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More Optimal Control
Examples

An aerospace example: a rocket launch profile.
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Example: launching a rocket

Launch a rocket (with one stage) to deliver its payload into Low-Earth
Orbit (LEO) at some heighth above the Earth’s surface.
Assumptions:

ignore drag, and curvature and rotation of Earth

LEO so assume gravitational force at ground and orbit are
approximately the same

thrust will generate accelerationa, which is predefined by rocket
parameters

we thrust for some timeT , then follow a ballistic trajectory until
(hopefully) we reach heighth, at zero vertical velocity, and with
horizontal velocity matching the required orbital injection speed.
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Example: launching a rocket
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Example: launching a rocket
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Example: launching a rocket

Notation:
x = horizontal position

y = vertical position

u = horizontal velocity

v = vertical velocity

Initial conditionsx(0) = y(0) = u(0) = v(0) = 0. Thrust stops at timeT ,
and then at some later timeS, we reach the peak of the trajectory where

y(S) = h

u(S) = uo, orbital velocity

v(S) = 0

We don’t actually care about the final positionx(S)
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Example: launching a rocket

Control: thrust profile is pre-determined. The only thing wecan
control (in this problem) is theangle of thrust.

Thrusta(t) is constant for our example.

Measure the angle of thrustθ(t) relative to horizontal.

want to minimize fuel
but this is equivalent to minimizing time, e.g.,

F =

∫ t

0
adt = a

∫ T

0
1dt

need to get to heighth

need to get to horizontal velocityuo to enter orbit
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Constraint equations

Thrust component:t ≤ T

.
x = u
.
y = v
.
u = acosθ
.
v = asinθ−g

Initial point:
x(0) = y(0) = u(0) = v(0) = 0.

Final point: f ree

Ballistic component:T < t ≤ S

.
x = u
.
y = v
.
u = 0
.
v = −g

Initial point: fixed
x(T ), y(T ), u(T ), v(T )

Final point:
x(S) f ree,
y(S) = h, v(S) = 0, u(S) = uo
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1st consider ballistic component

For t ∈ [T,S] we have no control, and
.
x = u
.
y = v
.
u = 0
.
v = −g

we can calculate the top of the resulting parabola as

u(S) = u(T )

v(S) = 0

y(S) = y(T )+ v(T )2/2g

andx(T ) andx(S) are free.
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Example: co-ordinate transform

So we can change variables: make the final pointt = T , and take variables
u, v as before, and

z = y+ v2/2g.

We can differentiate this and combine with previous resultsto get the new
system DEs

.
u = acosθ
.
v = asinθ−g
.
z =

.
y+ v

.
v/g

= v(1+
.
v/g)

=
av
g

sinθ
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Example: optimization functional

Time minimization problem

T =

∫ T

0
1dt

Including Lagrange multipliers for the 3 system constraints we aim to
minimize

J{θ}=
∫ T

0
1+λu

(.
u−acosθ

)

+λv
(.
v−asinθ+g

)

+λz

(.
z−

av
g

sinθ
)

dt

subject to u(0) = 0, u(T ) = uo

v(0) = 0, v(T ) = f ree

z(0) = 0, z(T ) = h

θ(0) = f ree, θ(T ) = f ree
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Example: Euler-Lagrange equations

E-L equations

u :
∂h
∂u

−
d
dt

∂h

∂.u = 0 ⇒
.
λu = 0

v :
∂h
∂v

−
d
dt

∂h

∂.v = 0 ⇒
.
λv = −λz

a
g sinθ

z :
∂h
∂z

−
d
dt

∂h

∂.z = 0 ⇒
.
λz = 0

θ :
∂h
∂θ

−
d
dt

∂h

∂
.
θ

= 0 ⇒

aλu sinθ−λvacosθ−λz
av
g

cosθ = 0

(λ equations give back systems DEs)
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Example: solving the E-L equations

Take thev equation, and noting that
.
v = asinθ−g

.
λv = −λz

a
g

sinθ

= −
λz

g
(
.
v+g)

λv = −
λz

g
(v+gt + c)

= −
λzv
g

−λzt +b
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Example: solving the E-L equations

Substitute

λv =−
λzv
g

−λzt +b

into theθ E-L equation (dropping the common factora)

λu sinθ−λv cosθ−λz
v
g

cosθ = 0

and we get

λu sinθ+
(

λzv
g

+λzt −b

)

cosθ−λz
v
g

cosθ = 0

λu sinθ+(λzt −b)cosθ = 0

tanθ = −(λzt −b)/λu
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Example: solution

Remember thatλu andλv andb are all constants, so the equation

tanθ =−(λzt −b)/λu

angle of thrust now specified

θ = tan−1 (−(λzt −b)/λu)

but we need to determine constants
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Example: end-point conditions

Final end-points conditions

T = f ree

z(T ) = h

u(T ) = uo, orbital velocity

v(T ) = f ree

θ(T ) = f ree

λu = f ree

λv = f ree

λz = f ree

Variational Methods & Optimal Control: lecture 23 – p.16/??



