## Tutorial 6: Wednesday 24th October

1. Maximize the range of a missile: Take a missile which has a rocket motor that generates constant thrust $f$ for a fixed time interval $\left[0, t_{1}\right]$. We can control the angle of the thrust $\theta(t)$ (relative to the horizontal). Ignoring drag, the curve of the Earth's surface (and its rotation), determine the angle profile that will maximize the range of the missile.

Hints: choose a co-ordinates $(x, y)$, and $(u, v)=(\dot{x}, \dot{y})$, then the DEs describing the system under thrust will be

$$
\begin{aligned}
\dot{x} & =u \\
\dot{y} & =v \\
\dot{u} & =f \cos \theta \\
\dot{v} & =f \sin \theta-g
\end{aligned}
$$

After the rocket stops firing, the missile will continue on a ballistic trajectory, i.e., the remaining motion will be a parabola, resulting in a total firing distance of

$$
R(x, y, u, v)=x+\frac{u}{g}\left[v+\sqrt{v^{2}+2 g y}\right]
$$

where $x, y, u, v$ are given at the time at which ballistic motion commences.
2. Conservation laws: Consider the simple 2D harmonic oscillator, i.e, an oscillator whose kinetic and potential energies are described by

$$
\begin{aligned}
T & =\frac{1}{2}\left(\dot{q}_{1}^{2}+\dot{q}_{2}^{2}\right) \\
V & =\frac{\omega^{2}}{2}\left(q_{1}^{2}+q_{2}^{2}\right) .
\end{aligned}
$$

(a) Consider whether this system has translation and/or rotational symmetries, and using Noether's theorem describe the conservation laws that apply.
(b) Now transform the system into co-ordinates

$$
\begin{aligned}
& x_{1}=\frac{1}{2}\left(q_{1}-i q_{2}\right) \\
& x_{2}=\frac{1}{2}\left(q_{1}+i q_{2}\right) .
\end{aligned}
$$

Show the the resulting system is invariant under the continuous familiy of "squeeze" transforms

$$
\begin{aligned}
& X_{1}=e^{\varepsilon} x_{1} \\
& X_{2}=e^{-\varepsilon} x_{2}
\end{aligned}
$$

and derive the corresponding conservation law.
(c) Have we discovered a new conservation law for the system? Explain.
3. Optimal control: Solve the following optimal control problem: find the control $0 \leq$ $u(t) \leq 1$ that minimizes

$$
F\{u\}=\int_{0}^{T} x_{1} u-x_{2} u d t
$$

subject to the system DEs

$$
\begin{aligned}
\dot{x_{1}} & =1-u \\
\dot{x_{2}} & =x_{1}+1
\end{aligned}
$$

Given starting point $\left(x_{1}, x_{2}\right)=(0,0)$ at time 0 , and end-point $\left(x_{1}, x_{2}\right)=(1,2)$ derive the time $T$ at which we reach the end-point.

