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Abstra
t:

While the blo
king probability in the M/G/1 queue with a �nite waiting

room is easily 
al
ulated, the analyti
 result for this queue is not 
om-

monly given. This is desirable if the blo
king probability (or some other

performan
e measure) is to be used in an optimisation pro
edure. In this

paper we present a method of 
al
ulating the blo
king probability in the

M/G/1/N+1 queue using the probability generating fun
tion for the equi-

librium system size of a modi�ed M/G/1 queue. This method has the

further advantage of giving a number of results as a byprodu
t of the solu-

tion of the modi�ed M/G/1 queue.

1 Introdu
tion

The solution to the stationary M/G/1 queue has long been known. For appli
ations

the M/G/1/N+1 queueing system is of interest. The stationary distribution for the

number of 
ustomers in the system, and hen
e the probability of a 
ustomer being

blo
ked, 
an be 
al
ulated through a re
urren
e relation (Cooper, 1972, page 179)

amongst other means. In this paper we use a modi�ed M/G/1 queue to 
al
ulate

blo
king probabilities for su
h a system. The advantages of this method are that it


an be generalised to more 
ompli
ated systems and that other quantities of interest

are 
al
ulated as byprodu
ts of the analysis.

The modi�ed M/G/1 queue 
an be des
ribed as follows. The queue starts be-

having as a standard M/G/1 queue. If, at the end of a servi
e, there are more than a


ertain number of 
ustomers in the system (say N) the server swit
hes to a di�erent

servi
e-time distribution and possibly a di�erent servi
e dis
ipline. It 
ontinues with

this new behaviour until the system 
ontains N or fewer 
ustomers at the end of a

servi
e whereupon it swit
hes ba
k to the original server behaviour. This 
ontinues for

the lifetime of the queue. This modi�ed queue 
an be used to model the M/G/1/N+1

queue if we take the servi
e times in the se
ond regime to be zero with probability

one. We de�ne this system more pre
isely below and provide a probability generating

fun
tion for the number of 
ustomers in the system in equilibrium derived using an
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extension of a te
hnique of Ba

elli and Makowski (1989). Using Little's law we 
an

�nd the probability of being in ea
h of the two regimes and this 
an give the blo
king

probabilities in the M/G/1/N+1 queue.

2 De�nitions

By the M/G/1 queue, we mean the single server system with a potentially in�nite

queue whose arrival pro
ess is an homogeneous Poisson pro
ess with rate � and whose

servi
e times are independent, identi
ally distributed random variables with probability

distribution fun
tion A(�) and mean 1=�. Customers who �nd the server uno

upied

seize it immediately and hold it for their servi
e time. Customers who �nd the server

busy wait in the queue until they re
eive servi
e. The order of servi
e, or the queue

dis
ipline is irrelevant so long as it is noted that it is non-preemptive. In order to obtain

the solution we observe the system immediately after servi
es. By PASTA (Wol�,

1989) and the fa
t that in equilibrium arrivals to the queue see the same distribution

that departures leave (Cooper, 1972) the equilibrium distribution of 
ustomers in the

embedded pro
ess is the same as the equilibrium distribution for the queueing pro
ess.

The probability generating fun
tion for the equilibrium behaviour of the system is then

g(z) = (1� �)

a(z)(1� z)

a(z)� z

;

where � = �=� is the traÆ
 intensity and a(z) is the probability generating fun
tion

for the number of arrivals during one servi
e time, whi
h given in terms of the Lapla
e-

Stieltjes transform of A(�) is

a(z) = A

�

(�(1� z)):

The M/G/1/N+1 queue is identi
al to this ex
ept that if a 
ustomer arrives while

there are N + 1 
ustomers in the system the arriving 
ustomer is blo
ked. By blo
ked

we mean that it leaves the system and does not return. Note that if we 
onsider the

pro
ess at departure epo
hs then there are now two types of departures. There are

those who depart after re
eiving servi
e, these may not leave more than N 
ustomers

in the system as they depart. Se
ondly there are those 
ustomers who leave the system

having been blo
ked. These 
ustomers always leave N+1 
ustomers in the system upon

departure. When we 
onsider the pro
ess embedded at departure epo
hs we in
lude

both types of departure.

We also use the solution to a M/G/1 queue modi�ed as follows. The arrivals

are again Poisson with rate �. If there are no more than than N 
ustomers in the

system immediately before a servi
e, the servi
e time takes distribution A(�) and we

say the pro
ess is in regime A while if there are more than N 
ustomers in the system

2



immediately before the servi
e begins the servi
e time takes distribution B(�) and we

say the pro
ess is in regime B. Further the servi
e-dis
ipline may be di�erent in the two

regimes. We take �

a

and �

b

to be the traÆ
 intensities during the respe
tive regimes

and note that the queue will be stable if and only if �

b

� 1. In this 
ase we 
an use

a martingale te
hnique devised by Ba

elli and Makowski (1985,1989) to derive the

probability generating fun
tion for this pro
ess in equilibrium as

E
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X

i
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1

m

"

b(z)(1� z) + fb(z)� a(z)gR
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(z)

b(z)� z

#

;

where

a(z) = A

�
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b(z) = B

�
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The mean length of the busy period is m is given by

m =

1 + (�

a

� �

b

)R

N

(1)

1� �

b

:

This is a generalisation of a result of Roughan (1993).

