Variational Methods \& Optimal Control

lecture 23

Matthew Roughan
matthew.roughan@adelaide.edu.au

Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

April 14, 2016

More Optimal Control Examples

An aerospace example: a rocket launch profile.

Example: launching a rocket

Launch a rocket (with one stage) to deliver its payload into Low-Earth Orbit (LEO) at some height h above the Earth's surface. Assumptions:

■ ignore drag, and curvature and rotation of Earth
\square LEO so assume gravitational force at ground and orbit are approximately the same

- thrust will generate acceleration a, which is predefined by rocket parameters

■ we thrust for some time T, then follow a ballistic trajectory until (hopefully) we reach height h, at zero vertical velocity, and with horizontal velocity matching the required orbital injection speed.

Example: launching a rocket

Variational Methods \& Optimal Control: lecture 23 - p.4/??

Example: launching a rocket

Example: launching a rocket

Notation:

$$
\begin{aligned}
& x=\text { horizontal position } \\
& y=\text { vertical position } \\
& u=\text { horizontal velocity } \\
& v=\text { vertical velocity }
\end{aligned}
$$

Initial conditions $x(0)=y(0)=u(0)=v(0)=0$. Thrust stops at time T, and then at some later time S, we reach the peak of the trajectory where

$$
\begin{aligned}
& y(S)=h \\
& u(S)=u_{o}, \text { orbital velocity } \\
& v(S)=0
\end{aligned}
$$

We don't actually care about the final position $x(S)$

Example: launching a rocket

■ Control: thrust profile is pre-determined. The only thing we can control (in this problem) is the angle of thrust.

- Thrust $a(t)$ is constant for our example.

■ Measure the angle of thrust $\theta(t)$ relative to horizontal.
■ want to minimize fuel
■ but this is equivalent to minimizing time, e.g.,

$$
F=\int_{0}^{t} a d t=a \int_{0}^{T} 1 d t
$$

\square need to get to height h
■ need to get to horizontal velocity u_{o} to enter orbit

Constraint equations

Thrust component: $t \leq T$
$\dot{x}=u$
$\dot{y}=v$
$\dot{u}=a \cos \theta$
$\dot{v}=a \sin \theta-g$
[nitial point:
$x(0)=y(0)=u(0)=v(0)=0$.
Final point: free

Ballistic component: $T<t \leq S$

$$
\begin{aligned}
\dot{x} & =u \\
\dot{y} & =v \\
\dot{u} & =0 \\
\dot{v} & =-g
\end{aligned}
$$

Initial point: fixed
$x(T), y(T), u(T), v(T)$
Final point:
$x(S)$ free,
$y(S)=h, v(S)=0, u(S)=u_{o}$

1st consider ballistic component

For $t \in[T, S]$ we have no control, and

$$
\begin{aligned}
& \dot{x}=u \\
& \dot{y}=v \\
& \dot{u}=0 \\
& \dot{v}=-g
\end{aligned}
$$

we can calculate the top of the resulting parabola as

$$
\begin{aligned}
u(S) & =u(T) \\
v(S) & =0 \\
y(S) & =y(T)+v(T)^{2} / 2 g
\end{aligned}
$$

and $x(T)$ and $x(S)$ are free.

Example: co-ordinate transform

So we can change variables: make the final point $t=T$, and take variables u, v as before, and

$$
z=y+v^{2} / 2 g .
$$

We can differentiate this and combine with previous results to get the new system DEs

$$
\begin{aligned}
\dot{u} & =a \cos \theta \\
\dot{v} & =a \sin \theta-g \\
\dot{z} & =\dot{y}+v \dot{v} / g \\
& =v(1+\dot{v} / g) \\
& =\frac{a v}{g} \sin \theta
\end{aligned}
$$

Example: optimization functional

Time minimization problem

$$
T=\int_{0}^{T} 1 d t
$$

Including Lagrange multipliers for the 3 system constraints we aim to minimize

$$
\begin{aligned}
& J\{\theta\}=\int_{0}^{T} 1+\lambda_{u}(\dot{u}-a \cos \theta)+\lambda_{v}(\dot{v}-a \sin \theta+g)+\lambda_{z}\left(\dot{z}-\frac{a v}{g} \sin \theta\right) d t \\
& \text { subject to } \begin{array}{rlrl}
u(0) & =0, \quad u(T) & =u_{o} \\
v(0) & =0, & v(T) & =\text { free } \\
z(0) & =0, & z(T) & =h \\
\theta(0) & =\text { free, } \quad \theta(T) & =\text { free }
\end{array}
\end{aligned}
$$

