & Optimal Control: lecture 23 – p.22/35

Example: natural boundary conditions

Another way to get the same result is to note

H = λu
.
u+λv

.
v+λz

.
z−L

and

L = 1+λu
(.
u−acosθ

)

+λv
(.
v−asinθ+g

)

+λz

(.
z−

av
g

sinθ
)

so

H = λuacosθ+λv[asinθ−g]+
avλz

g
sinθ−1

which is what we got near the start of the previous slide before
substitutingλv =−λzv/g+λu tanθ.
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Example: natural boundary conditions

At the starting point, all of the co-ordinates are fixed (except for θ, and the
Lagrange multipliers), so the only free-end points condition at this point is

H = 0

as before. In fact, ifa = const the problem is not time-dependent, soH is
conserved, i.e.

H(t) = 0

for the entire rocket flight. Note though, that for this system, H is not
“energy” as this is not conserved (unless you include the chemical energy
stored in the rocket).
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Example: acceleration profile

The next steps depend on the acceleration profilea(t), but lets take a
simple casea = const.

First we can solve the DEs, with respect toθ using the chain rule

dX
dt

=
dX
dθ

dθ
dt

=−cos2 θ
λz

λu

dX
dθ

e.g. from the system DE
.
u = acosθ

.
u = −cos2 θ

λz

λu

du
dθ

du
dθ

= −
λu

λz cos2 θ
.
u

= −
aλu

λz cosθ
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Example: acceleration profile

dX
dθ

=
dX
dt

/
dθ
dt

=
dX
dt

/

(

−cos2 θ
λz

λu

)

The complete set of system DEs becomes

du
dθ

= −
aλu

λz cosθ
dv
dθ

= −
aλu

λz

sinθ
cos2 θ

+
gλu

λz cos2 θ
dz
dθ

= −
aλu

gλz

sinθ
cos2 θ

v(θ)

These can just be integrated with respect toθ
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Example: acceleration profile

The system DEs can be directly integrated (with respect toθ) including
initial conditionsu(0) = v(0) = z(0) = 0 to get

u(θ) =
aλu

λz
log

(

secθ0+ tanθ0

secθ+ tanθ

)

v(θ) =
aλu

λz
(secθ0−secθ)−

gλu

λz
(tanθ0− tanθ)

z(θ) =
a2λ2

u

gλ2
z

secθ1(secθ0−secθ)−
a2λ2

u

2gλ2
z
(tan2 θ0− tan2 θ)

+
aλ2

u

2λ2
z

[

tanθ0secθ0− tanθsecθ+ log

(

secθ0+ tanθ0

secθ+ tanθ

)]

θ = tan−1 (−(λzt −b)/λu)
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Example: calculating the constants

There are five constants to calculate:

◮ θ0 the initial angle of thrust

◮ θ1 the final angle of thrust

◮ λu

◮ λz

◮ b

and we also need to calculateT .

Solving for end-point conditions is non-trivial, but a method that works
well (from Lawden) follows.
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Example: calculating the constants

Take the equation forv at timeT , and substituteλzv(T ) = gλu tanθ1 to get

v(θ1) =
aλu

λz
(secθ0−secθ1)−

gλu

λz
(tanθ0− tanθ1)

gλu

λz
tanθ1 =

aλu

λz
(secθ0−secθ1)−

gλu

λz
(tanθ0− tanθ1)

secθ1 = secθ0−
g
a

tanθ0

which gives us a way to calculateθ1 from θ0. Once we knowθ1 we can
calculateλu usingλua = cosθ1, andb from tanθ = (−(λzt −b)/λu) at
t = 0. Then we can calculateλz from u(θ1) = uo, the orbital injection
velocity
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Example: calculating the constants

So the only remaining question is how to calculateθ0. We do so
numerically, by

◮ take a range ofθ0

◮ calculate all of the above

◮ use this to calculatez(T ) = z1 as a function ofθ0

◮ look for the point wherez1(θ0) = h the orbit height.

That gives us theθ0, from which we can derive everything else. There are
good numerical methods to search for such a solution, particularly if we
start with a clear range over which to look.
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Example: restricting choice ofθ0

Calculating the range ofθ0 to search

◮ The maximum (reasonable) value forθ0 is π/2.

◮ The minimum value ofθ0 will be determined by the minimum
possible value ofθ1, i.e.,θ1 = 0

secθ1 = secθ0−
g
a

tanθ0

sec0 = secθ0−
g
a

tanθ0

1 = secθ0−
g
a

tanθ0

1 =
1+ tan2 θ0/2
1− tan2 θ0/2

−
g
a

2tanθ0/2
1− tan2 θ0/2

1− tan2 θ0/2 = 1+ tan2 θ0/2−
2g
a

tanθ0/2
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Example: restricting choice ofθ0

1− tan2 θ0/2 = 1+ tan2 θ0/2−
2g
a

tanθ0/2

2tan2 θ0/2−
2g
a

tanθ0/2 = 0

tanθ0/2
(

tanθ0/2−
g
a

)

= 0

Now θ0 can’t be zero, so the last step implies that the minimum valueof
θ0 is

θ0 = 2tan−1(g/a)

Note the existence of a minimum criticalh below which we can’t find a
trajectory of this type.
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Example: parameters

Parameters of previous example consistent with a LEO.

h = 500 km

uo = 8000 m/s

g = 9.8 m/s2

a = 3g

Derived constants

θ0 = 0.2349π θ1 = 0.0973π
λu = 0.0324 λz = 6.0257e−05

b = −0.0295

T = 319.8 seconds

S = 489.6 seconds
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Example: trajectory
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Example: generalizations

More realistic assumptions

◮ non-zero drag (depends on velocity and height)

◮ thrust is constant, but rocket mass changes, so that acceleration isn’t
constant

◮ multiple stages

◮ centripetal forces

For more examples, and discussion see Lawden, “Optimal Trajectories for
Space Navigation”, Butterworths, 1963 (which is incidentally where the
above example comes from).
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