Bang-Bang controllers

Variational Methods \& Optimal Control

lecture 27

Matthew Roughan
matthew.roughan@adelaide.edu.au
Discipline of Applied Mathematics
School of Mathematical Sciences
University of Adelaide

April 14, 2016

Bang-Bang controllers and other related issues

Here we consider more generally what conditions result in a bang-bang controller.

Explanation

Consider a linear problem with one control u, then

$$
H=\psi(\mathbf{x}, \mathbf{p}, t)+\sigma(\mathbf{x}, \mathbf{p}, t) u
$$

- The PMP requires us to maximize H for all u.
- The derivative of H WRT to u is $\sigma(\mathbf{x}, \mathbf{p}, t)$.
- If $\sigma(\mathbf{x}, \mathbf{p}, t) \neq 0$ the derivative is never zero.
- Hence the maximum will occur at the bounds of u.
- If $\sigma(\mathbf{x}, \mathbf{p}, t)>0$, the maximum will occur for the positive bound of u, whereas if $\sigma(\mathbf{x}, \mathbf{p}, t)<0$ the maximum will occur for the negative bound.
- Hence σ is a switching function.

Variational Methods \& Optimal Control: lecture 27 - p.5/40

Example: optimal fish harvesting

- fish stock (population $x(t)$)
- grows at a fixed rate γ, so without harvesting

$$
\dot{x}=\gamma x
$$

- harvesting at rate u reduces the population

$$
\dot{x}=\gamma x-u
$$

- we wish to harvest the maximum number of fish in time T,
\triangleright discount by rate r for future harvests
\triangleright maximize

$$
F\{u\}=\int_{0}^{T} u e^{-r t} d t
$$

Example: optimal fish harvesting

Problem formulation: Maximize

$$
F\{u\}=\int_{0}^{T} u e^{-r t} d t
$$

subject to

$$
\dot{x}=\gamma x-u
$$

and $x(0)=1$, and $x(T)$ free.
Equivalent problem: Minimize

$$
F\{u\}=\int_{0}^{T}-u e^{-r t} d t
$$

subject to

$$
\dot{x}=\gamma x-u
$$

and $x(0)=1$, and $x(T)$ free.

Variational Methods \& Optimal Control: lecture 27 - p.7/40

Example: optimal fish harvesting

The Hamiltonian is

$$
H=u e^{-r t}+p(\gamma x-u)
$$

which is linear in the control variable.
Hamilton's equations (the canonical, or co-state equations) are

$$
\frac{\partial H}{\partial p}=\frac{d x}{d t} \quad \text { and } \quad \frac{\partial H}{\partial x}=-\frac{d p}{d t}
$$

The first of Hamilton's equations just gives back the growth equation $\dot{x}=\gamma x-u$, the second gives

$$
\frac{\partial H}{\partial x}=\gamma p=-\frac{d p}{d t}
$$

which has solution $p=c_{1} e^{-\gamma t}$.

Example: optimal fish harvesting

The Hamiltonian is

$$
\begin{aligned}
H & =u e^{-r t}+p(\gamma x-u) \\
& =p \gamma x+\left[e^{-r t}-p\right] u
\end{aligned}
$$

which is linear in the control variable. The control must be bounded, and will be bang-bang with switching function

$$
\sigma=e^{-r t}-p=e^{-r t}-c_{1} e^{-\gamma t}
$$

For $0 \leq u \leq 1$ we get $u=0$ or 1 .

$$
u(t)= \begin{cases}1, & \text { if } \sigma_{i}>0 \\ 0, & \text { if } \sigma_{i}<0\end{cases}
$$

Variational Methods \& Optimal Control: lecture 27 - p.9/40

Example: optimal fish harvesting

Given fixed end-time T, but free $x(T)$, then the natural boundary condition is $p(T)=0$, so $c_{1}=0$, and

$$
\sigma=e^{-r t}-c_{1} e^{-\gamma t}=e^{-r t}>0
$$

- result is fishing at maximum rate
- if the fishing rate u is greater than the growth rate γx then the fish stock will eventually die out.

This model may be a big simplification (ignores economic factors like cost of fishing, or demand), but it does show some interesting features.

- control is needed, or you get over-fishing!