Example: Euler-Lagrange equations

E-L equations

$$
\begin{aligned}
& u: \frac{\partial h}{\partial u}-\frac{d}{d t} \frac{\partial h}{\partial \dot{u}}=0 \Rightarrow \dot{\lambda}_{u}=0 \\
& v: \frac{\partial h}{\partial v}-\frac{d}{d t} \frac{\partial h}{\partial \dot{\dot{v}}}=0 \Rightarrow \dot{\lambda}_{v}=-\lambda_{z} \frac{a}{g} \sin \theta \\
& z: \frac{\partial h}{\partial z}-\frac{d}{d t} \frac{\partial h}{\partial \dot{z}}=0 \Rightarrow \dot{\lambda}_{z}=0 \\
& \theta: \frac{\partial h}{\partial \theta}-\frac{d}{d t} \frac{\partial h}{\partial \dot{\theta}}=0 \Rightarrow \\
& a \lambda_{u} \sin \theta-\lambda_{v} a \cos \theta-\lambda_{z} \frac{a v}{g} \cos \theta=0
\end{aligned}
$$

(λ equations give back systems DEs)

Example: solving the E-L equations

Take the v equation, and noting that $\dot{v}=a \sin \theta-g$

$$
\begin{aligned}
\dot{\lambda}_{v} & =-\lambda_{z} \frac{a}{g} \sin \theta \\
& =-\frac{\lambda_{z}}{g}(\dot{v}+g) \\
\lambda_{v} & =-\frac{\lambda_{z}}{g}(v+g t+c) \\
& =-\frac{\lambda_{z} v}{g}-\lambda_{z} t+b
\end{aligned}
$$

Example: solving the E-L equations

Substitute

$$
\lambda_{v}=-\frac{\lambda_{z} v}{g}-\lambda_{z} t+b
$$

into the θ E-L equation (dropping the common factor a)

$$
\lambda_{u} \sin \theta-\lambda_{v} \cos \theta-\lambda_{z} \frac{v}{g} \cos \theta=0
$$

and we get

$$
\begin{aligned}
\lambda_{u} \sin \theta+\left(\frac{\lambda_{z} v}{g}+\lambda_{z} t-b\right) \cos \theta-\lambda_{z} \frac{v}{g} \cos \theta & =0 \\
\lambda_{u} \sin \theta+\left(\lambda_{z} t-b\right) \cos \theta & =0 \\
\tan \theta & =-\left(\lambda_{z} t-b\right) / \lambda_{u}
\end{aligned}
$$

Example: solution

Remember that λ_{u} and λ_{v} and b are all constants, so the equation

$$
\tan \theta=-\left(\lambda_{z} t-b\right) / \lambda_{u}
$$

■ angle of thrust now specified

$$
\theta=\tan ^{-1}\left(-\left(\lambda_{z} t-b\right) / \lambda_{u}\right)
$$

■ but we need to determine constants

Example: end-point conditions

Final end-points conditions

$$
\begin{aligned}
T & =\text { free } \\
z(T) & =h \\
u(T) & =u_{o}, \text { orbital velocity } \\
v(T) & =\text { free } \\
\theta(T) & =\text { free } \\
\lambda_{u} & =\text { free } \\
\lambda_{v} & =\text { free } \\
\lambda_{z} & =\text { free }
\end{aligned}
$$

Example: natural boundary conditions

The free-end point boundary condition for

$$
F\{t, \mathbf{q}, \dot{\mathbf{q}}\}=\int L(t, \mathbf{q}, \dot{\mathbf{q}}) d t
$$

is

$$
\sum_{k=1}^{n} p_{k} \delta q_{k}-H \delta t=0 \text { where } p_{k}=\frac{\partial L}{\partial \dot{q}_{k}} \text { and } H=\sum_{k=1}^{n} \dot{q}_{k} p_{k}-L
$$

In this problem

$$
\frac{\partial L}{\partial \dot{\lambda}_{k}}=0, \quad \frac{\partial L}{\partial \dot{\theta}}=0, \quad \frac{\partial L}{\partial \dot{u}}=\lambda_{u}, \quad \frac{\partial L}{\partial \dot{v}}=\lambda_{v}, \quad \frac{\partial L}{\partial \dot{z}}=\lambda_{z}
$$

