Variational Methods \& Optimal Control

lecture 25
Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

April 14, 2016

Conservation Laws

One of the more exciting things we can derive relates to fundamental physics laws: conservation of energy, momentum, and angular momentum. We can now derive all of these from an underlying principle: Noether's theorem.

Hamilton's principle

We now have a group of equivalent methods
■ Euler-Lagrange equations

- Hamilton's equations

■ Hamilton-Jacobi equation
We saw earlier that these can give us other methods
\square Hamilton's principle \Rightarrow Newton's laws of motion
■ When L is not explicitly dependent on t, then the Hamiltonian H is constant in time.

■ conservation of energy

- this is an illustration of a symmetry in the problem appearing in the Hamiltonian

Conservation laws

Given the functional

$$
F\{y\}=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}, \ldots, y^{(n)}\right) d x
$$

if there is a function $\phi\left(x, y, y^{\prime}, \ldots, y^{(k)}\right)$ such that

$$
\frac{d}{d x} \phi\left(x, y, y^{\prime}, \ldots, y^{(k)}\right)=0
$$

for all extremals of F, then this is called a k th order conservation law
■ use obvious extension for functionals of several dependent variables.

Conservation law example

Given the functional

$$
F\{y\}=\int_{x_{0}}^{x_{1}} f\left(y, y^{\prime}\right) d x
$$

where f is not explicitly dependent on t, we know that the Hamiltonian

$$
H=y^{\prime} \frac{\partial f}{\partial y^{\prime}}-f
$$

is constant, and so

$$
\frac{d H}{d x}=0
$$

is a first order conservation law for the system.

Several independent variables

For functionals of several independent variables, e.g.

$$
F\{z\}=\iint_{\Omega} z(x, y) d x d y
$$

the equivalent conservation law is

$$
\nabla \cdot \phi=0
$$

For some function $\phi\left(x, y, z, z^{\prime}, \ldots, z^{(k)}\right)$.
■ Results here can be extended to these cases, but we won't look at them here.

Conservation laws

■ physically interesting
■ tell you about system of interest

- can simplify solution
$\square \phi\left(x, y, y^{\prime}, \ldots, y^{(k)}\right)=$ const is an order k DE, rather than E-L equations which are order $2 n$

■ $\phi\left(x, y, y^{\prime}, \ldots, y^{(k)}\right)=$ const is often called the first integral of the E-L equations

- RHS is a constant of integration (determined by boundary conditions)
\square how do we find conservation laws?
- Noether's theorem

Variational symmetries

The key to finding conservation laws lies in finding symmetries in the problem.

■ "symmetries" are the result of transformations under which the functional is invariant

■ E.G. time invariance symmetry results in constant H

- more generally, take a parameterized family of smooth transforms

$$
X=\theta(x, y ; \varepsilon), \quad Y=\phi(x, y ; \varepsilon)
$$

where

$$
x=\theta(x, y ; 0), \quad y=\phi(x, y ; 0)
$$

e.g. we get the identity transform for $\varepsilon=0$
\square examples translations and rotations

Jacobian

The Jacobian is

$$
J=\left|\begin{array}{ll}
\theta_{x} & \theta_{y} \\
\phi_{x} & \phi_{y}
\end{array}\right|=\theta_{x} \phi_{y}-\theta_{y} \phi_{x}
$$

\square smooth: if functions x and y have continuous partial derivatives.
■ non-singular: if Jacobian is non-zero (and hence an inverse transform exists)

Now for $\varepsilon=0$, we require the identity transform, so $J=1$. Also, we require a smooth transform, so J is a smooth function of ε, and so for sufficiently small $|\varepsilon|$, the transform is non-singular.

Example transformations

■ translations (ε is the translation distance)

$$
\begin{array}{rlrl}
X & =x+\varepsilon & Y & =y \\
\text { or } & X & =x & Y
\end{array}
$$

both have Jacobian

$$
J=1
$$

and inverse transformations

$$
\begin{array}{rlrl}
x & =X-\varepsilon & & y=Y \\
\text { or } & x & =X & \\
y & =Y-\varepsilon
\end{array}
$$

Example transformations

■ translations (ε is the translation distance)

$$
X=x+\varepsilon \quad Y=y
$$

Example transformations

■ translations (ε is the translation distance)

$$
X=x+\varepsilon \quad Y=y
$$

Example transformations

\square rotations (ε is the rotation angle)

$$
X=x \cos \varepsilon+y \sin \varepsilon \quad Y=-x \sin \varepsilon+y \cos \varepsilon
$$

has Jacobian

$$
J=\cos ^{2} \varepsilon+\sin ^{2} \varepsilon=1
$$

and inverse

$$
x=X \cos \varepsilon-Y \sin \varepsilon \quad y=X \sin \varepsilon+Y \cos \varepsilon
$$

