Tutorial 2: Wednesday 15 th August

Basic Euler-Lagrange equation problems.

1. Find the extremals of the functionals below subject to the fixed end point conditions prescribed.
(a). $\int_{0}^{\pi / 2}\left(y^{2}+y^{\prime 2}-2 y \sin x\right) d x ; \quad y(0)=0, y(\pi / 2)=3 / 2$.
(b). $\int_{1}^{2} \frac{y^{\prime 2} d x}{x^{3}} ; \quad y(1)=0, y(2)=15$.
(c). $\int_{0}^{2}\left(x y^{\prime}+y^{\prime 2}\right) d x ; \quad y(0)=1, y(2)=0$.
2. Can light bend along a circular arc, purely through refraction? Explain your answer.
3. Find the geodesics on a right circular cone (as shown in the figure).

4. The Beltrami identity states that the extremal function of the integral

$$
I(u)=\int_{a}^{b} L\left(x, u, u^{\prime}\right) d x
$$

satisfy the differential equation

$$
\frac{d}{d x}\left(L-u^{\prime} \frac{\partial L}{\partial u^{\prime}}\right)-\frac{\partial L}{\partial x}=0 .
$$

Please prove the identity using the Euler-Lagrange equations and the chain rule. Note that as a special case, when L does not depend on x, we get the equation for the autonomous case, i.e., $H=$ const.
5. Newton's aerodynamic problem (the problem of finding the surface of revolution that minimizes drag) is often approximated by assuming the shape is long and thin, so that y^{\prime} is large (and negative). In this case we can approximate

$$
\frac{1}{1+y^{\prime 2}} \simeq \frac{1}{y^{\prime 2}}
$$

and the functional of interest by

$$
F\{y\} \simeq \int_{0}^{R} \frac{x}{y^{\prime 2}} d x
$$

Derive the shape that arise from minimizing this functional.