Example: natural boundary conditions

Consider δq_{k} for each co-ordinate:
\square for fixed co-ordinates u and z, we have $\delta q_{k}=0$
\square its free for $\theta, \lambda_{u}, \lambda_{v}, \lambda_{z}$, but in each case the corresponding $p_{k}=0$, so we can ignore these.
\square only case where it matters is δv, which we can vary, and for which $p_{v}=\lambda_{v}$.
Also δt is free, so we get two end-point conditions at $t=T$.

$$
\begin{aligned}
H(T) & =0 \\
p_{v}=\lambda_{v}(T) & =0
\end{aligned}
$$

Example: natural boundary conditions

Given $\lambda_{\nu}(T)=0$, and from previous work

$$
\lambda_{v}=-\frac{\lambda_{z} v}{g}-\lambda_{z} t+b
$$

we get

$$
\begin{aligned}
\lambda_{z} v(T) / g & =-\lambda_{z} T+b \\
& =\lambda_{u} \tan \theta(T) \\
v(T) & =\frac{\lambda_{u} g}{\lambda_{z}} \tan \theta(T)
\end{aligned}
$$

Example: natural boundary conditions

$$
\frac{\partial L}{\partial \dot{\lambda}_{k}}=0, \quad \frac{\partial L}{\partial \dot{\theta}}=0, \quad \frac{\partial L}{\partial \dot{u}}=\lambda_{u}, \quad \frac{\partial L}{\partial \dot{v}}=\lambda_{v}, \quad \frac{\partial L}{\partial \dot{z}}=\lambda_{z}
$$

So H is given by

$$
H=\lambda_{u} \dot{u}+\lambda_{v} \dot{v}+\lambda_{z} \dot{z}-L
$$

Substitute L, and the system DEs, and we get

$$
H=\lambda_{u} \dot{u}+\lambda_{v} \dot{v}+\lambda_{z} \dot{z}-1
$$

The end-point condition at $t=T$ is therefore

$$
\lambda_{u} \dot{u}+\lambda_{v} \dot{v}+\lambda_{z} \dot{z}=1
$$

Example: natural boundary conditions

Substitute

$$
\begin{aligned}
\lambda_{v} & =-\lambda_{z} v / g-\lambda_{z} t+b \\
& =-\lambda_{z} v / g+\lambda_{u} \tan \theta \\
\dot{u} & =a \cos \theta \\
\dot{v} & =a \sin \theta-g \\
\dot{z} & =\frac{a v}{g} \sin \theta
\end{aligned}
$$

Into

$$
\lambda_{u} \dot{u}+\lambda_{v} \dot{v}+\lambda_{z} \dot{z}=1
$$

and we get

Example: natural boundary conditions

We get

$$
\begin{aligned}
\lambda_{u} \dot{u}+\lambda_{v} \dot{v}+\lambda_{z} \dot{z} & =1 \\
\lambda_{u} a \cos \theta+\left(-\lambda_{z} v / g+\lambda_{u} \tan \theta\right)(a \sin \theta-g)+\lambda_{z} \frac{a v}{g} \sin \theta & =1 \\
\lambda_{u} a \cos \theta+\lambda_{z} v+\lambda_{u} a \tan \theta \sin \theta-g \lambda_{u} \tan \theta & =1 \\
\lambda_{u} a(\cos \theta+\tan \theta \sin \theta)+\lambda_{z} v-g \lambda_{u} \tan \theta & =1 \\
\lambda_{u} a\left(\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos \theta}\right)+\lambda_{z} v-g \lambda_{u} \tan \theta & =1 \\
\lambda_{u} a \sec \theta+\lambda_{z} v-g \lambda_{u} \tan \theta & =1
\end{aligned}
$$

all evaluated at $t=T$. Combine with $g \lambda_{u} \tan \theta=\lambda_{z} v$ and

$$
\lambda_{z}=\cos (\theta(T)) / a
$$

Example: natural boundary conditions

Another way to get the same result is to note

$$
H=\lambda_{u} \dot{u}+\lambda_{v} \dot{v}+\lambda_{z} \dot{z}-L
$$

and

$$
L=1+\lambda_{u}(\dot{u}-a \cos \theta)+\lambda_{v}(\dot{v}-a \sin \theta+g)+\lambda_{z}\left(\dot{z}-\frac{a v}{g} \sin \theta\right)
$$

SO

$$
H=\lambda_{u} a \cos \theta+\lambda_{v}[a \sin \theta-g]+\frac{a v \lambda_{z}}{g} \sin \theta-1
$$

which is what we got near the start of the previous slide before substituting $\lambda_{v}=-\lambda_{z} v / g+\lambda_{u} \tan \theta$.