Time Minimization Problem

Time minimization, the functional to minimize is

$$
T\{\mathbf{x}, \mathbf{u}\}=\int_{t_{0}}^{t_{1}} 1 d t
$$

Given that the starting state is $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$, and the desired end state is $\mathbf{x}\left(t_{1}\right)=\mathbf{x}_{1}$, but that t_{1} is not fixed, and \mathbf{x} is subject to some DE

$$
\dot{\mathbf{x}}=g(\mathbf{x}, \mathbf{u}, t)
$$

To get a linear autonomous problem, we need that

$$
\dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u}
$$

Variational Methods \& Optimal Control: lecture 27 - p.11/40

Time Minimization Problem

Linear autonomous time minimization, the functional to minimize is

$$
T\{\mathbf{x}, \mathbf{u}\}=\int_{t_{0}}^{t_{1}} 1 d t
$$

subject to

$$
\dot{\mathbf{x}}=A \mathbf{x}+B \mathbf{u}
$$

where A is a $n \times n$ constant matrix, and B is a $n \times m$ constant matrix. The controller is assumed to be bounded, e.g.

$$
\left|u_{i}\right| \leq 1, \quad \text { for } i=1, \ldots, m
$$

The Hamiltonian and generalized momentum will be

$$
H=-1+\mathbf{p}^{T} A \mathbf{x}+\mathbf{p}^{T} B \mathbf{u} \quad \text { and } \quad \dot{\mathbf{p}}=-H_{\mathbf{x}}=-A^{T} \mathbf{p}
$$

which is linear in the controller \mathbf{u}.

Time Minimization Problem

We know the control will governed by the switching function

$$
\sigma=\mathbf{p}^{T} B
$$

so we get the control

$$
u_{i}(t)= \begin{cases}1, & \text { if } \mathbf{p}^{T} \mathbf{b}_{i}>0 \\ -1 & \text { if } \mathbf{p}^{T} \mathbf{b}_{i}<0 \\ \text { unknown } & \text { if } \mathbf{p}^{T} \mathbf{b}_{i}=0\end{cases}
$$

where the \mathbf{b}_{i} are the m columns of the matrix B. Given $\dot{\mathbf{p}}=-A^{T} \mathbf{p}$, so $\mathbf{p}=e^{-A^{T}\left(t-t_{0}\right)} \mathbf{p}_{0}$, it is unlikely that $\mathbf{p}^{T} \mathbf{b}_{i}=0$, so singular control is ruled out, and the control is bang-bang.

Time Minimization Problem

In general a control may or may not exist!

- existence: If A is a stable matrix (i.e., all the eigenvalues of A have non-positive real parts), then for any point \mathbf{x}_{0}, there exists an optimal control which will go from \mathbf{x}_{0} to the origin.
This is useful because we can rewrite the problem so that the desired end-point $\mathbf{x}\left(t_{1}\right)=\mathbf{0}$.
- uniqueness: If an optimal control exists, it is unique.
- switching: If the eigenvalues of the $n \times n$ matrix A are all real, then there exists a unique control control, where each $u_{i}= \pm 1$ is piecewise constant and has no more than $n-1$ switchings.

Time Minimization Problem

Example: parking problem (from Lecture 19)
Rewrite the problem so the point B is at the origin ($x\left(t_{1}\right)=0$), and the control $u=$ Force/mass is bounded by $|u| \leq 1$. The differential equation

$$
\ddot{x}=u
$$

can be written as two first order DEs by defining $x_{1}=x$ and $x_{2}=\dot{x}$, so that

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{1} u
$$

Time Minimization Problem

The matrix A has eigenvalues $\lambda=0,0$, and so satisfies the existence and uniqueness conditions. The Hamiltonian is

$$
H=-1+p_{1} x_{2}+p_{2} u
$$

So the switching function is p_{2}. Hamilton's equations (PMP) results in

$$
\begin{aligned}
& \dot{p}_{1}=-\frac{\partial H}{\partial x_{1}}=0 \\
& \dot{p}_{2}=-\frac{\partial H}{\partial x_{2}}=-p_{1}
\end{aligned}
$$

with solution (c_{1} and c_{2} are constants of integration)

$$
\begin{aligned}
& p_{1}=c_{1} \\
& p_{2}=-c_{1} t+c_{2}
\end{aligned}
$$

Time Minimization Problem

The switching function $p_{2}=-c_{1} t+c_{2}$ is guaranteed to change sign at most $n-1=1$ times, so the possible solutions are

$$
\begin{aligned}
& u=1 \text { for all } t \in[0, T] \\
& u=-1 \text { for all } t \in[0, T] \\
& u=\left\{\begin{array}{l}
-1 \text { for all } t \in\left[0, t_{s}\right) \\
1 \text { for all } t \in\left(t_{s}, T\right]
\end{array}\right. \\
& u=\left\{\begin{array}{l}
1 \text { for all } t \in\left[0, t_{s}\right) \\
-1 \text { for all } t \in\left(t_{s}, T\right]
\end{array}\right.
\end{aligned}
$$