Example: natural boundary conditions

The free-end point boundary condition for

F{t,q,
.
q}=

∫
L(t,q,

.
q)dt

is n

∑
k=1

pkδqk −Hδt = 0 wherepk =
∂L

∂.qk

andH =
n

∑
k=1

.
qk pk −L

In this problem

∂L

∂
.
λk

= 0,
∂L

∂
.
θ
= 0,

∂L

∂.u = λu,
∂L

∂.v = λv,
∂L

∂.z = λz
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Example: natural boundary conditions

Considerδqk for each co-ordinate:

for fixed co-ordinatesu andz, we haveδqk = 0

its free forθ, λu, λv, λz, but in each case the correspondingpk = 0,
so we can ignore these.

only case where it matters isδv, which we can vary, and for which
pv = λv.

Also δt is free, so we get two end-point conditions att = T .

H(T ) = 0

pv = λv(T ) = 0
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Example: natural boundary conditions

Givenλv(T ) = 0, and from previous work

λv =−
λzv
g

−λzt +b

we get

λzv(T )/g = −λzT +b

= λu tanθ(T )

v(T ) =
λug
λz

tanθ(T )
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Example: natural boundary conditions

∂L

∂
.
λk

= 0,
∂L

∂
.
θ
= 0,

∂L

∂.u = λu,
∂L

∂.v = λv,
∂L

∂.z = λz

SoH is given by

H = λu
.
u+λv

.
v+λz

.
z−L

SubstituteL, and the system DEs, and we get

H = λu
.
u+λv

.
v+λz

.
z−1

The end-point condition att = T is therefore

λu
.
u+λv

.
v+λz

.
z = 1
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Example: natural boundary conditions

Substitute

λv = −λzv/g−λzt +b

= −λzv/g+λu tanθ
.
u = acosθ
.
v = asinθ−g
.
z =

av
g

sinθ

Into
λu

.
u+λv

.
v+λz

.
z = 1

and we get
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Example: natural boundary conditions

We get

λu
.
u+λv

.
v+λz

.
z = 1

λuacosθ+(−λzv/g+λu tanθ)(asinθ−g)+λz
av
g

sinθ = 1

λuacosθ+λzv+λua tanθsinθ−gλu tanθ = 1

λua(cosθ+ tanθsinθ)+λzv−gλu tanθ = 1

λua

(

cos2 θ+sin2 θ
cosθ

)

+λzv−gλu tanθ = 1

λuasecθ+λzv−gλu tanθ = 1

all evaluated att = T . Combine withgλu tanθ = λzv and

λz = cos(θ(T ))/a
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Example: natural boundary conditions

Another way to get the same result is to note

H = λu
.
u+λv

.
v+λz

.
z−L

and

L = 1+λu
(.
u−acosθ

)

+λv
(.
v−asinθ+g

)

+λz

(.
z−

av
g

sinθ
)

so

H = λuacosθ+λv[asinθ−g]+
avλz

g
sinθ−1

which is what we got near the start of the previous slide before
substitutingλv =−λzv/g+λu tanθ.
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Example: natural boundary conditions

At the starting point, all of the co-ordinates are fixed (except for θ, and the
Lagrange multipliers), so the only free-end points condition at this point is

H = 0

as before. In fact, ifa = const the problem is not time-dependent, soH is
conserved, i.e.

H(t) = 0

for the entire rocket flight. Note though, that for this system, H is not
“energy” as this is not conserved (unless you include the chemical energy
stored in the rocket).
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Example: acceleration profile

The next steps depend on the acceleration profilea(t), but lets take a
simple casea = const.

