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Tutorial 2 Solutions

1. Find the extremals of the functionals below subject to the fixed end point conditions
prescribed.

(a).
∫ π/2

0

(

y2 + y′2 − 2y sin x
)

dx; y(0) = 0, y(π/2) = 3/2.

(b).
∫

2

1

y′2 dx

x3
; y(1) = 0, y(2) = 15.

(c).
∫

2

0

(

xy′ + y′2
)

dx; y(0) = 1, y(2) = 0.

Solutions:

(a) With
f(x, y, y′) = y2 + y′2 − 2y sin x ,

the Euler–Lagrange equation
∂f

∂y
=

d

dx

∂f

∂y′

becomes

2y − 2 sin x =
d

dx
(2y′)

or
y′′ − y = − sin x .

The complementary function (solution of the correspondinghomogeneous equation)
is

y = Aex +Be−x.

For a particular integral, tryy = C sin x. Then

−C sin x − C sin x = − sin x ,

soC = 1/2. Hence the G.S. to the E–L equation is

y = Aex +Be−x +
1

2
sin x .

The fixed end pointy(0) = 0 providesB = −A, so

y = A
(

ex − e−x
)

+
1

2
sin x .

The end pointy(π/2) = 3/2 gives

y = A
(

eπ/2 − e−π/2
)

+
1

2
=

3

2
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and so

A =
1

eπ/2 − e−π/2
.

Therefore

y =
ex − e−x

eπ/2 − e−π/2
+

1

2
sin x =

sinh(x)

sinh(π/2)
+

1

2
sin x.

(b) Sincef(x, y, y′) = y′2/x3 doesn’t involvey explicitly, a first integral to E–L is
∂f/∂y′ = const. or

y′

x3
= C.

Integration yields

y =
Cx4

4
+D.

Sincey(1) = 0, we haveC
4
+D = 0, so

y =
C

4

(

x4 − 1
)

andy(2) = 15 gives

15 =
C

4
(16− 1) .

HenceC/4 = 1 and
y = x4 − 1.

(c) Sincef(x, y, y′) = xy′ + y′2 doesn’t involvey explicitly, a first integral to E–L is
∂f/∂y′ = const. or

x+ 2y′ = C.

Integration provides

y =
C

2
x− x2

4
+D.

As y(0) = 1, we haveD = 1 and

y =
C

2
x− x2

4
+ 1,

andy(2) = 0 now gives
0 = C − 1 + 1

orC = 0. Hence

y = 1− x2

4
.
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2. Can light bend along a circular arc, purely through refraction? Explain your answer.

Solutions:

Fermat’s principle of least time (1661) states that a beam oflight propagated in a
medium having a velocity of light gradient, i.e. a refractive index gradient, travels
along a path between two points that takes a minimum time.

Choosec(y), the speed of light at pointy, such that time elapsed by passage of light
between two fixed points is a minimum on these arcs, with respect to all possible paths
connecting the two points.

The total time elapsed along a path is

T{y(x)} =

∫ B

A

dt =

∫ B

A

1

c(y)
ds =

∫ x1

x0

√

1 + y′2

c(y)
ds

Heref is not explicitly dependent ofx, so we can form

H(y, y′) = y′
∂f

∂y′
− f =

y′2

c(y)
√

1 + y′2
−
√

1 + y′2

c(y)
= k1 = const

Multiplying by
√

1 + y′2 we get

y′2

c(y)
− (1 + y′2)

c(y)
= k1

√

1 + y′2

and so

c(y) = − 1

k1
√

1 + y′2

Now if we require the light rays to be on circular arcs, then weneed to define a circle
that lies on the start and end point. To make life easy, we shall choose end points
that lie on the circle, with radiusR, and center(a, b), e.g.,(x0, y0) = (a − R, b) and
(x1, y1) = (a+R, b), then we get

(x− a)2 + (y − b)2 = R2

Differentiating with respect tox gives

2(x− a) + 2(y − b)y′ = 0
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from which we derive

y′ = −x− a

y − b

1 + y′2 = 1 +
(x− a)2

(y − b)2

=
(x− a)2 + (y − b)2

(y − b)2

=
R2

(y − b)2

√

1 + y′2 = ± R

(y − b)

So we can choose

c(y) =
y − b

k1R

with the result that light traveling from point(a − R, b) to (a + R, b) will traverse a
circular arc.