Time Minimization Problem

Solving the DE for $u= \pm 1$

$$
\begin{aligned}
& x_{2}= \pm t+c_{3} \\
& x_{1}= \pm \frac{1}{2} t^{2}+c_{3} t+c_{4}
\end{aligned}
$$

Time can be eliminated from the above by squaring the first equation and multiplying by $1 / 2$,

$$
\begin{aligned}
\frac{1}{2} x_{2}^{2} & =\frac{1}{2} t^{2} \pm c_{3} t+\frac{1}{2} c_{3}^{2} \\
x_{1} & = \pm \frac{1}{2} t^{2}+c_{3} t+c_{4}
\end{aligned}
$$

Time Minimization Problem

For $u= \pm 1$

$$
\begin{aligned}
\frac{1}{2} x_{2}^{2} & =\frac{1}{2} t^{2} \pm c_{3} t+\frac{1}{2} c_{3}^{2} \\
x_{1} & = \pm \frac{1}{2} t^{2}+c_{3} t+c_{4}
\end{aligned}
$$

so we can write x_{1} as a function of x_{2}

$$
x_{1}=\left\{\begin{aligned}
\frac{1}{2} x_{2}^{2}+c_{5} & \text { for } u=1 \\
-\frac{1}{2} x_{2}^{2}+c_{6} & \text { for } u=-1
\end{aligned}\right.
$$

where $c_{5}=c_{4}-\frac{1}{2} c_{3}^{2}$ and $c_{6}=c_{4}+\frac{1}{2} c_{3}^{2}$

Variational Methods \& Optimal Control: lecture 27 - p.19/40
Phase diagram 1

Phase diagram 2

Variational Methods \& Optimal Control: lecture 27 - p.21/40

Combined phase diagram

Time Minimization Problem

Parking problem: moving from point $\mathrm{A}($ at $x=-2)$ to $\mathrm{B}($ at $x=0)$ and be stationary at both start and stop times. Given

$$
\begin{aligned}
& x_{1}=\text { position } \\
& x_{2}=\text { velocity }
\end{aligned}
$$

the end-point conditions are

$$
\begin{array}{ll}
x_{1}(0)=-2 & x_{1}(T)=0 \\
x_{2}(0)=0 & x_{2}(T)=0
\end{array}
$$

Variational Methods \& Optimal Control: lecture 27 - p. 23/40
Time Minimization Problem

Time Minimization Problem

So the solution is case (4)

$$
u=\left\{\begin{array}{l}
1 \text { for all } t \in\left[0, t_{s}\right) \\
-1 \text { for all } t \in\left(t_{s}, T\right]
\end{array}\right.
$$

Hence we know that the initial trajectory will be

$$
\begin{aligned}
& x_{2}=t+c_{3} \\
& x_{1}=\frac{1}{2} t^{2}+c_{3} t+c_{4}
\end{aligned}
$$

with $x_{1}(0)=-2$ and $x_{2}(0)=0$, so $c_{3}=0$ and $c_{4}=-2$, with result (for $t<t_{s}$)

$$
\begin{aligned}
& x_{2}=t \\
& x_{1}=\frac{1}{2} t^{2}-2
\end{aligned}
$$

Variational Methods \& Optimal Control: lecture 27 - p. 25/40

Time Minimization Problem

So the solution is case (4)

$$
u=\left\{\begin{array}{l}
1 \text { for all } t \in\left[0, t_{s}\right) \\
-1 \text { for all } t \in\left(t_{s}, T\right]
\end{array}\right.
$$

Hence we know that the final trajectory will be

$$
\begin{aligned}
& x_{2}=-t+c_{3}^{\prime} \\
& x_{1}=-\frac{1}{2} t^{2}+c_{3}^{\prime} t+c_{4}^{\prime}
\end{aligned}
$$

with $x_{1}(T)=0$ and $x_{2}(T)=0$, so $c_{3}^{\prime}=T$ and $c_{4}^{\prime}=-T^{2} / 2$, with result that for $t_{s}<t \leq T$
$x_{2}=T-t$
$x_{1}=-\frac{(T-t)^{2}}{2}$

