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Tutorial 3 Solutions

1. Higher-order derivatives: Go through the steps of deriving the Euler-Poisson equa-
tion for a functional containing derivatives or order three, i.e.,

F{y} =

∫ x1

x0

f(x, y, y′, y(2), y(3)), dx.

Solutions: Let F : C2[x0, x1] → IR be a functional of the form

F{y} =

∫ x1

x0

f(x, y, y′, y(2), y(3)) dx,

wheref has continuous partial derivatives of second order with respect tox, y, y′, y(2),
andy(3), andx0 < x1. As before, the necessary condition for the extremum is thatthe
first variation be zero, e.g.

δF (η, y) = 0.

As in lectures we perturby to getŷ = y + εη and apply Taylor’s theorem to derive

f(x, y + εη, y′ + εη′, y(2) + εη(2), y(3) + εη(3)) =

f(x, y, y′, y(2), y(3)) + ε

[

η
∂f

∂y
+ η′

∂f

∂y′
+ η(2)

∂f

∂y(2)
+ η(3)

∂f

∂y(3)

]

+ O(ε2)

and hence

F{y+εη} =

∫ x1

x0

f(x, y, y′, y(2), y(3))+ε

[

η
∂f

∂y
+ η(2)

∂f

∂y(2)
+ η(3)

∂f

∂y(3)

]

dx+O(ε2)

So, now the first variation will be given by

δF (η, y) = lim
ε→0

F{y + εη} − F{y}

ε

=

∫ x1

x0

[

η
∂f

∂y
+ η′

∂f

∂y′
+ η(2)

∂f

∂y(2)
+ η(3)

∂f

∂y(3)

]

dx

=

[

η
∂f

∂y′

]x1

x0

+

[

η′
∂f

∂y(2)

]x1

x0

+

[

η(2)
∂f

∂y(3)

]x1

x0

+

∫ x1

x0

[

η
∂f

∂y
− η

d

dx

∂f

∂y′
− η′

d

dx

∂f

∂y(2)
− η(2)

=

[

η
∂f

∂y′

]x1

x0

+

[

η′
∂f

∂y(2)

]x1

x0

+

[

η(2)
∂f

∂y(3)

]x1

x0

−

[

η
d

dx

∂f

∂y(2)

]x1

x0

−

[

η′
d

dx

∂f

∂y(3)

]x1

x0

+

∫ x1

x0

[

η
∂f

∂y
− η

d

dx

∂f

∂y′
+ η

d2

dx2

∂f

∂y(2)
+ η′

d2

dx2

∂f

∂y(3)

]

dx

=

[

η
∂f

∂y′

]x1

x0

+

[

η′
∂f

∂y(2)

]x1

x0

+

[

η(2)
∂f

∂y(3)

]x1

x0

−

[

η
d

dx

∂f

∂y(2)

]x1

x0

−

[

η′
d

dx

∂f

∂y(3)

]x1

x0

+

[

η
d2

dx

+

∫ x1

x0

η

[

∂f

∂y
−

d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y(2)
−

d3

dx3

∂f

∂y(3)

]

dx
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Given fixed-end point conditions

y(x0) = y0 y(x1) = y1
y′(x0) = y′0 y′(x1) = y′1

y(2)(x0) = y
(2)
0 y(2)(x1) = y

(2)
1

we have
η(x0) = 0 η(x1) = 0
η′(x0) = 0 η′(x1) = 0

η(2)(x0) = 0 η(2)(x1) = 0

Which gives

δF (η, y) =

∫ x1

x0

η

[

∂f

∂y
−

d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y(2)
−

d3

dx3

∂f

∂y(3)

]

dx

δF (η, y) = 0 for arbitraryη satisfying the boundary conditions, so the result is the 6th
order Euler-Poisson equation

∂f

∂y
−

d

dx

∂f

∂y′
+

d2

dx2

∂f

∂y(2)
−

d3

dx3

∂f

∂y(3)
= 0.

2. Multiple dependent variables: calculate the form of geodesics in N-dimensional Eu-
clidean space.

Solution: We can parameterize a curve inN dimensions by(q1(t), q2(t), . . . , qn(t)),
where theqi are the location co-ordinates.

The objective is to minimize the distance along a geodesic, and so the functional of
interest is

F{q} =

∫ t1

t0

ds,

but this is not in a suitable form for our derivation. However, we can rewrite using the
fact that the length of the line segment fromt to t + δs is the length of a line segment
from q to q+ δq which is approximately

δs =

√

∑

i

δq2i

= δt

√

∑

i

δq2i
δt2

.

