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1.1 Introduction

Building a network encompasses many tasks: from network planning to hardware
installation and configuration, to ongoing maintenance. Inthis chapter we focus on
the process ofnetwork planning. It is possible (though not always wise) to design a
small network by eye, but automated techniques are needed for the design of large
networks. The complexity of such networks means that any “adhoc” design will
suffer from unacceptable performance, reliability and/orcost penalties.

Network planning involves a series of quantitative tasks: measuring the current
network traffic and the network itself; predicting future network demands; deter-
mining the optimal allocation of resources to meet a set of goals; and validating the
implementation. A simple example is capacity planning: deciding the future capac-
ities of links in order to carry forecast traffic loads, whileminimizing the network
cost. Other examples include traffic engineering (balancing loads across our exist-
ing network) and choosing the locations of Points-of-Presence (PoPs) though we do
not consider this latter problem in detail in this chapter because of its dependence
on economic and demographic concerns rather than those of networking.

Many academic papers about these topics focus on individualcomponents of
network planning: for instance, how to make appropriate measurements, or on par-
ticular optimization algorithms. In contrast, in this chapter we will take a system
view. We will present each part as a component of a larger system of network plan-
ning. In the process of describing how the various components of network planning
interrelate, we observe several recurring themes:

1. Internet measurements are of varying quality.They are often imperfect or incom-
plete and can contain errors or ambiguities. Measurements should not be taken
at face value, but need to be continually recalibrated [48],so that we have some
understanding of the errors, and can take them into account in subsequent pro-
cessing. We will describe common measurement strategies inSection 1.2.
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2. Analysis and Modellingof data can allow us to estimate and predict otherwise
unmeasurable quantities. However, in the words of Box and Draper, “Essentially,
all models are wrong, but some are useful” [9]. We must be continually concerned
with the quality of model based predictions. In particular we must consider where
they apply, and the consequences of using an inaccurate model. A number of key
traffic models are described in Section 1.3, and their use in prediction is described
in Section 1.4.

3. Decisions based on quantitative data are at best as good as their input data, but
can be worse.The quality of input data and resulting predictions are variable,
and this can have consequences for the type of planning processes we can apply.
Numerical techniques that are sensitive to such errors are not suitable for network
engineering. Discussion of robust, quantitative network engineering is the main
consideration of Sections 1.5 and 1.6.

Noting all of the above, it should not be surprising that a robust design process
requires validation. The strategy of “set and forget” is notviable in today’s rapidly
changing networking environment. The errors in initial measurements, predictions,
and the possibility for mistakes in deployment mean that we need to test whether
the implementation of our plan has achieved our goals.

Moreover, actions taken at one level of operations may impact others. For ex-
ample, Qiuet al. [51] noted that attempts to balance network loads by changing
routing can cause higher-layer adaptive mechanisms such asoverlay networks to
change their decisions. These higher-level changes alter traffic, leading to a change
of the circumstances which originally lead us to reroute traffic.

Thus the process ofmeasure→analyze/predict→control→validateshould not
stop. Once we complete this process the cycle begins again, with our validation
measurements feeding back into the process as the input for the next round of net-
work planning, as illustrated in Figure 1.1. This cycle allows our planning process
to correct problems, leading to a robust process.

decision/control analysis/prediction

measurement

Fig. 1.1 Robust network planning is cyclic.
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In many ways this resembles the more formal feedback used in control systems,
though robust planning involves a range of tasks not typically modelled in formal
control-theory. For instance, the lead times for deployingnetwork components such
as new routers are still quite long. It can take months to install, configure and test
new equipment when done methodically. Even customers ordering access facilities
can experience relatively long intervals from order to delivery, despite the obvious
benefits to both parties of a quick startup. So if our network plan is incorrect, we
cannot wait for the planning cycle to complete to redress theproblem.

We need processes where the cycle time is shorter. It is relatively simple to
reroute traffic across a network. It usually requires only small changes to router
configurations, and so can be done from day to day (or even faster if automated).
Rebalancing traffic load in the short term — in the interim before the network ca-
pacities can be physically changed — can alleviate congestion caused by failures of
traffic predictions. This process is calledtraffic engineering.

Another aspect of robust planning is incorporation of reliability analysis. Internet
switches and routers fail from time to time, and must sometimes be removed from
service for maintenance. The links connecting routers are also susceptible to fail-
ures, given their vulnerability to natural or man-made accident (the canonical exam-
ple is the careless back-hoe driver). Most network managersplan for the possibility
of node or link failures by including redundant routers and links in their network.
A network failure typically results in traffic being rerouted using these redundant
pathways. Often, however, network engineers do not plan foroverloads that might
occur as a result of the rerouted traffic. Again, we need a robust planning process
that takes into account the potential failure loads. We callthis approachnetwork
reliability analysis.

We organize this chapter around the key steps in network planning. We first con-
sider the standard network measurements that are availabletoday. Their character-
istics determine much of what we can accomplish in network planning. We then
consider models and predictions, and then finally the processes used in making de-
cisions, and controlling our network. As noted, robust planning does not stop there,
we must continue to monitor our network, but there are a number of additional steps
we can perform in order to achieve a robust network plan and weconsider them in
the final section of this chapter.

The focus of this chapter is backbone networks. Though many of the techniques
described here remain applicable to access networks, thereare a number of critical
differences. For instance, access network traffic is oftenverybursty, and this affects
the approaches we should adopt for prediction and capacity planning. Nevertheless,
the fundamental ideas of robust planning that we discuss here remain valid.
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1.2 Standard network measurements

Internet measurements are considered in more detail in Chapters 10 and 11, but a
significant factor in network planning is the type of measurements available, and
so we need some planning-specific discussion. In principle it is possible to collect
extremely good data, but in practice the measurements are often flawed, and the
nature of the flaws are important when considering how to use the data.