R

(a,b)

y

x

c(y)=0

It may seem unreasonable to suggest that the speed of light can vary continuously, but
it does exactly that. For instance, the speed of light in air,as a function of temperatire,
pressure, and wavelength is given (D. R. Linde. CRC Handbookof Chemistry and
Physics. CRC Press, 1995).

(n− 1) · 108 = 8342.13 + 2406030(130− σ2)−1 + 15997(38.9− σ2)−1

where

σ = 1/λ, whereλ = wavelength inµm,

T = Temperature in degrees C,

p = pressure inN/m2.
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and ifT 6= 15 degrees, orp 6= 101.325 kP then(n− 1) above is multiplied by

p(1 + p(61.3− T ) · 10−10)

96095.4(1 + 0.003661T )
.

We see this type of affect at work above a road heated by the sun– the air near the
roadway is hotter, and hence light is bent. The results are the mirages of “water”
common on Australian road. It isn’t really water you can see,but rather the refracted
light from the blue sky.

We can derive other formulae for other types of EM radiation,and this likewise
causes light to bend, e.g., the Ionosphere’s “reflection” ofradio-waves is actually a
similar type of refraction.

The circular solution is slightly strange. After all, thereis no asymmetry in the
problem, so why would light, travelling directly upwards at(x0, y0) = (a−R, b) go
to the right, instead of the left? The answer lies in two details we haven’t considered
carefully. First, the question implicitly asked using the CoV formalism is not “What
is the arc light takes from the start point?” It is actually, “What would the path be
between A and B?”

Secondly, note that in the formulation above, the speed of light aty = b is zero, so we
can’t actually start at the point where we are travelling vertically upwards (because
light would not be moving at this point).

Thirdly, in support of the last point, in formulating the problem we assumed we could
write y andy′ as functions ofx, which is not the case ify′ = ∞.

Finally, what isk1 here?
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3. Find the geodesics of a right circular cone? Also find shortest-path transversals
from the top of the cone (a circle at heightz1) to any point on the cone.

z

y
x

αr

z1

θR

Solutions:

Methods for solution: consider the general
Euler-Lagrange equations of geodesics from
Lecture 6, or adding an extra constraint de-
scribing the surface as in Lecture 13, but we
shall use a direct approach.
Define the right-circular coneS to have its
axis coinciding with thez-axis, and letα =
const be half the angle at the vertex.
First change to alternative spherical polar co-
ordinates(r, θ, φ), (Physicists use this form).

x = r cos(θ) sin(φ)

y = r sin(θ) sin(φ)

z = r cos(φ)

In the coordinates, the cone is represented by
the constraint

φ = α = const.

z

y
x

θ

r

θ(r,  ,  )φ

Spherical Polar Coordinates

φ

And a curveγ is given by

φ = α

θ = θγ(r)
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The length of a curve between pointA andB is

L{θ(r)} =

∫ B

A

ds =

∫ B

A

ds

dr
dr =

∫ r1

r0

√

1 + r2 sin2(α)θ′2 dr

because (from the Chain Rule)

dx =
∂x

∂θ
dθ +

∂x

∂φ
dφ+

∂x

∂r
dr = −r sin(θ) sin(φ)dθ + r cos(θ) cos(φ)dφ+ cos(θ) sin(φ)dr

dy =
∂y

∂θ
dθ +

∂y

∂φ
dφ+

∂y

∂r
dr = r cos(θ) sin(φ)dθ + r sin(θ) cos(φ)dφ+ sin(θ) sin(φ)dr

dz =
∂z

∂θ
dθ +

∂z

∂φ
dφ+

∂z

∂r
dr = −r sin(φ)dφ+ cos(φ)dr

but note that for the cone,φ = const, sodφ = 0 and so

ds2 = dx2 + dy2 + dz2

= r2 sin2(θ) sin2(φ)dθ2 + cos2(θ) sin2(φ)dr2 − 2r sin(θ) sin(φ) cos(θ) sin(φ)dθ dr

