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OutlineOutline

● Background
– M/G/1 queue
– some variants of the M/G/1 queue

● Martingales and stopping times
– Doob’s Optional Stopping Theorem

● Method
– simple example - Gambler’s ruin
– some results for queueing theory
– what systems can it be applied to

● Application to the hysteretic threshold overload control 
– Numerical results



M/G/1 QueueM/G/1 Queue

● Markov Arrivals -- Poisson process rate λ
● Generally distributed service times
● 1 server
● Infinite waiting room

● Service discipline 
– assume FIFO (First In First Out)

● Simple variants
– generalized vacations



Threshold based overload controlThreshold based overload control

Arrivals
uncongested

K
congested

● Queue length threshold K
– Q≥K queue is congested
– Q<K queue is uncongested

● When queue is congested slow arrivals, or speed up services
– automatic call gapping
– percentage throttling
– discarding some messages



Hysteretic threshold overload controlHysteretic threshold overload control

Arrivals

Ko Ka

● Simple threshold encourages oscillation
– changing regimes can involve an overhead 
– frequent changes are bad

● Introduce a second threshold
– congestion onset threshold Ko

– congestion abatement threshold Ka

● Has been used in real systems, and studied previously
● Congestion state now depends on the history of the queue

– behavior differs as loads increases or decreases



Martingales and Stopping TimesMartingales and Stopping Times

● Defining properties of martingales 

E[ Mn+1 | Fn] = Mn         fair betting process

E[ | Mn | ] < ∞

● Stopping Times
– a time T which depends only on the history of the process
– a R.V. T such that {T ≤ n} is Fn-measurable
– times that depend only on the past

a sensible gambler stops when they run out of money
– cannot have any dependence on the future

a gambler can’t stop when they hit their maximum



Optional Stopping TheoremOptional Stopping Theorem

● Under the right conditions for a stopping time T

E[ M T | Fn] = Mn

● Conditions
– stopping time must be regular for the martingale

» important, and non-trivial, 
– often there are simpler sufficient conditions

» bounded



Example Example -- Gambler’s RuinGambler’s Ruin

● Gambler starts with $N
● Bets $1 at a time on a fair coin toss
● Stops when 

– runs out of money - “ruin”
– gets to $K > N

What is the probability of ruin?
How long do you get to play on average?



Example Example -- Analysis of Gambler’s RuinAnalysis of Gambler’s Ruin

● Model the problem as a random walk
● Xn is the result of the nth bet (±1)
● After n bets the gambler has $Sn

S0 = N
Sn = S0 + X1 + …+ Xn

● Stopping time T is when Sn = 0 or K
T = inf{n∈ � | Sn = 0 or K }

NB: ST = 0 or K
● Construct a family of exponential martingales
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Example Example -- application of OSTapplication of OST

● Apply the optional stopping theorem

● differentiate w.r.t. z, and take z = 1

● Take and z = 1
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Outline of derivation for M/G/1Outline of derivation for M/G/1
● Due to Baccelli and Makowski (1989)
● Consider the system as seen by nth departure from the queue, Xn

● Stopping time τ(n) is the end of the current busy period at time n
● Result of the Optional Stopping Theorem for M/G/1

– a(z) is the PGF of the number of arrivals during one service
● The ends of busy periods form an embedded renewal process 

– τ(n) -n is a forward recurrence time
– can apply the key renewal theorem to obtain limiting distribution 

of the PGF as n →∞
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Classes of systemsClasses of systems

● An M/G/1 system that goes through a series of phases during one 
busy period

● The  service time distribution is different in each phase
● Properties of phases

– phase changes occur at service completion times
– ends of phases must be stopping times
– length of phases in separate busy period must be independent

start of busy period



Extension of derivationExtension of derivation

● Stopping times whenever we switch phases
– swapping from uncongested to congested or visa versa

● Generalize the renewal process
– break each renewal time into a series of phases
– generalize the Key Renewal Theorem

● Obtain a PGF for the equilibrium occupancy distribution in terms of 
the PGF for the queue length distribution at the end of each phase



Main theoremMain theorem

● Given stability and regularity conditions, and a M/G/1 type queue 
which goes through n phases of operation, the PGF of the 
equilibrium queue length distribution is
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Two ThresholdsTwo Thresholds

Arrivals

Ko Ka

● Two thresholds to control overload control
– congestion onset threshold Ko

– congestion abatement threshold Ka

● When congested, discard low priority messages
– PGF of no. of arrivals during one service when uncongested 

au(z) = ∑ai
u zi

– PGF of no. of arrivals during one service when congested
ac(z) = ∑ai

c zi



Result for two threshold overload controlResult for two threshold overload control
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Other ResultsOther Results

We can obtain a number of other results
● probability of the system being in a particular phase 

– e.g. the congested state

● mean cycle time (to go from uncongested to congested and back)
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Numerical ResultsNumerical Results

● Scenario 
– congestion onset threshold Ko  = 62
– congestion abatement threshold Ka  = 50
– traffic intensity ρ=0.8, 1.2, 1.8
– exponential service times
– 50% random throttling when congested

● Occupancy distribution
– obtained using FFT based inversion method of Daigle
– using NEWMAT C++ library



Numerical ResultsNumerical Results



Numerical ResultsNumerical Results



ConclusionConclusion

● General method for analyzing a set of queueing problems
– based on martingales, and stopping times
– M/G/1 queue which goes through a series of phases each with a 

different service time distribution

● Results M/G/1 queue under overload control
– Hysteretic overload control does as intended

» has little effect when normally loaded
» reduce excursions to long queues when overloaded
» reduce the effects of oscillation between congested and 

uncongested regimes
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