The traffic data we might like to collect is a packet trace, consisting of a record of
all packets on a subsection of a network along with timestamps. There are various
mechanisms for collecting such a trace, for instance, placing a splitter into an optical
fiber, using a monitor port on a router, or simply runningtcpdump on one of the
hosts on a shared network segment. A packet trace gives us allof the information
we could possibly need but is prohibitively expensive at thescale we require for
planning. The problem with a packet trace (apart from the cost of installing dedi-
cated devices) is that the amount of data involved can be enormous, for example, on
an OC48 (2.5 Gbps) link, one might collect more than a terabyte of data per hour.
More importantly, a packet trace is overkill. For planning we don’t need such detail,
but we do need good coverage of the whole network. Packet traces are only used on
lower speed networks, or for specific studies of larger networks.

There are several approaches we can use to reduce data to a more manageable
amount. Filtering, so that we view only a segment of the traffic (say the HTTP traf-
fic) is useful for some tasks, but not planning. A more useful approach is aggrega-
tion, where we only store records for some aggregated version of the traffic, thereby
reducing the number of such records needed. A common form of aggregation is
at the flow-level where we aggregate the traffic through some common character-
istics. The definition of “flow” depends on the keys used for aggregation, but we
mean here flows aggregated by the five-tuple formed from IP source and destination
address, TCP port numbers, and protocol number. Flow data istypically collected
within some time frame, for instance, 15 minutes periods. What’s more, flow level
collection is often a feature of a router, and so doesn’t require additional measure-
ment infrastructure other than the Network Management Station (NMS) at which
the data is stored. However, the volume of data can still be large (one network under
study collected 500 GB of data per day), and the collection process may impact the
performance of the router.

As a result, flow-level data is often collected in conjunction with a third method
for data reduction: sampling. Sampling can be used both before the flows are cre-
ated, and afterwards. Prior to flow aggregation, sampling isused at rates of around
1:100 to 1:500 packets. That is, less than 1% of packets are sampled. This has the
advantage that less processing is required to construct flowrecords (reducing the
load on the router collecting the flows) and typically fewer flow records will be
created (reducing memory and data transmission requirements). However, sampling
prior to flow aggregation does have flaws, most obviously it biases the data col-
lection towards long flows. These flows (involving many packets) are much more
likely to be sampled than short flows. However, this has rarely been seen as a prob-
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lem in network planning where we are not typically concernedwith the flow length
distribution.

Sampling can also be used after flow aggregation to reduce thetransmission and
storage requirements for such data. The degree of sampling depends on the desired
tradeoff between accuracy of measurements, and storage requirements for the data.
Good statistical approaches for this sampling, and for estimating the resulting ac-
curacy of the samples are available [16, 17], though, as noted above these are pre-
dominantly aimed at preserving details such as flow-length distributions which are
largely inconsequential for the type of planning discussedhere, so sampling prior to
flow construction is often sufficient for planning.

Of more importance here is the fact that any type of sampling introduces errors
into measurements. Any large-scale flow archives must involve significant sampling,
and so will contain errors.

An alternative to flow-level data, is data collected via the Simple Network Man-
agement Protocol (SNMP) [39]. Its advantage over flow-leveldata collection is that
it is more widely supported, and less vendor specific. However, the data provided is
less detailed. SNMP allows an NMS to poll MIBs (Management Information Bases)
at routers. Routers maintain a number of counters in these MIBs. The widely sup-
ported MIB-II contains counters of the number of packets andbytes transmitted and
received at each interface of a router. In effect, we can see the traffic on each link
of a network. In contrast to flow-level data, SNMP can only seelink volumes, not
where the traffic is going.

SNMP has a number of other issues with regard to data collection. The polling
mechanism typically uses UDP (the User Datagram Protocol),and SNMP agents
are given low priority at routers. Hence SNMP measurements are not reliable, and
it is difficult to ensure that we obtain uniformly sampled time series. The result is
missing and error-prone data.

Flow-level data contains only flow start and stop times, not details of packet ar-
rivals, and typically SNMP is collected at 5 minute intervals. The limit on timescale
of both data-sets is important in network planning. We can only see average traffic
rates over these periods, not the variations inside these interval. However, conges-
tion and subsequent packet loss often occur on much shorter timescales. The result
is that such average measurements must always be used with care. Typically some
overbuild of capacity is required to account for the sub-interval variations in traf-
fic. The exact overbuild will depend on the network in question, and has typically
been derived empirically through ongoing performance and traffic measurements.
Values are usually fairly conservative in major backbones resulting in apparent un-
derutilization (though this term is unfair as it concerns average utilizations not peak
loads), and more aggressive in smaller networks.

In addition to traffic data, network planning requires a detailed view of any ex-
isting network. We need to know

• the (layer 3) topology (the locations of, and the links between routers);
• the network routing policies (for instance link weights in ashortest-path protocol,

areas in protocols such as OSPF, and BGP policies where multiple inter-domain
links exist); and
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• the mapping between current layer 3 links and physical facilities (WDM equip-
ment and optical fibers), and the details of the available physical network facili-
ties and their associated costs.

The topology and routing data is principally needed to allowus to map traffic to
links. The mapping is usually expressed through therouting matrix. Formally,A =
{Air} is the matrix defined by

Air =

{

Fir , if traffic for r traverses linki
0, otherwise

(1.1)

whereFir is the fraction of traffic from source/destination pairr = (s,d) that tra-
verses linki. A network withN nodes, andL links will have anL×N(N−1) routing
matrix.

Network data is also used to assess how changes in one component will affect the
network (e.g., how changes in OSPF link weights will impact link loads); determine
shared risk-of-failure between links; and determine how toimprove our network
incrementally without completely rebuilding it in each planning cycle. The latter is
an important point because although it might be preferable to rebuild a network from
scratch, the capital value of legacy equipment usually prevents this option, except at
rare intervals.

For a small, static network, the network data may be maintained in a database,
however, best practice for large, complex, or dynamic networks is to use tools to
extract the network structure directly from the network. There are several meth-
ods available for discovering this information. SNMP can provide this information
through the use of various vendor tools (HP Openview, or Cisco NCM, for example),
but it is not the most efficient approach. A preferable approach for finding layer 3
information is to parse the configuration files of routers directly, for instance as de-
scribed in [22,24]. The technique has been applied in a number of networks [5,38].
The advantages of using configuration files are manifold. Thedetail of information
available is unparalleled in other data sources. For instance, we can see details of the
links (such as their composition should a single logical link be composed of more
than one physical link).