+r2 cos2(θ) sin2(φ)dθ2 + sin2(θ) sin2(φ)dr2 + 2r cos(θ) sin(φ) sin(θ) sin(φ)dθ dr

+cos2(φ)dr2

=
(

cos2(θ) sin2(φ) + sin2(θ) sin2(φ) + cos2(φ)
)

dr2 + r2
(

sin2(θ) sin2(φ) + cos2(θ) sin2(φ)
)

= dr2 + r2 sin2(φ)dθ2

ds

dr
=

√

1 + r2 sin2(φ)

(

dθ

dr

)2

whereφ = α. We wish to find the curveγ which minimizesL{θ}, so we use the
Euler-Lagrange equation (where heref(r, θ′) is independent ofθ, so the
Euler-Lagrange equation

fθ −
d

dr
fθ′ = 0 ⇒ d

dr
fθ′ = 0

and therefore

fθ′ =
r2 sin2(α)θ′

√

1 + r2 sin2(α)θ′2
= k1 = const

⇒ r2 sin2(α)θ′ = k1
√

1 + r2 sin2(α)θ′2

⇒ r4 sin4(α)θ′2 = k2
1

(

1 + r2 sin2(α)θ′2
)2

⇒
(

r4 sin4(α)− k2

1r
2 sin2(α)

)

θ′2 = k2
1

⇒ r2 sin2(α)
(

r2 sin2(α)− k2

1

)

θ′2 = k2
1

⇒ θ′2 =
k2
1

r2 sin2(α)
(

r2 sin2(α)− k2
1

)

⇒ dθ

dr
=

k1

r sin(α)
√

r2 sin2(α)− k2
1

⇒ θ + k2 =
k1

sin2(α)

∫

dr

r
√

r2 − k2
1/ sin

2(α)

⇒ θ + k2 =
1

sin(α)
sec−1

(

r sin(α)

k1

)
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Changing the constantsA = k1/ sin(α) andB = k2 sin(α) we get

r = A sec [θ sin(α) +B]

Note that, the above solution may admit multiple curves, each of which may be a
local minimum, but not a global minimum!

Another approach to the solution is transform the surface toa more familiar surface
(see Lecture 7), and exploit invariance of the E-L equationsunder the transformation,
e.g., unwrap the cone, to get a segment of a flat circle. Geodesics on the circle are
straight lines, and so geodesics on the cone may be obtained by transforming the
straight lines on the circle segment onto the surface of a cone. This approach is very
similar to that above, except we rotate the coordinates so that we start with geodesics
of the form

X = c1

where (X, Y ) are coodinates on flattened
cone, and note that to get to coordinates on
the surface of the rolled up cone we need take
polar coordinates in the plane, but we can ro-
tate these coordinates so that the line is paral-
lel to they-axis, e.g.X = c1 = const.

R =
√
X2 + Y 2

=
√

c21 + Y 2

λ = tan−1(Y/X) = tan−1(Y/c1)

= tan−1(
√

R2 − c21/c1)

and convert these to spherical-polar coordi-
nates on the cone. The transform is

r = R

φ = α

θ = λ/ sin(α) + β

whereβ is the amount by which we rotated
the original(X, Y ) axis.

The equation forθ comes from the fact that as we roll up the cone, the outer
circumference of the circular part must map to the top circleof the cone, and so an
angleλ in polar coordiates in the plane, will be reduced by a factor of the ratio of the
circumferences of the circles, or1/ sin(α).