Example: natural boundary conditions

At the starting point, all of the co-ordinates are fixed (except for θ, and the Lagrange multipliers), so the only free-end points condition at this point is

$$
H=0
$$

as before. In fact, if $a=$ const the problem is not time-dependent, so H is conserved, i.e.

$$
H(t)=0
$$

for the entire rocket flight. Note though, that for this system, H is not "energy" as this is not conserved (unless you include the chemical energy stored in the rocket).

Example: acceleration profile

The next steps depend on the acceleration profile $a(t)$, but lets take a simple case $a=$ const .

First we can solve the DEs, with respect to θ using the chain rule

$$
\frac{d X}{d t}=\frac{d X}{d \theta} \frac{d \theta}{d t}=-\cos ^{2} \theta \frac{\lambda_{z}}{\lambda_{u}} \frac{d X}{d \theta}
$$

e.g. from the system $\mathrm{DE} \dot{u}=a \cos \theta$

$$
\begin{aligned}
\dot{u} & =-\cos ^{2} \theta \frac{\lambda_{z}}{\lambda_{u}} \frac{d u}{d \theta} \\
\frac{d u}{d \theta} & =-\frac{\lambda_{u}}{\lambda_{z} \cos ^{2} \theta} \dot{u} \\
& =-\frac{a \lambda_{u}}{\lambda_{z} \cos \theta}
\end{aligned}
$$

Example: acceleration profile

$$
\frac{d X}{d \theta}=\frac{d X}{d t} / \frac{d \theta}{d t}=\frac{d X}{d t} /\left(-\cos ^{2} \theta \frac{\lambda_{z}}{\lambda_{u}}\right)
$$

The complete set of system DEs becomes

$$
\begin{aligned}
\frac{d u}{d \theta} & =-\frac{a \lambda_{u}}{\lambda_{z} \cos \theta} \\
\frac{d v}{d \theta} & =-\frac{a \lambda_{u}}{\lambda_{z}} \frac{\sin \theta}{\cos ^{2} \theta}+\frac{g \lambda_{u}}{\lambda_{z} \cos ^{2} \theta} \\
\frac{d z}{d \theta} & =-\frac{a \lambda_{u}}{g \lambda_{z}} \frac{\sin \theta}{\cos ^{2} \theta} v(\theta)
\end{aligned}
$$

These can just be integrated with respect to θ

Example: acceleration profile

The system DEs can be directly integrated (with respect to θ) including initial conditions $u(0)=v(0)=z(0)=0$ to get

$$
\begin{aligned}
u(\theta)= & \frac{a \lambda_{u}}{\lambda_{z}} \log \left(\frac{\sec \theta_{0}+\tan \theta_{0}}{\sec \theta+\tan \theta}\right) \\
v(\theta)= & \frac{a \lambda_{u}}{\lambda_{z}}\left(\sec \theta_{0}-\sec \theta\right)-\frac{g \lambda_{u}}{\lambda_{z}}\left(\tan \theta_{0}-\tan \theta\right) \\
z(\theta)= & \frac{a^{2} \lambda_{u}^{2}}{g \lambda_{z}^{2}} \sec \theta_{1}\left(\sec \theta_{0}-\sec \theta\right)-\frac{a^{2} \lambda_{u}^{2}}{2 g \lambda_{z}^{2}}\left(\tan ^{2} \theta_{0}-\tan ^{2} \theta\right) \\
& \quad+\frac{a \lambda_{u}^{2}}{2 \lambda_{z}^{2}}\left[\tan \theta_{0} \sec \theta_{0}-\tan \theta \sec \theta+\log \left(\frac{\sec \theta_{0}+\tan \theta_{0}}{\sec \theta+\tan \theta}\right)\right] \\
\theta= & \tan ^{-1}\left(-\left(\lambda_{z} t-b\right) / \lambda_{u}\right)
\end{aligned}
$$

Example: calculating the constants

There are five constants to calculate:
■ θ_{0} the initial angle of thrust
■ θ_{1} the final angle of thrust
$\square \lambda_{u}$
$\square \lambda_{z}$
■ b
and we also need to calculate T.
Solving for end-point conditions is non-trivial, but a method that works well (from Lawden) follows.