The above 
an model the M/G/1/N+1 queue as follows. We take the servi
e-

times in regime B to be zero with probability one. The servi
e dis
ipline in regime A

of our modi�ed pro
ess is the same of that of the M/G/1/N+1 queue. In regime B

the servi
e dis
ipline be
omes last in �rst out. We do not need to spe
ify this as non-

preemptive as the servi
e times are all zero. Thus the system dis
ards 
ustomers who

arrive at an overful queue. One point to note is that unlike the M/G/1/N+1 queue

the departing 
ustomers may leave more than N + 1 
ustomers behind in the system

during regime B. This is however not a problem if we note that any 
ustomer who

leaves more than N 
ustomers behind when it leaves must be a dis
arded or blo
ked


ustomer. Thus in order to 
al
ulate the blo
king probability we need merely work out

the probability of being in regime B. This we do using Little's law in the next se
tion.

3



3 Results

Little's law (1961) states

L = �W;(1)

where L is the mean number of 
ustomers in the system, � is the arrival rate to the

system and W is the mean time spent by a 
ustomer in the system. If we apply this

to the server alone we 
an see that L is the probability that there is a 
ustomer in

the system and W is the mean servi
e time. We take the probability of more than N


ustomers being in the system to be p

N

. This is also the probability that the system

is in the se
ond regime. Hen
e

L = pfX 6= 0g = 1�

1

m

;

W =

1� p

N

�

a

+

p

N

�

b

;

from whi
h we derive

L =

�

b

+ (�

a

� �

b

)R

N

(1)

1 + (�

a

� �

b

)R

N

(1)

;(2)

�W = p

N

(�

b

� �

a

) + �

b

:(3)

Substituting (2) and (3) into (1) and rearranging we get an equation

p

N

=

1 + (�

a

� 1)R

N

(1)

1 + (�

a

� �

b

)R

N

(1)

;(4)

for p

N

(when �

b

6= �

a

). Thus we have the probability of being in the se
ond regime of

the system. If servi
es during the se
ond regime take zero time with probability one

we get �

b

= 0 and hen
e

p

N

=

1 + (�

a

� 1)R

N

(1)

1 + �

a

R

N

(1)

:

This then is the blo
king probability in the M/G/1/N+1 queue. Further the mean

length of the busy period in su
h a system is given by m and so the mean length of

the busy period of this system is

m = 1 + �

a

R

N

(1):

Interestingly if we look at the 
ase when �

b

= �

a

then the solution for the modi�ed

M/G/1 queue is the same as that of the standard M/G/1 queue with servi
e-time

distribution A(�) regardless of the a
tual distribution of B(�). If we 
onsider p

0

N

the

probability of having more than N 
ustomers in the M/G/1 queue, this 
an be obtained
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by taking a limiting set of distributions B(�) su
h that �

b

! �

a

. A variation of the

argument above gives

p

0

N

= 1 + (�

a

� 1)R

N

(1)

as long as �

a

� 1. This probability is 
learly not the same as the blo
king probability

of the M/G/1/N+1 queue. However

p

N

=

p

0

N

m

:

The number of 
ustomers 
onse
utively blo
ked may also be of interest in su
h

systems, and 
an easily be obtained through this method. In the modi�ed M/G/1

queueing system this will be given by the number of 
ustomers who are served 
onse
-

utively in the se
ond regime whi
h is simply the number in the system at the swit
h

point between regimes one and two sin
e during the se
ond regime we take servi
e times

to be zero with probability one. This is intrinsi
ally related to R

N

(z) (Roughan, 1993).

Thus we 
an obtain a measure for the number of 
onse
utively blo
ked 
ustomers.

4 Con
lusion

The results given are of modest interest in themselves as they have previously been

obtained by other means. However, the original results of Ba

elli and Makowski have

been expanded in Ba

elli and Makowski (1991) to systems with Markov modulated

Poisson pro
esses as their arrival pro
ess. There are a number of other systems whi
h

are tra
table using this te
hnique (Roughan, 1993). Thus the present method may be

used for dealing with these more generalised queues when they are restri
ted to limited

waiting rooms. The additional information gained using this te
hnique make this an

attra
tive approa
h. Thus the method holds some promise for further work.
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