Now note that

tan−1(x) =

{

sec−1(
√
x2 + 1), if x > 0

− sec−1(
√
x2 + 1), if x < 0
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so we can write (for positive arguments)

λ = tan−1

(

√

R2 − c21
c1

)

= tan−1

(

√

R2/c21 − 1

)

= sec−1 (R/c1)

which results once again in

θ − β =
1

sin(α)
sec−1(R/c1)

where in this case, the constants are immediately defined by the coordinates of the
start and end-points in the(X, Y ) plane.
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4. The Beltrami identity states that the extremal function of the integral

I{u} =

∫ b

a

L(x, u, u′) dx

satisfy the differential equation

d

dx

(

L− u′
∂L

∂u′

)

− ∂L

∂x
= 0.

Please prove the identity using the Euler-Lagrange equations and the chain rule. Note
that as a special case, whenL does not depend onx, we get the equation for the
autonomous case, i.e.,H = const.

Solutions: Take the derivative ofL with respect tox and apply the chain rule, i.e.,

dL

dx
=

∂L

∂x

dx

dx
+

∂L

∂u

du

dx
+

∂L

∂u′

du′

dx

=
∂L

∂x
+

∂L

∂u
u′ +

∂L

∂u′
u′′

∂L

∂u
u′ =

dL

dx
− ∂L

∂x
− ∂L

∂u′
u′′ (1)

Multiply the Euler-Lagrange equations byu′ and we get

u′
d

dx

∂L

∂u′
− u′

∂L

∂u
= 0

Substitute (1) into the Euler-Lagrange equation

u′
d

dx

∂L

∂u′
− dL

dx
+

∂L

∂x
+

∂L

∂u′
u′′ = 0

d

dx

[

u′
∂L

∂u′
− L

]

+
∂L

∂x
= 0

which simply rearranges to give the Beltrami identity.

Notice that whenL does not depend onx, then

∂L

∂x
= 0,

and so the identity reduces to

H = u′
∂L

∂u′
− L = const.
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5. Newton’s aerodynamic problem (the problem of finding the surface of revolution
that minimizes drag) is often approximated by assuming the shape is long and thin, so
thaty′ is large (and negative). In this case we can approximate

1

1 + y′2
≃ 1

y′2

and the functional of interest by

F{y} ≃
∫ R

0

x

y′2
dx,

Derive the shape that arise from minimizing this functional.

Solution: The Euler-Lagrange equations are

d

dx

∂f

∂y′
− ∂f

∂y
= −2

d

dx

x

y′3
= 0.

So we get
y′ = c1x

1/3

Integrating and calculating the constants we get

y = −L(x/R)4/3 + L.

We can calculate the drag for the approximate functional as

F{y} =

∫ R

0

x

y′2
dx =

32R8/3

42L2

∫ R

0

x1/3 =
33R8/3

43L2

[

x4/3
]R

0
=

33R4

43L2
.

However, we must remember that the actual functional isF{y} =
∫ R

0

x
1+y′2

dx, and
the above is an approximation, which is not valid when the nose cone becomes blunt.

The function describing the nose-cone shape is usually plotted with thex-axis as the
centerline of the nose-cone, so

g(x) = R(x/L)3/4.

This solution is one of the standard approximations to the aerodynamic nose-cone
problem, oddly enough called a “parabolic” nose cone, from the family of

g(x) = R(x/L)α, α ∈ [0, 1.0].

The resulting power-law shape is appealing because its easyto draw, and easy to
calculate the functional. Note that the family includes theblunt faced cylinder and the
cone as special cases as well as the solution above.

The following figure compares its optimality when used in theunapproximated
functional. The optimal curve is on the left, and we can see ithas a much lower
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resistance. They would be much close ifL/R were bigger (and hence slopes were
larger), but even so we can see the value of our exact solution.
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0
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0.8

1

F = 0.217

The shape doesn’t satisfy a common requirement for such nosecones that they be
tangent to the base cylinder where they touch, but we haven’treally considered that
constraint yet (and Newton’s solution doesn’t meet this criteria either).