The other major approach for garnering topology and routinginformation is to
use a route monitor. Internet routing is built on top of distributed computations
supported by routing protocols. The distribution of these protocols is often con-
sidered a critical component in ensuring reliability of theprotocols in the face of
network failures. The distribution also introduces a hook for topology discovery. If
any router must be able to build its routing table from the routing information dis-
tributed through these protocols, then it must have considerable information about
the network topology. Hence, we can place a dummy router intothe network to col-
lect such information. Such routing monitors have been deployed widely over the
last few years. Their advantage is they can provide an up-to-date dynamic view. Ex-
amples of such monitors exist for OSPF [62, 63], and IS-IS [1,30], as well as for
BGP (the Border Gateway Protocol) [2,3].
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1 Robust Network Planning 7

1.3 Analysis and Modeling of Internet Traffic

1.3.1 Traffic Matrices

We will now consider the analysis and modelling of Internet data, in particular traffic
data. When considering inputs to network planning, we frequently return to the topic
of traffic matrices. These are the measurements needed for many network planning
tasks, and thus the natural structure around which we shall frame our analysis.

A Traffic Matrix (TM) describes the amount of traffic (the number of packets or
more commonly bytes) transmitted from one point in a networkto another during
some time interval, and they are naturally represented by a three-dimensional data
structureTt(i, j) which represents the traffic volume (in bytes or packets) from i to
j during a time interval[t, t + ∆ t). The locationsi and j are generally considered
to be physical geographic locations makingi and j spatial variables. However, in
the Internet, it is common to associatei and j with logical structures related to the
address structure of the Internet, i.e. IP addresses, or natural groupings of such by
common prefix corresponding to a subnet.
Origin/Destination Matrices: One natural approach to describe traffic matrices is
with respect to traffic volumes between IP addresses or prefixes. We refer to this
as an origin/destination TM because the IP addresses represent the closest approxi-
mation we have for the end-points of the network (though HTTP-proxies, firewalls,
and NAT and other middle-boxes may be obscuring the true end-to-end semantics).
IPv4 admits nearly 232 potential addresses, so we cannot describe the full matrix at
this level of granularity. Typically, such a traffic matrix would be aggregated into
blocks of IP addresses (often using routing prefixes to form the blocks as these are
natural units for the control of traffic). The origin/destination matrix is our ideal
input for many network planning tasks, but the Internet is made up of many con-
nected networks. Any one network operator only sees the traffic carried by its own
network. This reduced visibility means that our observed traffic matrix is only a
segment of the real network traffic. So we can’t really observe the origin/destination
TM. Instead we typically observe the ingress/egress trafficmatrix.
Ingress/Egress vs Origin/Destination:A more practical TM, the ingress/egress
TM provides traffic volumes from ingress link to egress link across a single network.
Note that networks often interconnect at multiple points. The choice of which route
to use for egress from a network can profoundly change the nature of ingress/egress
TMs, so these may have quite different properties to the origin/destination matrix.
Forming an ingress/egress TM from an origin/destination TMinvolves a simple
mapping of prefixes to ingress/egress locations in a network, but in practice this
mapping can be difficult unless we monitor traffic as it entersthe network. We can
infer egress points of traffic using the routing data described above, but inferring
ingress is more difficult [22,23], so it is better to measure this directly.
Spatial Granularity of Traffic Matrices: As we have started to see with ori-
gin/destination traffic matrices, we can measure them at various levels of granu-
larity (or resolution). The same is true of ingress/egress TMs. At the finest level,
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we measure traffic per ingress/egress link (or interface). However, it is common
to aggregate this data to the ingress/egress router. We can often group routers into
larger subgroups. A common such group is a Point-of-Presence (PoP), though there
are other sub- and super- groupings (e.g. topologically-equivalent edge routers are
sometimes grouped, or we may form a regional group). Given subsetsS andD of
locations, may simply aggregate a TM across these by taking

Tt(S,D) = ∑
i∈S

∑
j∈D

Tt(i, j). (1.2)

Typical large networks might have 10’s of PoPs, and 100’s of routers, and so such
TMs are of a more workable size. In addition, as we aggregate traffic into larger
groupings, statistical multiplexing reduces the relativevariance of the traffic and
allows us to perform better estimates of traffic properties such as the mean and
variance.
Temporal Granularity of Traffic Matrices: We cannot make instantaneous mea-
surements of a traffic matrix. All such observations occur over some time interval
[t, t +∆ t). It would be useful to make the interval∆ t smaller (for instance for detect-
ing anomalies), but typically we face a tradeoff against theerrors and uncertainties
in our measurements. A longer time interval allows more “averaging-out” of errors,
and minimizes the impact of missing data. The best choice of time interval for TMs
is typically determined by the task at hand, and the network under study, but a com-
mon choice is a one hour interval. In addition to being easilyunderstood by human
operators, this interval integrates enough SNMP or flow-level data to reduce the im-
pact of (typical) missing data and errors, while allowing usto still observe important
diurnal patterns in the traffic.

1.3.2 Patterns in traffic

It is useful to have some understanding of the typical patterns we see in network
traffic. Such patterns are only visible at a reasonable levelof aggregation (otherwise
random temporal variation dominates our view of the traffic), but for high degrees
of aggregation (such as router-to-router traffic matrices on a large backbone net-
work) the pattern can be very regular. There are two main types of patterns that have
been observed: patterns across time, and patterns in the spatial structure. Each is
discussed below.
Temporal Patterns: Internet traffic has been observed to follow both daily (diurnal)
and weekly cycles [33–35,57,65]. The origin of these cyclesis quite intuitive. They
arise because most Internet traffic is currently generated by humans whose activ-
ities follow such cycles. Typical examples are shown in Figures 1.2 and 1.3. Fig-
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ure 1.2 shows a RRD Tool graph1 of the traffic on a link of the Australian Academic
Research Network (AARNet). Figure 1.3 shows the total traffic entering AT&T’s
North American backbone network at a Point of Presence (PoP)over two consecu-
tive weeks in May 2001. The figure illustrates the daily and weekly variations in the
traffic by overlaying the traffic from the two weeks. The striking similarity between
traffic patterns from week to week is a reflection of the high level of aggregation
that we see in a major backbone network.