Example transformations

\square rotations (ε is the rotation angle)

Example transformations

\square rotations (ε is the rotation angle)

$$
X=x \cos \varepsilon+y \sin \varepsilon \quad Y=-x \sin \varepsilon+y \cos \varepsilon
$$

To derive this, change coordinates to polar coordinates

$$
x=r \cos (\theta) \quad \text { and } \quad y=r \sin (\theta)
$$

Under a rotation by ε, the new coordinates (X, Y) are

$$
X=r \cos (\theta-\varepsilon) \quad \text { and } \quad Y=r \sin (\theta-\varepsilon)
$$

Use trig. identities $\cos (u-v)=\cos u \cos v+\sin u \sin v$ and $\sin (u-v)=\sin u \cos v-\cos u \sin v$, to get

$$
\begin{aligned}
X & =r \cos (\theta) \cos (\varepsilon)+r \sin (\theta) \sin (\varepsilon)=x \cos (\varepsilon)+y \sin (\varepsilon) \\
Y & =r \sin (\theta) \cos (\varepsilon)-r \cos (\theta) \sin (\varepsilon)=y \cos (\varepsilon)-x \sin (\varepsilon)
\end{aligned}
$$

Transformation of a function

Given a function $y(x)$, we can rewrite $Y(X)$ using the inverse transformation, e.g.

$$
\phi^{-1}(X, Y(X) ; \varepsilon)=y(x)=y\left(\theta^{-1}(X, Y ; \varepsilon)\right)
$$

For example, taking the curve $y=x$ under rotations

$$
X \sin \varepsilon+Y \cos \varepsilon=X \cos \varepsilon-Y \sin \varepsilon
$$

which we rearrange to get

$$
Y(X)=\frac{\cos \varepsilon-\sin \varepsilon}{\cos \varepsilon+\sin \varepsilon} X
$$

Similarly we can derive $Y^{\prime}(X)$

Transform invariance

If

$$
\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}(x)\right) d x=\int_{X_{0}}^{X_{1}} f\left(X, Y, Y^{\prime}(X)\right) d X
$$

for all smooth functions $y(x)$ on $\left[x_{0}, x_{1}\right]$ then we say that the functional in invariant under the transformation.

■ also called variational invariance

- The transform is called a variational symmetry

■ Related to conservation laws
Also note that the E-L equations are invariant under such a transform, e.g. they produce the same extremal curves.

Infinitesimal generators

For small ε we can use Taylor's theorem to write

$$
\begin{aligned}
X & =\theta(x, y ; 0)+\left.\varepsilon \frac{\partial \theta}{\partial \varepsilon}\right|_{(x, y ; 0)}+O\left(\varepsilon^{2}\right) \\
Y & =\phi(x, y ; 0)+\left.\varepsilon \frac{\partial \phi}{\partial \varepsilon}\right|_{(x, y ; 0)}+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Define the infinitesimal generators

$$
\xi(x, y)=\left.\frac{\partial \theta}{\partial \varepsilon}\right|_{(x, y ; 0)} \quad \eta(x, y)=\left.\frac{\partial \phi}{\partial \varepsilon}\right|_{(x, y ; 0)}
$$

and then for small ε

$$
\begin{aligned}
& X \simeq x+\varepsilon \xi \\
& Y \simeq y+\varepsilon \eta
\end{aligned}
$$

Examples

■ translations:

$$
\begin{aligned}
(X, Y) & =(x+\varepsilon, y) \\
\text { or } \quad(X, Y) & =(x, y+\varepsilon) \Rightarrow(\xi, \eta)=(1,0) \\
& \Rightarrow(\xi, \eta)=(0,1)
\end{aligned}
$$

rotations:

$$
X=\theta(x, y ; \varepsilon)=x \cos \varepsilon+y \sin \varepsilon \quad Y=\phi(x, y ; \varepsilon)=-x \sin \varepsilon+y \cos \varepsilon
$$

So

$$
\begin{aligned}
\xi & =\left.\frac{\partial \theta}{\partial \varepsilon}\right|_{\varepsilon=0}=-x \sin \varepsilon+\left.y \cos \varepsilon\right|_{\varepsilon=0}=y \\
\eta & =\left.\frac{\partial \phi}{\partial \varepsilon}\right|_{\varepsilon=0}=-x \cos \varepsilon-\left.y \sin \varepsilon\right|_{\varepsilon=0}=-x
\end{aligned}
$$

Emmy Noether

\square Amalie Emmy Noether, 23 March 1882-14 April 1935

Described by Einstein and many others as the most important woman in the history of mathematics.
\square Most of her work was in algebra
\square Worked at the Mathematical Institute of Erlangen without pay for seven years
\square Invited by David Hilbert and Felix Klein to join the mathematics department at the University of Göttingen, a world-renowned center of mathematical research. The philosophicqal faculty objected, however, and she spent four years lecturing under Hilbert's name.