Taking smallδt and integrating we can write the path length as

F{y} =

∫ t1

t0

ds =

∫ t1

t0

√

∑

i

.
q
2

i dt.
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We get one Euler-Lagrange equation for eqach co-ordinate, and the objective has not
or qi terms, and so

d

dx

∂f

∂
.
qi

= 0

for all i. Simplifying this we get ..
q i = 0,

and so
qi = cit + di,

for some set of constantsci anddi. This is the parametric form of a straight line, so
the geodesics inN-dimensions are straight lines.

3. Multiple independent variables: take a beam lengthd with flexural rigidity κ and
density per unit lengthρ, fixed and clamped at one end, and derive the motion of this
beam when one end is held (displaced from its equilibrium position) and then released
suddenly (see figure). NB:κ = EI whereE is the Young’s modulus, andI is the area
of moment of inertia of the beam.
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0 d

w(x,t)

Hints:

• Assume the beam is thin, and it is not bent too far.

• Ignore gravitational potential for the purpose of solving this problem, and assume
deflections are small enough that the beam can be modelled by considering only
vertical deflections, so that we can see the notation that thedisplacement of the
beam at distancex from the clamp and timet is w(x, t). We will usewx andwt

as shorthand for the relevant partial derivatives.

• The boundary conditions forw(x, t) will be

w(0, t) = 0, because the left end point is fixed

wx(0, t) = 0, because the left end point is clamped

wt(x, 0) = 0, because at the start the beam is stationary

wxx(d, t) = 0, because the free end point has zero bending moment

wxxx(d, t) = 0, because the free end point has zero shearing force

where the shapey(x) is determined by the force being applied to the beam before
it is released.
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• You may assume the solution is separable, i.e., thatw(x, t) = h(x)g(t), i.e., that
we are looking for a “normal mode” of vibration in which all the components of
the beam move with the same frequency and in phase.

Solutions: Ignoring gravity, the two components we need to calculate are the elastic
potential, and the kinetic energy at each point in time. These are given by

T =

∫ d

0

ρ

2

(

∂w

∂t

)2

dx

V =

∫ d

0

κ

2

(

∂2w

∂x2

)2

dx

Hamilton’s principle leads us to look for extremal curves of

F{w} =

∫ t1

t0

T − V dt =

∫ t1

t0

∫ d

0

ρ

2
w2

t −
κ

2
w2

xx dx dt.

Note that this involves both multiple indendent variables,and higher order derivatives,
but the extension of the Euler-Lagrange equations should benatural. Ignoring zero
terms, the E-L equations take the form

−
∂

∂t

∂f

∂wt

+
∂2

∂x2

∂f

∂wxx

= 0.

Takingf = ρ

2
w2

t −
κ
2
w2

xx as in the integral we get the Euler-Lagrange-Poisson equation
to be

κwxxxx + ρwtt = 0

Now take the separable solutionw(x, t) = h(x)g(t) and we get

κh(4)(x)g(t) + ρh(x)g′′(t) = 0,

Now, we can rearrange this to get

a2
h(4)(x)

h(x)
= −

g′′(t)

g(t)
,

where we takea2 = κ/ρ. As the LHS is constant WRT tot, and the RHS is constant
WRT tox, they must both equal a constant.

We start with the RHS, and set the constant to beω2 so the resulting DE is

g′′ + ω2g = 0.

The solution to this equation is

g(t) = A cos(ωt) +B sin(ωt),
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but att = 0, the beam is held at rest, so

g(t) = A cos(ωt).

Clearlyω is the frequency of vibration.

Now take the LHS of the equation and rearrange and we get

h(4)(x)−
ω2

a2
h(x) = 0.

The solutions of this DE clearly depend on the forth roots ork4 = ω2/a2, and hence
can be written as a linear combination ofsin, cos, sinh andcosh, but it is convenient
to write them in the following form:

h(x) = c1 [sin(kx) + sinh(kx)] + c2 [sin(kx)− sinh(kx)]

+c3 [cos(kx) + cosh(kx)] + c4 [cos(kx)− cosh(kx)] .

The derivatives ofh(x) are

h′(x)

k
= c1 [cos(kx) + cosh(kx)] + c2 [cos(kx)− cosh(kx)]

+c3 [− sin(kx) + sinh(kx)] + c4 [− sin(kx)− sinh(kx)]

h′′(x)

k2
= c1 [− sin(kx) + sinh(kx)] + c2 [− sin(kx)− sinh(kx)]

+c3 [− cos(kx) + cosh(kx)] + c4 [− cos(kx)− cosh(kx)]

h′′′(x)

k3
= c1 [− cos(kx) + cosh(kx)] + c2 [− cos(kx)− cosh(kx)]

+c3 [sin(kx) + sinh(kx)] + c4 [sin(kx)− sinh(kx)]