Fig. 1.2 Traffic on one link in the Australian Academic Research Network (AARNet) for just over
one week. The two curves show traffic in either direction along the link.
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Fig. 1.3 Total traffic into a region over two consecutive weeks. The solid line is the first week’s
data (starting on May 7th), and the dashed line shows the second week’s data. The second figure
zooms in on the shaded region of the first.

The observation of cycles in traffic is not new. For many yearsthey have been
seen in telephony [13]. Typically telephone service capacity planning has been
based on a “busy hour”, i.e., the hour of the day that has the highest traffic. The
time of the busy hour depends on the application and customerbase. Access net-
works typically have many domestic consumers, and consequently their busy hour

1 RRDTool (the Round Robin Database tool) [47] and its predecessor MRTG (the Multi-Router
Traffic Grapher [46]) are perhaps the most common tools for collecting and displaying SNMP
traffic data.
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is in the evening when people are at home. On the other hand, the busy hour of busi-
ness customers is typically during the day. Obviously, time-zones have an effect on
the structure of the diurnal cycle in traffic, and so networkswith a wide geographic
dispersion may experience different busy hours on different parts of their network.

In addition to cyclical patterns, Internet traffic has shownstrong growth over
many years [45]. This long-term trend has often been approximated by exponential
growth, although care must be taken because sometimes such estimates have been
based on poor (short or erratic) data [45]. Long-term trendsshould be estimated
from multiple years of carefully collected data.

One public example is the data collected by the Australian Bureau of Statistics
(ABS)2 who have collected historical data on Australian ISP trafficfor many years.
Figure 1.4 shows Australia’s network traffic in petabytes per quarter with a log-y
axis. Exponential growth appears as a straight line on the log-graph, so we can ob-
tain simple predictions of traffic growth through linear regression. The figure shows
such a prediction based on pre-2005 data. It is interesting to note that the most recent
data point does not, as one might assume without analysis, represent a significant
drop in traffic growth. Relative to the long-term data the last point simply represents
a reversion to the long-term growth from rather exceptionaltraffic volumes over
2007. We will discuss such prediction in more detail in the following sections.
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Fig. 1.4 ABS traffic measurements showing Australian Internet traffic, with an exponential fit to
the data from 2000-2005. Data is shown by ’o’, and the fit by thestraight line. Note that the line
continuing past 2005 is a prediction based on the pre-2005 data, showing also the 95th percentile
confidence bounds for the predictions.

Standard time-series analysis [10] can be used to build a model of traffic con-
taining long-term trends, cyclical components (often calledseasonalcomponents in
other contexts) and random fluctuations. We will use the following notation here:

2 www.abs.gov.au
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S(t) = seasonal (cyclical) component (1.3)

L(t) = long-term trend (1.4)

W(t) = random fluctuations (1.5)

The seasonal component is periodic, i.e.,S(t +kTS) = S(t), for all integersk, where
TS is the period (which is either 24 hours or 1 week). Before we can consider how
to estimate the seasonal (and trend) components of the traffic, we must model these
components3. At the most basic level, consider the traffic to consist of two com-
ponents, a time varying (but deterministic) meanm(t) and a stochastic component
W(t). At this level we could construct the traffic by addition or multiplication of
these components (both methods are used in econometric and census data). How-
ever, in traffic data, a more appropriate model [43,56] is

x(t) = m(t)+
√

am(t) W(t), (1.6)

wherea is called thepeakednessof the traffic,W(t) is a stochastic process with
zero mean, and unit variance, andx(t) represents the average rate of some traffic
(say a particular traffic matrix element) at timet. More highly aggregated traffic is
smoother, and consequently would have a smaller value fora. The reason for this
choice of model lies in the way network traffic behaves when aggregated. When
multiple flows are aggregated onto a non-congested link, we should expect them to
obey the same model (though perhaps with different parameters). Our model has
this property: for instance, takeN traffic streamsxi with meanmi , peakednessai ,
and stochastic components which are independent realizations of a (zero mean, unit
variance) Gaussian process. The multiplexed traffic streamis

x =
N

∑
i=1

mi +
N

∑
i=1

√
aimi Wi . (1.7)

The mean of the new process ism = ∑N
i=1mi , and the peakedness (derived from

the variance) isa = 1
m ∑N

i=1aimi , which is a weighted average of the component
peakednesses. The relative variance becomes

Vx = Var{x}/E{x}=
1

m2

N

∑
i=1

aimi . (1.8)

If we take identical streams, then the relative variance decreases as we multiplex
more together, which is to be expected. The result is that in network traffic the
level of aggregation is important in determining the relative variance: more highly
aggregated traffic exhibits less random behavior. The data in Figure 1.3 from AT&T
shows an aggregate of a very large number of customers (an entire PoP of one of
North America’s largest networks). The consequence is thatwe can see the traffic

3 The reader should beware of methods which do not explicitly model the data, because in these
methods there is often an implicit model.
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is very smooth. In contrast the traffic shown in Figure 1.2 is much less aggregated,
and shows more random fluctuations.

The model above is not perfect (none are) but it is useful because it (i) allows
us to calculate variances for aggregated traffic streams in aconsistent way and to
use these when planning our network, and (ii) its parametersare relatively easy to
measure, and therefore to use in traffic analysis. To do so, however, we find it useful
to spilt the meanm(t) into the cyclic component (which we denoteS(t)) and the
long-term trendL(t) by taking the product

m(t) = L(t)S(t). (1.9)

We combine the two components through a product because as the overall load
increases the range of variation in the size of cycles also increases. When estimating
parameters of our models, it is important to allow for unusual or anomalous events,
for instance, a Denial of Service (DoS) attack. These eventsare rare (we hope), but it
is important to separate them from the normal traffic. Such terms can sometimes be
very large, but we don’t plan network capacity to carry DoS attacks! The network is
planned around the paying customers. We separate them by including an impulsive
term,I(t), in the model, so that the complete model is

x(t) = L(t)S(t)+
√

aL(t)S(t) W(t)+ I(t). (1.10)

We will further discuss this model in Section 1.4, where we will consider how to
estimate its parameters, and to use it in prediction.
Spatial Patterns:Temporal models are adequate for many applications: for instance
where we consider dimensioning of a single bottleneck link (perhaps in the design
of an access network). However, spatial patterns in traffic provide us with addition
planning capabilities. For instance, if two traffic sourcesare active at different times,
then clearly we can carry them both with less capacity than ifthey activate simulta-
neously.