First we can solve the DEs, with respect toθ using the chain rule

dX
dt

=
dX
dθ

dθ
dt

=−cos2 θ
λz

λu

dX
dθ

e.g. from the system DE
.
u = acosθ

.
u = −cos2 θ

λz

λu

du
dθ

du
dθ

= −
λu

λz cos2 θ
.
u

= −
aλu

λz cosθ
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Example: acceleration profile

dX
dθ

=
dX
dt

/
dθ
dt

=
dX
dt

/

(

−cos2 θ
λz

λu

)

The complete set of system DEs becomes

du
dθ

= −
aλu

λz cosθ
dv
dθ

= −
aλu

λz

sinθ
cos2 θ

+
gλu

λz cos2 θ
dz
dθ

= −
aλu

gλz

sinθ
cos2 θ

v(θ)

These can just be integrated with respect toθ
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Example: acceleration profile

The system DEs can be directly integrated (with respect toθ) including
initial conditionsu(0) = v(0) = z(0) = 0 to get

u(θ) =
aλu

λz
log

(

secθ0+ tanθ0

secθ+ tanθ

)

v(θ) =
aλu

λz
(secθ0−secθ)−

gλu

λz
(tanθ0− tanθ)

z(θ) =
a2λ2

u

gλ2
z

secθ1(secθ0−secθ)−
a2λ2

u

2gλ2
z
(tan2 θ0− tan2 θ)

+
aλ2

u

2λ2
z

[

tanθ0secθ0− tanθsecθ+ log

(

secθ0+ tanθ0

secθ+ tanθ

)]

θ = tan−1 (−(λzt −b)/λu)
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Example: calculating the constants

There are five constants to calculate:

θ0 the initial angle of thrust

θ1 the final angle of thrust

λu

λz

b

and we also need to calculateT .

Solving for end-point conditions is non-trivial, but a method that works
well (from Lawden) follows.
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Example: calculating the constants

Take the equation forv at timeT , and substituteλzv(T ) = gλu tanθ1 to get

v(θ1) =
aλu

λz
(secθ0−secθ1)−

gλu

λz
(tanθ0− tanθ1)

gλu

λz
tanθ1 =

aλu

λz
(secθ0−secθ1)−

gλu

λz
(tanθ0− tanθ1)

secθ1 = secθ0−
g
a

tanθ0

which gives us a way to calculateθ1 from θ0. Once we knowθ1 we can
calculateλu usingλua = cosθ1, andb from tanθ = (−(λzt −b)/λu) at
t = 0. Then we can calculateλz from u(θ1) = uo, the orbital injection
velocity
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Example: calculating the constants

So the only remaining question is how to calculateθ0. We do so
numerically, by

take a range ofθ0

calculate all of the above

use this to calculatez(T ) = z1 as a function ofθ0

look for the point wherez1(θ0) = h the orbit height.

That gives us theθ0, from which we can derive everything else. There are
good numerical methods to search for such a solution, particularly if we
start with a clear range over which to look.
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Example: restricting choice ofθ0

Calculating the range ofθ0 to search

The maximum (reasonable) value forθ0 is π/2.

The minimum value ofθ0 will be determined by the minimum
possible value ofθ1, i.e.,θ1 = 0

secθ1 = secθ0−
g
a

tanθ0

sec0 = secθ0−
g
a

tanθ0

1 = secθ0−
g
a

tanθ0

1 =
1+ tan2 θ0/2
1− tan2 θ0/2

−
g
a

2tanθ0/2
1− tan2 θ0/2

1− tan2 θ0/2 = 1+ tan2 θ0/2−
2g
a

tanθ0/2
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Example: restricting choice ofθ0

1− tan2 θ0/2 = 1+ tan2 θ0/2−
2g
a

tanθ0/2

2tan2 θ0/2−
2g
a

tanθ0/2 = 0

tanθ0/2
(

tanθ0/2−
g
a

)

= 0

Now θ0 can’t be zero, so the last step implies that the minimum valueof
θ0 is

θ0 = 2tan−1(g/a)

Note the existence of a minimum criticalh below which we can’t find a
trajectory of this type.
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Example: parameters

Parameters of previous example consistent with a LEO.

h = 500 km

uo = 8000 m/s

g = 9.8 m/s2

a = 3g

Derived constants

θ0 = 0.2349π θ1 = 0.0973π
λu = 0.0324 λz = 6.0257e−05

b = −0.0295

T = 319.8 seconds

S = 489.6 seconds
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Example: trajectory
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Example: generalizations

More realistic assumptions

non-zero drag (depends on velocity and height)

thrust is constant, but rocket mass changes, so that acceleration isn’t
constant

multiple stages

centripetal forces

For more examples, and discussion see Lawden, “Optimal Trajectories for
Space Navigation”, Butterworths, 1963 (which is incidentally where the
above example comes from).
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