Time Minimization Problem

At time t_{s} the two paths must join, so we get the conditions

$$
\begin{aligned}
& \lim _{t \rightarrow t_{s}^{-}} x_{1}(t)=\lim _{t \rightarrow t_{s}^{+}} x_{1}(t) \\
& \lim _{t \rightarrow t_{s}^{-}} x_{2}(t)=\lim _{t \rightarrow t_{s}^{+}} x_{2}(t)
\end{aligned}
$$

When we substitute the initial and final paths, we get

$$
\begin{aligned}
\frac{1}{2} t_{s}^{2}-2 & =-\frac{\left(T-t_{s}\right)^{2}}{2} \\
t_{s} & =T-t_{s}
\end{aligned}
$$

The second equation requires that $t_{s}=T / 2$, which we can observe directly from the symmetry of the phase diagram.

[^0]
Time Minimization Problem

The continuity conditions are

$$
\begin{aligned}
\frac{1}{2} t_{s}^{2}-2 & =\frac{\left(T-t_{s}\right)^{2}}{2} \\
t_{s} & =T-t_{s}
\end{aligned}
$$

Given $t_{s}=T / 2$ the first equation becomes

$$
\frac{1}{8} T^{2}-2=-\frac{T^{2}}{8}
$$

which we rearrange to get

$$
T^{2}=8
$$

From the problem formulation $T>0$, and so we take

$$
T=2 \sqrt{2} \quad \text { and } \quad t_{s}=\sqrt{2}
$$

Time Minimization Problem

Variational Methods \& Optimal Control: lecture 27 - p.29/40

Singular control

Linear problem,

$$
H=\psi(\mathbf{x}, \mathbf{p}, t)+\sigma(\mathbf{x}, \mathbf{p}, t)^{T} \mathbf{u}(t)
$$

Optimal control is

$$
u_{i}(t)= \begin{cases}1, & \text { if } \sigma_{i}>0 \\ -1 & \text { if } \sigma_{i}<0 \\ \text { unknown } & \text { if } \sigma_{i}=0\end{cases}
$$

When $\sigma(\mathbf{x}, \mathbf{p}, t)=0$ the control u has no effect on H

- the PMP fails: we have no information about the optimal control
- called singular, degenerate, irregular, or ambiguous control.

Singular control

If $\sigma(\mathbf{x}, \mathbf{p}, t)=0$ only for isolated points there there is no problem. If $\sigma(\mathbf{x}, \mathbf{p}, t)=0$ over an interval, then within the interval

$$
\dot{\sigma}(\mathbf{x}, \mathbf{p}, t)=\ddot{\sigma}(\mathbf{x}, \mathbf{p}, t)=\ldots=0
$$

then singular control must be used.

- similar in nature to the CoV case where the functional is linear in y^{\prime}, and so we have a degenerate solution (see earlier lectures).

Variational Methods \& Optimal Control: lecture 27 - p.31/40

Singular control

Linear-autonomous time-minimization problem, where

$$
H=\psi(\mathbf{x}, \mathbf{p})+\sigma(\mathbf{x}, \mathbf{p}) u(t)
$$

where $\sigma(\mathbf{x}, \mathbf{p})=0$ over some interval.

- autonomous problems implies $H=$ const
- free-end time implies $H=0$ for all $t \in[0, T]$
- So $\psi(\mathbf{x}, \mathbf{p})=0$ over the same interval as $\sigma(\mathbf{x}, \mathbf{p})=0$.
- Similarly for the k th order derivatives of ψ and σ
- Using the chain rule

$$
\dot{\sigma}(\mathbf{x}, \mathbf{p})=\frac{\partial \sigma}{\partial \mathbf{x}} \dot{\mathbf{x}}+\frac{\partial \sigma}{\partial \mathbf{p}} \dot{\mathbf{p}}=\frac{\partial \sigma}{\partial \mathbf{x}} f(\mathbf{x}, \mathbf{u})+\frac{\partial \sigma}{\partial \mathbf{p}} \dot{\mathbf{p}}=0
$$

we may be able to solve for \mathbf{u} (if not, increase k)

Singular control example

Minimize

$$
F=\frac{1}{2} \int_{0}^{T} x_{1}^{2} d t
$$

subject to

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}+u \\
& \dot{x}_{2}=-u
\end{aligned}
$$

where $|u| \leq 1$ and T is unspecified.
The Hamiltonian is

$$
H=-\frac{1}{2} x_{1}^{2}+p_{1}\left(x_{2}+u\right)-p_{2} u=-\frac{1}{2} x_{1}^{2}+p_{1} x_{2}+\left(p_{1}-p_{2}\right) u
$$

which is linear in u, with switching function $\sigma=p_{1}-p_{2}$.