Spatial patterns refer to the structure of a Traffic Matrix (TM) at a single time
interval. It is common that TM elements are strongly correlated because they show
similar diurnal (and weekly) patterns. For example, in a typical network (without
wide geographic distribution) one will find that the busy hour is almost the same for
all elements of the TM, but there is additional structure.

For a start, TMs often come from skewed distributions. A common example is
where the distribution follows a rough 80-20 law (80% of traffic is generated by
the largest 20% of TM elements). Similar distributions haveoften been observed,
though often even more skewed: for instance 90-10 laws are not uncommon. How-
ever the distribution is not “heavy-tailed”. Observed distributions have shown a
lighter tail than the log-normal distribution [55]. Consequently, traffic matrix work
often concentrates on these larger flows, but traditional (rather than heavy-tailed)
statistical techniques are still applicable.

Another simple feature one might naively expect of TMs — symmetry — is
not present. Internet routing is naturally asymmetric, as is application traffic (a
large amount of traffic still follows a client-server model which results in strongly
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asymmetric traffic). Hence, the matrix will not (generally)be symmetric [21], i.e.,
T(i, j) 6= T( j, i).

We observe some additional structure in these matrices. Thesimplest model that
describes some of the observed structure is thegravity model. In network applica-
tions, gravity models have been used to model the volume of telephone calls in a
network [31]. Gravity models take their name from Newton’s law of gravitation,
and commonly used by social scientists to model the movementof people, goods or
information between geographic areas [49, 50, 64]. In Newton’s law of gravitation
the force is proportional to the product of the masses of the two objects divided by
the distance squared. Similarly, in gravity models for interactions between cities, the
relative strength of the interaction might be modeled as proportional to the product
of the cities’ populations, so a general formulation of a gravity model is given by

T(i, j) =
Ri ·A j

fi j
, (1.11)

whereRi represents therepulsivefactors that are associated with leaving fromi;
A j represents theattractivefactors that are associated with going toj; and fi j is a
friction factor fromi to j. The gravity model was first used in the context of Internet
traffic matrices in [68] where we can naturally interpret therepulsion factorRi as
the volume of incoming traffic at locationi, and the attractivity factorA j as the
outgoing traffic volume at locationj. The friction matrix( fi j ) encodes the locality
information specific to different source-destination pairs, however, as locality is not
as large a factor in Internet traffic as in the transport of physical goods, it is common
to assumefi j = const. The resulting gravity model simply states that the traffic
exchanged between locations is proportional to the volumesentering and exiting at
those locations.

Formally, letT in(i) andTout( j) denote the total traffic that enters the network via
i, and exits viaj, respectively. The gravity model can then be computed by

T(i, j) =
T in(i)Tout( j)

T tot , (1.12)

whereT tot is the total traffic across the network. Implicitly, this model relies on a
conservation assumption, i.e., traffic is neither created nor destroyed in the network
so thatT tot = ∑k T in(k) = ∑k Tout(k). The assumption may be violated, for instance
when congestion causes packet loss. However, in most backbones congestion is kept
low, and so the assumption is reasonable.

In the form just described, the gravity model has distinct limitations. For in-
stance, real traffic matrices may have non-constantfi j , (perhaps as a result of dif-
ferent time-zones). Moreover, even if an origin destination traffic matrix matches
the gravity model well, the ingress/egress TM may be systematically distorted [7].
Typically, networks use hot-potato routing, i.e., they choose the egress point clos-
est to the ingress point, and this results in a systematic distortion of ingress/egress
traffic matrices away from the simple gravity model. These distortions and others
related to the asymmetry of traffic and distance sensitivitymay be incorporated in
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generalizations of the gravity model where sufficient data exists to measure such
deviations [13,21,68].

The use of temporal patterns in planning is relatively obvious. The use of spatial
patterns such as the gravity model is more subtle. The spatial structure gives us the
capability to fill in missing values of the traffic matrix whenour data is not perfect.
Hence we can still plan our network, even in the extreme case where we have no
data at all.

1.3.3 Application Profile

We have so far discussed network traffic along two dimensions: the temporal and
spatial. There is a third aspect of traffic to consider: its application breakdown, or
profile. Common applications on the Internet are email, web browsing (and other
server based interactions), peer-to-peer file transfers, video and voice. Each may
have a different traffic matrix, and as some networks move towards differentiated
Quality of Service (QoS) for different classes of traffic, wemay have to plan net-
works based on these different traffic matrices.

Even where differentiated service is not going to be provided, a knowledge of the
application classes in our network can be very useful. For instance

• voice traffic is less variable than data, and so can require less overhead for sub-
measurement interval variations;

• peer-to-peer applications typically generate more symmetric traffic than web traf-
fic, and so downstream capacity (towards customer eyeballs)is likely to be more
balanced when peer-to-peer applications dominate;

• we may be planning to eliminate some types of traffic in futurenetworks (e.g.
peer-to-peer traffic has often been considered to violate service agreements that
prohibit running servers).

The breakdown of traffic on a network is not trivial to measure. As noted, typi-
cal flow level data collection includes TCP/UDP port numbers, and these are often
associated to applications using the IANA (Internet Assigned Numbers Authority)
list of registered ports4. However, the port numbers used today are often associated
with incorrect applications because:

• Ports are not defined with IANA for all applications, e.g. some peer-to-peer ap-
plications.

• An application may use ports other than its well-known portsto circumvent
access control restrictions,e.g., non-privileged users often run WWW servers on
ports other than port 80, which is restricted to privileged users on most operating
systems, while port 80 is often used for other applications (than HTTP) in order
to work around firewalls.