Now, from the end-point equations andcos(0) = cosh(0) = 1 andsin(0) = sinh(0) =
0 we get

w(0, t) = 0, ⇒ h(0) = 0 ⇒ c3 = 0
wx(0, t) = 0, ⇒ h′(0) = 0 ⇒ c1 = 0
wxx(d, t) = 0, ⇒ h′′(d) = 0
wxxx(d, t) = 0, ⇒ h′′′(d) = 0

where we must do a little furher work to refine the latter two. They give

c2 [− sin(kd)− sinh(kd)] + c4 [− cos(kd)− cosh(kd)] = 0

c2 [− cos(kd)− cosh(kd)] + c4 [sin(kd)− sinh(kd)] = 0

We solve by multiplying the top equation by[− cos(kd)− cosh(kd)], and the bottom
by [− sin(kd)− sinh(kd)] and subtracting (assumingc4 neq0) to get

[− cos(kd)− cosh(kd)] [− cos(kd)− cosh(kd)]

− [sin(kd)− sinh(kd)] [− sin(kd)− sinh(kd)] = 0

cos2+cosh2−2 cos cosh+ sin2− sinh2 = 0

cos2+ sin2+cosh2− sinh2−2 cos cosh+ sin2 = 0

cos(kd) cosh(kd) = −1
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When we solve this we find multiple values ofkn that satisfy the equation, each of
which corresponds to a different mode of vibration. Note also that the second equations
implies that

c4 = c2
cos(kd) + cosh(kd)

sin(kd)− sinh(kd)
,

so the solution for a particular mode of vibration is

hn(x) = cn

[

(sin(knx)− sinh(knx)) +
cos(knd) + cosh(knd)

sin(knd)− sinh(knd)
(cos(knx)− cosh(knx)).

]

.

Once we knowkn, we can use a linear combination of vibration modes to match the
initial state of the bent beam, and thence calculate its behaviour.

The following shows a numerically calculated table of the values ofknd (obviously to
getk divide byd). We can also use the fact thata2 = κ/ρ andk4 = ω2/a2 to note that

ω =
k2
n

2π

√

κ

ρ
,

measured in Hz (the division by2π converts from radians per second to Hz).

mode kd
1 1.87510407
2 4.69409113
3 7.85475744
4 10.99554073
5 14.13716839
6 17.27875953
7 20.42035225

The figure below shows the shape of the first few vibration modes. These modes don’t
have the conventional harmonic structure of a musical instrument, and so the sound of
such a beam vibrating (e.g., a ruler vibrated on a bench) sounds dull and unmusical.
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4. Ritz’s Method and Higher Order Derivatives: Use Ritz’s method to find an approx-
imate solution to minimize the

J{y} =

∫ 2π

0

y′2 + λ2y2 dx,

wherey(0) = 1 andy(2π) = 1 andλ is a positive integer. Use the trial functions

φn(x) = cos(nx).

Compare your solution to one found directly from the Euler-Lagrange equations.

Solutions: The test functionsφn(x) = cos(nx) satisfy the boundary conditions. We
take the approximation

yN =
N
∑

i=1

αiφi(x) =
N
∑

i=1

αi cos(ix).

The derivative is

y′N = −

N
∑

i=1

αii sin(ix).

Substituting into the above we get

J{y} =

∫ 2π

0

y′2 + λ2y2 dx

=

∫ 2π

0

N
∑

i,j=1

αiiαjj sin(ix) sin(jx)− λ2

N
∑

i,j=1

αiαj cos(ix) cos(jx) dx

=
N
∑

i,j=1

αiiαjj

∫ 2π

0

sin(ix) sin(jx) dx− λ2
N
∑

i,j=1

αiαj

∫ 2π

0

cos(ix) cos(jx) dx

Now
∫ 2π

0

cos(nx) cos(mx) dx = πδmn

∫ 2π

0

sin(nx) sin(mx) dx = πδmn

∫ 2π

0

sin(nx) cos(mx) dx = 0

So

J{y} = π

N
∑

i=1

α2
i (i

2 − λ2)
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Taking the derivative we get

∂J

∂αi

= 2παi(i
2 − λ2)

= 0

Now this can only be true if eitherαi = 0, or i = λ (remember thati > 0 andλ is a
positive integer) so that

yN = cos(λx).

The Euler-Lagrange equations

d

dx

∂f

∂y′
−

∂f

∂y
= 0

d

dx
2y′ + 2λ2y = 0

y′′ + λ2y = 0

whose solution we know to be of the form

y = A cos(λx) +B sin(λx),

with A = 1 andB = 0 given by the end-point conditions.

Obviously, given the trial functions, we can only get a good approximation to this
curve whenλ is an integer (which was the case here). Ifλ is not an integer, the
solution above suggests the obvious form of trial functionsincluding both sin and cos,
resulting in a Fourier series like approximation, which in this problem should give us
an exact solution.