Variational Methods \& Optimal Control: lecture 27 - p.33/40

Singular control example

Hamilton's equations

$$
\frac{\partial H}{\partial p_{i}}=\frac{d x_{i}}{d t} \quad \text { and } \quad \frac{\partial H}{\partial x_{i}}=-\frac{d p_{i}}{d t}
$$

Give the state equations and

$$
\begin{aligned}
& \frac{\partial H}{\partial x_{1}}=-x_{1}=-\dot{p_{1}} \\
& \frac{\partial H}{\partial x_{2}}=p_{1}=-\dot{p_{2}}
\end{aligned}
$$

The solution involves three cases

1. If the switching function $\sigma=p_{1}-p_{2}>0$ then $u=1$
2. If the switching function $\sigma=p_{1}-p_{2}<0$ then $u=-1$
3. If the switching function $\sigma=p_{1}-p_{2}=0$ then we have singular control

Singular control example

Case 1: $\sigma=p_{1}-p_{2}>0$ and $u=1$, so

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}+1 \\
& \dot{x}_{2}=-1
\end{aligned}
$$

which has solutions

$$
\begin{aligned}
& x_{1}=-\frac{1}{2} t^{2}+\left(c_{1}+1\right) t+c_{2} \\
& x_{2}=-t+c_{1}
\end{aligned}
$$

so we can write

$$
x_{1}=-\frac{1}{2} x_{2}^{2}-x_{2}+c_{4}
$$

where $c_{4}=c_{1}\left(c_{1}+1\right)+c_{2}-c_{1}^{2} / 2$

Singular control example

Case 2: $\sigma=p_{1}-p_{2}<0$ and $u=-1$, so

$$
\begin{aligned}
\dot{x}_{1} & =x_{2}-1 \\
\dot{x}_{2} & =1
\end{aligned}
$$

which has solutions

$$
\begin{aligned}
& x_{1}=\frac{1}{2} t^{2}+\left(c_{1}-1\right) t+c_{2} \\
& x_{2}=t+c_{1}
\end{aligned}
$$

so we can write

$$
x_{1}=\frac{1}{2} x_{2}^{2}-x_{2}+c_{3}
$$

where $c_{3}=-c_{1}\left(c_{1}-1\right)+c_{2}+c_{1}^{2} / 2$

Singular control example

Case 3: singular as $\sigma=p_{1}-p_{2}=0$

$$
\begin{aligned}
\sigma & =p_{1}-p_{2} \\
\dot{\sigma} & =\dot{p}_{1}-\dot{p}_{2} \\
& =x_{1}+p_{1} \\
& =0
\end{aligned}
$$

Using this, and the fact that $p_{1}-p_{2}=0$ in the Hamiltonian $H=-\frac{1}{2} x_{1}^{2}+p_{1} x_{2}+\left(p_{1}-p_{2}\right) u$, we get

$$
H=-\frac{1}{2} x_{1}^{2}+p_{1} x_{2}+\left(p_{1}-p_{2}\right) u=-\frac{1}{2} x_{1}^{2}-x_{1} x_{2}
$$

For autonomous problems, with free end time $H=0$, so

$$
x_{1}\left(x_{2}+x_{1} / 2\right)=0
$$

and hence, either $x_{1}=0$ or $x_{1}+2 x_{2}=0$

Variational Methods \& Optimal Control: lecture 27 - p. 37/40

Singular control example

The two solutions present two surfaces:

$$
\begin{array}{ll}
S_{1}: & x_{1}=0 \\
S_{2}: & x_{1}+2 x_{2}=0
\end{array}
$$

- on S_{1} the derivative $\dot{x}_{1}=0$, and the state equation is $\dot{x}_{1}=x_{2}+u$, so $u=-x_{2}$.
- on S_{2} the derivative $\dot{x}_{2}=-\dot{x}_{1} / 2$, and the state equations

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}+u \\
& \dot{x}_{2}=-u
\end{aligned}
$$

lead to $u=x_{2}$

Singular control example

Variational Methods \& Optimal Control: lecture 27 - p.39/40
Singular control example

[^0]: Variational Methods \& Optimal Control: lecture 27 - p.27/40