4 http://www.iana.org/assignments/port-numbers
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• In some cases server ports are dynamically allocated as needed. For example,
FTP allows the dynamic negotiation of the server port used for the data transfer.
This server port is negotiated on an initial TCP connection which is established
using the well-known FTP control port, but which would appear as a separate
flow.

• Malicious traffic (e.g. DoS attacks) can generate a large volume of bogus traffic
that should not be associated with the applications that normally use the affected
ports.

In addition, there are some incorrect implementations of protocols, and ambiguous
port assignments that complicate the problem. Better approaches to classification of
traffic exist (e.g. [59]), but are not always implemented on commercial measurement
systems.

Application profiles can be quite complex. Typical Internetproviders will see
some hundreds of different applications. However, there are two major simplifica-
tions we can often perform. The first is a clustering of applications into classes. QoS
sometimes forms natural classes (e.g. real-time vs bulk-transfer classes), but regard-
less we can often group many applications into similarly structured classes, e.g., we
can group a number of protocols (IMAP, POP, SMTP, ...) into one class “email”.
Common groupings are shown in Table 1.1, along with exemplarapplications.

Class example applications
bulk-data FTP, FTP-Data
database accessOracle, MySQL
email IMAP, POP, SMTP
information finger, CDDBP, NTP
interactive SSH, Telnet
measurement SNMP, ICMP, Netflow
network controlBGP, OSPF, DHCP, RSVP, DNS
news NNTP
online gaming Quake, Everquest
peer-to-peer Kazaa, Bit-torrent
voice over IP SIP, Skype
www HTTP, HTTPS

Table 1.1 Typical application classes grouped by typical use.

There may be a larger number of application classes, and often there is a sig-
nificant group of unknown applications, but a typical application profile is highly
skewed. Again, it is common to see 80-20 or 90-10 rules. In these cases, it is com-
mon to focus attention on those applications that generate the most traffic, reducing
the complexity of the profile.

However, care must be taken because some applications whichgenerate rela-
tively little traffic on average may be considered very important, and/or may gener-
ate high volumes of traffic for short bursts. There are several such examples in enter-
prise networks, for instance, consider a CEO’s once-a-weekcompany-wide broad-
cast, or nightly backups. Both generate a large amount of traffic, but in a relative
short-time interval, so their proportion of the overall network traffic may be small.
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More generally, much of the control-plane traffic (e.g. routing protocol traffic) in
networks is relatively low volume, but of critical importance.

1.4 Prediction

There are two common scenarios for network planning:

1. incremental planning for network evolution,
2. green-fields planning.

In the first case, we have an existing network. We can measure its current traffic, and
extrapolate trends to predict future growth. In combination with business data, quite
accurate assessments of future traffic are possible. Typically, temporal models are
sufficient for incremental network planning, though betterresults might be possible
with recently developed full spatio-temporal models [52].

In green-fields planning, we have the advantage that we are not constrained in
our network design. We may start from a clean-slate, withoutconcerning ourselves
with a legacy network. However, in such planning we have no measurements on
which to base predictions. All is not lost, however, as we mayexploit the spatial
properties of traffic matrices in order to obtain predictions. We discuss each of these
cases below.

There are other scenarios of concern to the network planner.For example

• Network mergers, for instance when two companies merge and subsequently
combine their networks.

• Network migrations, for instance as significant services such as voice or frame-
relay are migrated to operate on a shared backbone.

• Addition (or loss) of a large customer (say a broadband access provider, a major
content provider, or a hosting center).

• A change in inter-domain routing relationships. For instance, the conversion of
a customer to a peer would mean that traffic no longer transitsfrom that peer,
altering traffic patterns.

The impact of these types of event is obviously dependent on the relative volume
of the traffic affected. Such events can be particularly significant for smaller net-
works, but it is not unheard of for them to cause unexpected demands on the largest
networks (for instance the migration of an estimated half-million customers from
Excite@home to AT&T in 20025). However, the majority of such cases can be cov-
ered by one or both of the techniques below.

5 http://news.cnet.com/ExciteHome-to-shut-down-ATT-dr ops-bid/
2100-1033_3-276550.html
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1.4.1 Prediction for incremental planning

Incremental planning involves extending, or evolving a current network to meet
changing patterns of demands, or changing goals. The problem involves prediction
of future network demands, based on extrapolation of past and present network mea-
surements. The planning problems we encounter are often constrained by the fact
that we can make only incremental changes to our network, i.e., we cannot throw
away the existing network and start from a clean slate, but let us first consider the
problem of making successful traffic predictions.

Obviously, ourplanning horizon(the delay between our planning decisions and
their implementation) is critical. The shorter this horizon, the more accurate our
predictions are likely to be, but the horizon is usually determined by external factors
such as delays between ordering and delivery of equipment, test and verification of
equipment, planned maintenance windows, availability of technical staff, and capital
budgeting cycles. These are outside the control of the network planner, so we treat
the planning horizon as a constant.

The planning horizon also suggests how much historical datais needed. It is a
good idea to start with historical data extending several planning horizons into the
past. Such a record not only allows better determination of trends, but also allows an
assessment of the quality of our prediction process throughanalysis of past planning
periods. If such data is unavailable, then we must consider green-fields planning (see
Section 1.4.2), though informed by what measurements are available.

Given such a historical record, our primary means for prediction is temporal
analysis of traffic data. That is, we consider the traffic measurements of interest
(often a traffic matrix) as a set of time-series.

However, as noted earlier the more highly we aggregate traffic, the smaller its
relative variance, and the easier it is to work with. As a result, it can be a good idea
to predict traffic at a high level of aggregation, and then usea spatial model to break
it into components. For instance, we might perform predictions for the total traffic
in each region of our network, and then break it into components using the current
traffic matrix percentages, rather than predicting each element of the traffic matrix
separately.

There are many techniques for prediction, we concentrate here on just one, which
works reasonably for a wide range of traffic, but we should note that as in all of
the work presented here, the key is not the individual algorithms but their robust
application through a process of measurement, planning andvalidation.

