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Abstract:

While the blocking probability in the M/G/1 queue with a finite waiting
room is easily calculated, the analytic result for this queue is not com-
monly given. This is desirable if the blocking probability (or some other
performance measure) is to be used in an optimisation procedure. In this
paper we present a method of calculating the blocking probability in the
M/G/1/N+1 queue using the probability generating function for the equi-
librium system size of a modified M/G/1 queue. This method has the
further advantage of giving a number of results as a byproduct of the solu-
tion of the modified M/G/1 queue.

1 Introduction

The solution to the stationary M/G/1 queue has long been known. For applications
the M/G/1/N+1 queueing system is of interest. The stationary distribution for the
number of customers in the system, and hence the probability of a customer being
blocked, can be calculated through a recurrence relation (Cooper, 1972, page 179)
amongst other means. In this paper we use a modified M/G/1 queue to calculate
blocking probabilities for such a system. The advantages of this method are that it
can be generalised to more complicated systems and that other quantities of interest
are calculated as byproducts of the analysis.

The modified M/G/1 queue can be described as follows. The queue starts be-
having as a standard M/G/1 queue. If, at the end of a service, there are more than a
certain number of customers in the system (say N) the server switches to a different
service-time distribution and possibly a different service discipline. It continues with
this new behaviour until the system contains N or fewer customers at the end of a
service whereupon it switches back to the original server behaviour. This continues for
the lifetime of the queue. This modified queue can be used to model the M/G/1/N+1
queue if we take the service times in the second regime to be zero with probability
one. We define this system more precisely below and provide a probability generating

function for the number of customers in the system in equilibrium derived using an



extension of a technique of Baccelli and Makowski (1989). Using Little’s law we can
find the probability of being in each of the two regimes and this can give the blocking
probabilities in the M/G/1/N+1 queue.

2 Definitions

By the M/G/1 queue, we mean the single server system with a potentially infinite
queue whose arrival process is an homogeneous Poisson process with rate A and whose
service times are independent, identically distributed random variables with probability
distribution function A(-) and mean 1/pu. Customers who find the server unoccupied
seize it immediately and hold it for their service time. Customers who find the server
busy wait in the queue until they receive service. The order of service, or the queue
discipline is irrelevant so long as it is noted that it is non-preemptive. In order to obtain
the solution we observe the system immediately after services. By PASTA (Wolff,
1989) and the fact that in equilibrium arrivals to the queue see the same distribution
that departures leave (Cooper, 1972) the equilibrium distribution of customers in the
embedded process is the same as the equilibrium distribution for the queueing process.
The probability generating function for the equilibrium behaviour of the system is then

(1-pl=2,

9(z) = a(2) = 2

where p = A/p is the traffic intensity and a(z) is the probability generating function
for the number of arrivals during one service time, which given in terms of the Laplace-

Stieltjes transform of A(-) is
a(z) = A*(\(1 — 2)).

The M/G/1/N+1 queue is identical to this except that if a customer arrives while
there are N 4 1 customers in the system the arriving customer is blocked. By blocked
we mean that it leaves the system and does not return. Note that if we consider the
process at departure epochs then there are now two types of departures. There are
those who depart after receiving service, these may not leave more than N customers
in the system as they depart. Secondly there are those customers who leave the system
having been blocked. These customers always leave N+1 customers in the system upon
departure. When we consider the process embedded at departure epochs we include
both types of departure.

We also use the solution to a M/G/1 queue modified as follows. The arrivals
are again Poisson with rate A. If there are no more than than N customers in the
system immediately before a service, the service time takes distribution A(-) and we

say the process is in regime A while if there are more than N customers in the system



immediately before the service begins the service time takes distribution B(-) and we
say the process is in regime B. Further the service-discipline may be different in the two
regimes. We take p, and p;, to be the traffic intensities during the respective regimes
and note that the queue will be stable if and only if p, < 1. In this case we can use
a martingale technique devised by Baccelli and Makowski (1985,1989) to derive the
probability generating function for this process in equilibrium as
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The mean length of the busy period is m is given by
1+ (pa - pb)RN(l)
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This is a generalisation of a result of Roughan (1993).

The above can model the M/G/1/N+1 queue as follows. We take the service-
times in regime B to be zero with probability one. The service discipline in regime A
of our modified process is the same of that of the M/G/1/N+1 queue. In regime B

the service discipline becomes last in first out. We do not need to specify this as non-

m =

preemptive as the service times are all zero. Thus the system discards customers who
arrive at an overful queue. One point to note is that unlike the M/G/1/N+1 queue
the departing customers may leave more than N + 1 customers behind in the system
during regime B. This is however not a problem if we note that any customer who
leaves more than N customers behind when it leaves must be a discarded or blocked
customer. Thus in order to calculate the blocking probability we need merely work out

the probability of being in regime B. This we do using Little’s law in the next section.
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3 Results

Little’s law (1961) states
(1) L = \W,

where L is the mean number of customers in the system, )\ is the arrival rate to the
system and W is the mean time spent by a customer in the system. If we apply this
to the server alone we can see that L is the probability that there is a customer in
the system and W is the mean service time. We take the probability of more than N
customers being in the system to be py. This is also the probability that the system

is in the second regime. Hence
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Substituting (2) and (3) into (1) and rearranging we get an equation

1+ (pa - 1)RN(I)
1+ (pa - pb)RN(l),

for px (when p, # p,). Thus we have the probability of being in the second regime of

(4) PN =

the system. If services during the second regime take zero time with probability one

we get p, = 0 and hence

1 + (pa - 1)RN(1)
1+ paRN(l)

PN =

This then is the blocking probability in the M/G/1/N+1 queue. Further the mean
length of the busy period in such a system is given by m and so the mean length of

the busy period of this system is

Interestingly if we look at the case when p, = p, then the solution for the modified
M/G/1 queue is the same as that of the standard M/G/1 queue with service-time
distribution A(-) regardless of the actual distribution of B(-). If we consider p)y the
probability of having more than N customers in the M/G/1 queue, this can be obtained
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by taking a limiting set of distributions B(-) such that p, — p,. A variation of the
argument above gives
Py =1+ (pa — 1)Rr(1)

as long as p, < 1. This probability is clearly not the same as the blocking probability
of the M/G/1/N+1 queue. However

/
_Pn
m

PN

The number of customers consecutively blocked may also be of interest in such
systems, and can easily be obtained through this method. In the modified M/G/1
queueing system this will be given by the number of customers who are served consec-
utively in the second regime which is simply the number in the system at the switch
point between regimes one and two since during the second regime we take service times
to be zero with probability one. This is intrinsically related to Ry (z) (Roughan, 1993).

Thus we can obtain a measure for the number of consecutively blocked customers.

4 Conclusion

The results given are of modest interest in themselves as they have previously been
obtained by other means. However, the original results of Baccelli and Makowski have
been expanded in Baccelli and Makowski (1991) to systems with Markov modulated
Poisson processes as their arrival process. There are a number of other systems which
are tractable using this technique (Roughan, 1993). Thus the present method may be
used for dealing with these more generalised queues when they are restricted to limited
waiting rooms. The additional information gained using this technique make this an

attractive approach. Thus the method holds some promise for further work.
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