Noether's theorem

Suppose the $f\left(x, y, y^{\prime}\right)$ is variationally invariant on $\left[x_{0}, x_{1}\right]$ under a transform with infinitesimal generators ξ and η, then

$$
\eta p-\xi H=\mathrm{const}
$$

along any extremal of

$$
F\{y\}=\int_{x_{0}}^{x_{1}} f\left(x, y, y^{\prime}\right) d x
$$

Example (i)

Invariance in translations in x, i.e.

$$
\begin{aligned}
(X, Y) & =(x+\varepsilon, y) \\
(\xi, \eta) & =(1,0)
\end{aligned}
$$

So, a system with such invariance has

$$
H=\text { const }
$$

which is what we showed earlier regarding functionals with no explicit dependence on x.

Example (ii)

Invariance in translations in y, i.e.

$$
\begin{aligned}
(X, Y) & =(x, y+\varepsilon) \\
(\xi, \eta) & =(0,1)
\end{aligned}
$$

So, a system with such invariance has

$$
p=\mathrm{const}
$$

which is what we showed earlier regarding functionals with no explicit dependence on y.

More than one dependent variable

Transforms with more than one dependent variable

$$
\begin{aligned}
T & =\theta(t, \mathbf{q} ; \varepsilon) \\
Q_{k} & =\phi_{k}(t, \mathbf{q} ; \varepsilon)
\end{aligned}
$$

and the infinitesimal generators are

$$
\begin{aligned}
\xi & =\left.\frac{\partial \theta}{\partial \varepsilon}\right|_{\varepsilon=0} \\
\eta_{k} & =\left.\frac{\partial \phi_{k}}{\partial \varepsilon}\right|_{\varepsilon=0}
\end{aligned}
$$

More than one dependent variable

Noether's theorem: Suppose $L(t, \mathbf{q}, \dot{\mathbf{q}})$ is variationally invariant on $\left[t_{0}, t_{1}\right]$ under a transform with infinitesimal generators ξ and η_{k}. Given

$$
p=\frac{\partial L}{\partial \dot{q}_{k}}, \quad H=\sum_{k=1}^{n} p_{k} \dot{q}_{k}-L
$$

Then

$$
\sum_{k=1}^{n} p_{k} \eta_{k}-H \xi=\text { const }
$$

along any extremal of

$$
F\{\mathbf{q}\}=\int_{t_{0}}^{t_{1}} L(t, \mathbf{q}, \dot{\mathbf{q}}) d t
$$

Example: rotations

Invariance in rotations, i.e.

$$
\begin{aligned}
\left(T, Q_{1}, Q_{2}\right) & =\left(t, q_{1} \cos \varepsilon+q_{2} \sin \varepsilon,-q_{1} \sin \varepsilon+q_{2} \cos \varepsilon\right) \\
\left(t, q_{1}, q_{2}\right) & =\left(T, Q_{1} \cos \varepsilon-Q_{2} \sin \varepsilon, Q_{1} \sin \varepsilon+Q_{2} \cos \varepsilon\right)
\end{aligned}
$$

The infinitesimal generators are

$$
\begin{aligned}
\xi & =0 \\
\eta_{1} & =-q_{1} \sin \varepsilon+\left.q_{2} \cos \varepsilon\right|_{\varepsilon=0}=q_{2} \\
\eta_{2} & =-q_{1} \cos \varepsilon-\left.q_{2} \sin \varepsilon\right|_{\varepsilon=0}=-q_{1}
\end{aligned}
$$

So, a system with such invariance has

$$
\sum_{i=1}^{2} p_{i} \eta_{i}-H \xi=p_{1} q_{2}-p_{2} q_{1}=\text { const }
$$

So angular momentum in conserved.

Common symmetries

Given a system in 3D with Kinetic Energy $T(\dot{\mathbf{q}})=\frac{1}{2} m\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}+\dot{q}_{3}^{2}\right)$, and Potential Energy $V(t, \mathbf{q})$.

■ invariance of L under time translations corresponds to conservation of Energy
■ invariance of L under spatial translations corresponds to conservation of momentum

■ invariance of L under rotations corresponds to conservation of angular momentum

Finding symmetries

Testing for non-trivial symmetries can be tricky.
Useful result is the Rund-Trautman identity:
It leads also to a simple proof of Noether's theorem

More advanced cases

■ Laplace-Runge-Lenz vector in planetary motion corresponds to rotations of 3D sphere in 4D

- symmetries in general relativity

■ symmetries in quantum mechanics

- symmetries in fields