1.4.1.1 Extracting the long-term trend

We will exploit the previously presented temporal model fortraffic, and note that
the key to providing predictions for use in planning is to estimate the long-term
trend in the data. We could form such an estimate simply by aggregating our time-
series over periods of one week (to average away the diurnal and weekly cycles) and
then performing standard trend analysis. However, knowledge of the cycles in traffic
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data is often useful. Sometimes we design networks to satisfy the demand during a
“busy hour”. More generally though, the busiest hours for different components of
the traffic may not match (particularly in international networks distributed over
several time-zones), and so we need to plan our network to have sufficient capacity
at all hours of the day or night.

Hence, the approach we present provides the capability to estimate both the long-
term trend, and the seasonal components of the traffic. It also allows an estimate of
the peakedness, providing the ability to estimate the statistical variations around the
expected traffic behavior. The method is hardly the only applicable time-series algo-
rithm for this type of analysis (for another example see [44]), but it has the advantage
of being relatively simple. The method is based on a simple signal processing tool,
theMoving Average(MA) filter, which we discuss in detail below.

The moving average can be thought of as a simple low-pass filter as it “passes”
low-frequencies, or long-term behavior, but removes short-term variations. As such
it is ideally suited to extracting the trend in our traffic data. Although there are many
forms of moving average, we shall restrict our attention to the simplest: a rectangular
moving average

MAx(t;n) =
1

2n+1

s=t+n

∑
s=t−n

x(s), (1.13)

wheren is the width of the filter, and 2n+ 1 is its length. The length of the filter
must be longer than the period of the cyclic component in order to filter out that
component. Longer filters are often used to allow for averaging out of the stochastic
variation as well. The shortest filter we should consider forextracting the trend
is three times the period, which in Internet traffic data is typically one week. For
example, given traffic datax(t), measured in one hour intervals, we could form our
estimateL̂(t) of the trend by taking a filter of length 3 weeks (e.g., 2n+1 = 504=
24×7×3), i.e., we might takêL(t) = MAx(t;252) whereMAx is defined in (1.13).

Care must always be taken around the start and end of the data.Within n data
points of the edges the MA filter will be working with incomplete data, and so these
estimates should be discounted in further analysis.

Once we have obtained estimates for the long-term trend, we can model its be-
havior. Over the past decade, the Internet has primarily experienced exponential
growth (for instance see Figure 1.4 or [45]).

L(t) = L(0)eβ t , (1.14)

whereL(0) is the starting value, andβ is the growth rate. If exponential growth is
suspected the standard approach is to transform the data using the log function so
that we see

logL(t) = logL(0)+ β t, (1.15)

where we can now estimateL(0) andβ can be estimated from linear regression of
the observed data. Care should obviously be taken that this model is reasonable. Re-
gression provides diagnostic statistics to this end, but comparisons to other models
(such as a simple linear model) can also be helpful.
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Such a model can be easily extrapolated to provide long-termpredictions of traf-
fic volumes. Standard diagnostics from the regression can also be used to provide
confidence bounds for the predictions, allowing us to predict “best” and “worst”
case scenarios for traffic growth, and an example of such predictions is given in
Figure 1.4 using the data from 2000-2004 to estimate the trend, and then extrapo-
lating this until 2009. The figure shows the extrapolated optimistic and pessimistic
trend estimates. We can see that actual traffic growth from 2005-2007 was on the
optimistic side of growth, but that in 2008 the measured traffic was again close to
the long-term trend estimate.

This example clearly illustrates that understanding the potential variations in our
trend estimate is almost as important as obtaining the estimate in the first place. It
also illustrates how instructive historical data can be in assessing appropriate models
and prediction accuracy.

Often, in traffic studies, managers are keen to know thedoubling time, the time
it takes traffic to double. This can be easily calculated by estimating the value oft
such thatL(t) = 2L(0), or eβ t = 2. Again, taking logs we get the doubling time

t∗ =
1
β

ln2. (1.16)

The Australian data shown in Figure 1.4 has a doubling time of477 days.
The trend by itself can inform us of growth rate but modellingthe cyclic varia-

tions in traffic is also useful. We do this by extending the concept of moving average
to theseasonal moving average, but before doing so we broadly remove the long-
term trend from the data (by dividing our measurementsx(t) by L̂(t)).

1.4.1.2 Extracting the the cyclical component

The goal of a Seasonal Moving Average (SMA) is to extract the cyclic component
of our traffic. We know,a priori, the period (typically 7 days) and so the design of
a filter to extract this component is simple. It resembles theMA used previously in
that it is an average, but in this case it is an average of measurements separated in
time by the period. More precisely we form the SMA of the traffic with the estimated
trend removed, e.g.,

Ŝ(t) =
1
N

N−1

∑
n=0

x(t +nTS)/L̂(t +nTS), (1.17)

whereTS is the period, andNTS is the length of the filter. In effect the SMA estimates
the traffic volume for each time of day and week as if they were separate time series.
It can be combined with a short MA filter to provide some additional smoothing of
the results if needed.

The advantage of using a SMA as opposed to a straight forward seasonal average
is that the cyclical component of network traffic can change over time. Using the
SMA allows us to see such variability, while still providinga reasonably stable
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model for extrapolation. There is a natural tradeoff between the length of the SMA,
and the amount of change we allow over time (longer filters naturally smooth out
transient changes). Typically, the length of filter desireddepends on the planning
horizon under which we are operating. We extrapolate the SMAin various ways,
but the simplest is to repeat the last cycle measured in our data into the future, as
if the cyclical component remained constant into the future. Hence, when operating
with a short planning horizon (say a week), we can allow noticeable week to week
variations, and still obtain reasonable predictions, and so a filter length of 3 to 4
cycles is often sufficient. Where our planning horizon is longer (say a year) we
must naturally assume that the week to week variations in thecyclical behavior are
smaller in order to extrapolate, and so we use a much longer SMA, preferably at
least of the order of the length of the planning horizon.