Example: calculating the constants

Take the equation for v at time T, and substitute $\lambda_{z} v(T)=g \lambda_{u} \tan \theta_{1}$ to get

$$
\begin{aligned}
v\left(\theta_{1}\right) & =\frac{a \lambda_{u}}{\lambda_{z}}\left(\sec \theta_{0}-\sec \theta_{1}\right)-\frac{g \lambda_{u}}{\lambda_{z}}\left(\tan \theta_{0}-\tan \theta_{1}\right) \\
\frac{g \lambda_{u}}{\lambda_{z}} \tan \theta_{1} & =\frac{a \lambda_{u}}{\lambda_{z}}\left(\sec \theta_{0}-\sec \theta_{1}\right)-\frac{g \lambda_{u}}{\lambda_{z}}\left(\tan \theta_{0}-\tan \theta_{1}\right) \\
\sec \theta_{1} & =\sec \theta_{0}-\frac{g}{a} \tan \theta_{0}
\end{aligned}
$$

which gives us a way to calculate θ_{1} from θ_{0}. Once we know θ_{1} we can calculate λ_{u} using $\lambda_{u} a=\cos \theta_{1}$, and b from $\tan \theta=\left(-\left(\lambda_{z} t-b\right) / \lambda_{u}\right)$ at $t=0$. Then we can calculate λ_{z} from $u\left(\theta_{1}\right)=u_{o}$, the orbital injection velocity

Example: calculating the constants

So the only remaining question is how to calculate θ_{0}. We do so numerically, by

■ take a range of θ_{0}
■ calculate all of the above
\square use this to calculate $z(T)=z_{1}$ as a function of θ_{0}
\square look for the point where $z_{1}\left(\theta_{0}\right)=h$ the orbit height.
That gives us the θ_{0}, from which we can derive everything else. There are good numerical methods to search for such a solution, particularly if we start with a clear range over which to look.

Example: restricting choice of θ_{0}

Calculating the range of θ_{0} to search

- The maximum (reasonable) value for θ_{0} is $\pi / 2$.
\square The minimum value of θ_{0} will be determined by the minimum possible value of θ_{1}, i.e., $\theta_{1}=0$

$$
\begin{aligned}
\sec \theta_{1} & =\sec \theta_{0}-\frac{g}{a} \tan \theta_{0} \\
\sec 0 & =\sec \theta_{0}-\frac{g}{a} \tan \theta_{0} \\
1 & =\sec \theta_{0}-\frac{g}{a} \tan \theta_{0} \\
1 & =\frac{1+\tan ^{2} \theta_{0} / 2}{1-\tan ^{2} \theta_{0} / 2}-\frac{g}{a} \frac{2 \tan \theta_{0} / 2}{1-\tan ^{2} \theta_{0} / 2} \\
1-\tan ^{2} \theta_{0} / 2 & =1+\tan ^{2} \theta_{0} / 2-\frac{2 g}{a} \tan \theta_{0} / 2
\end{aligned}
$$

Example: restricting choice of θ_{0}

$$
\begin{aligned}
1-\tan ^{2} \theta_{0} / 2 & =1+\tan ^{2} \theta_{0} / 2-\frac{2 g}{a} \tan \theta_{0} / 2 \\
2 \tan ^{2} \theta_{0} / 2-\frac{2 g}{a} \tan \theta_{0} / 2 & =0 \\
\tan \theta_{0} / 2\left(\tan \theta_{0} / 2-\frac{g}{a}\right) & =0
\end{aligned}
$$

Now θ_{0} can't be zero, so the last step implies that the minimum value of θ_{0} is

$$
\theta_{0}=2 \tan ^{-1}(g / a)
$$

Note the existence of a minimum critical h below which we can't find a trajectory of this type.

Example: parameters

Parameters of previous example consistent with a LEO.

$$
\begin{aligned}
h & =500 \mathrm{~km} \\
u_{o} & =8000 \mathrm{~m} / \mathrm{s} \\
g & =9.8 \mathrm{~m} / \mathrm{s}^{2} \\
a & =3 g
\end{aligned}
$$

Derived constants

$$
\begin{array}{rlrl}
\theta_{0} & =0.2349 \pi & \theta_{1}=0.0973 \pi \\
\lambda_{u} & =0.0324 & \lambda_{z}=6.0257 e \\
b & =-0.0295 & & \\
T & =319.8 \text { seconds } & & \\
S & =489.6 \text { seconds } & &
\end{array}
$$

Example: trajectory

Variational Methods \& Optimal Control: lecture 23 - p.34/? ?

Example: generalizations

More realistic assumptions
■ non-zero drag (depends on velocity and height)

- thrust is constant, but rocket mass changes, so that acceleration isn't constant
- multiple stages
- centripetal forces

For more examples, and discussion see Lawden, "Optimal Trajectories for Space Navigation", Butterworths, 1963 (which is incidentally where the above example comes from).