1.4.1.3 Estimating the magnitude of random variations

Once we understand the periodic and trend components of the traffic, the next thing
to capture is the random variation around the mean. Most metrics of variation used
in capacity planning do not account for the time-varying component, and so are
limited to busy-hour analysis. In comparison, we now have have an estimate of
m̂(t) = L̂(t)Ŝ(t) and so can use (1.6) to estimate the stochastic or random component
of our traffic byz(t) = (x(t)− m̂(t))/

√

m̂(t). We can now measure the variability
of the random component of the traffic using the variance ofz(t), which forms an
estimate ˆa for the traffic’s peakedness. The estimator for ˆa including the correction
for bias is given in [58]. Note that it is also important to separate the impulsive,
anomaly terms from the more typical variations. There are many anomaly detection
techniques available (see [67] for a review of a large group of such algorithms).
These algorithms can be used to select anomalous data pointsthat can then be ex-
cluded from the above analysis.

1.4.1.4 From traffic matrix to link loads

Once we have predictions of a TM, we often need to use these to compute the link
loads that would result. The standard approach is to write the TM in vectorized form
x, where the vectorx consists of the columns of the TM (at a particular time) stacked
one on top of another. The link loadsy can then be estimated through the equation

y = Ax, (1.18)

whereA is the routing matrix. The equation above can also be extended to project
observations or predictions of a TM over time into equivalent link loads.

Although there are multiple time-series approaches that can be used to predict
future behavior (e.g., Holt-Winters [11]), our approach has the advantage that it
naturally incorporates multiplexing. As a result, equation (1.18) can be extended to
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other aspects of the traffic model. For instance, the variances of independent flows
are additive (the variance of the multiplexed traffic is the sum of the variances of the
components), and so the variance of link traffic follows the same relationship, i.e.,

vy = Avx, (1.19)

wherevy andvx are the variances of the link loads and TM, respectively. We can use
vy to deduce peakedness parameters for the link traffic using (1.7).

So far, we have assumed that the network (at least the location of links, and the
routing) is static. In reality, part of network planning involves changing the network,
and so the matrixA is really a potential variable. When we consider network plan-
ning, A appears implicitly as one of our optimization variables. Likewise,A may
change in response to link or router failures.

The reason traffic matrices are so important is that they are,in principle,invariant
under changes toA. Hence predictions of link loads under the changes inA can be
easily made. For example, imagine a traffic engineering problem where we wish
to balance the load on a network’s internal links more effectively. We will change
routing in the network in order to balance the traffic on linksmore effectively. In
doing so, the link loads are not invariant (the whole point oftraffic engineering is to
change these). However the ingress/egress TM is invariant,and projecting this onto
the links (via the routing matrix) will predict the link loads under proposed routing
changes.

In reality invariance is an approximation. Real TMs are not invariant under all
network changes, for instance, if network capacities are chosen to be too small,
congestion will result. However, the Transmission ControlProtocol (TCP) will act
to alleviate this congestion by reducing the actual traffic carried on the network,
thereby changing the traffic matrix. In general different sets of measurements will
have different degrees of invariance. For instance, an origin/destination TM is invari-
ant to changes in egress points (due to routing changes) whereas an ingress/egress
TM is not. It is clearly better to use the right data set for each planning problem, but
the desired data is not always available.

The lack of true invariance is one of the key reasons for the cyclic approach
to network planning. We seek to correct any problems caused by variations in our
inputs in reponse to our new network design.

1.4.2 Prediction for Green-fields planning

The above assumes that we have considerable historical datato which we apply
time-series techniques to extrapolate trends, and hence predict the future traffic de-
mands on our network. This has two major limitations:

1. IP traffic is constrained by the pipe through which it passes. TCP congestion
control ensures that such traffic does not overflow by limiting the source trans-
mission rate. In most networks our measurements only provide thecarried load
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not theoffered load. If the network capacities change, the traffic may increase in
response. This is a concern if our current network is loaded to near its capacity,
and in this case we must discount our measurements, or at least treat them with
caution.

2. When we design a new network there is nothing in place for usto measure.

We will start by considering available strategies for the latter case. We can draw
inspiration from the spatial models previously presented.The fact that the simple
gravity model describes, to some extent, the spatial structure of Internet traffic ma-
trices presents us with a simple approach to estimate an initial traffic matrix.

The first step is to estimate the total expected traffic for thenetwork, based on
demographics and market projections. Let us take a simple example: in Australia the
ABS measures internet usage. Across a wide customer base theaverage usage per
customer was roughly 3 GB/month (since 2006). The total traffic for our network
is the usage per customer multiplied by the projected numberof customers. We
can derive traffic estimates per marketing region in the samefashion. Note that the
figure used above is for the broad Australian market and is unlikely to be correct
elsewhere (typical Australian ISPs have an tiered pricing structure). Where more
detailed figures exist in particular markets these should beused.

The second step is to estimate the “busy hour” traffic. As we have seen previously
the traffic is not uniformly distributed over time. In the absence of better data, we
might look at existing public measurements (such as presented in Figures 1.2 and
1.3, or as appears in [44]) where the peak to mean ratio is of the order of three to
two. Increasing our traffic estimates by this factor gives usan estimate of the peak
traffic loads on the network.

The third step is to estimate a traffic matrix. The best approach, in the absence of
other information, to derive the traffic matrix is to apply the gravity model (1.12). In
the simple case, the gravity model would be applied directlyusing the local regional
traffic estimates. However, where additional information about the expected appli-
cation profile exists, we might use this to refine the results using the “independent
flow model” of [21]. Additional structural information about the network might al-
low use of the “generalized gravity model” of [69]. Each of these approaches allows
us to use additional information, but in the absence of such information the simple
gravity model gives us our initial estimate of the network traffic matrix.

What about the case where we have historical network traffic measurements, but
suspect that the network is congested so that the carried load is significantly below
the offered load? In this case, our first step is to determine what parts of the traffic
matrix are affected. If a large percentage of the traffic matrix is affected, then the
only approach we have available is to go back through the historical record until
we reach a point (hopefully) where the traffic is not capacityconstrained. This has
limitations: for one thing, we may not find a sufficient set of data where capacity
constraints have left the measurements uncorrupted. Even where we do obtain suffi-
cient data, the missing (suspect) measurements increase the window over which we
must make predictions, and therefore the potential errors in these predictions.

However, if only a small part of the traffic matrix is affectedwe may exploit
techniques developed for traffic matrix inference to fill in the suspect values with
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more accurate estimates. These methods originated due to the difficulties in collect-
ing flow-level data to measure traffic matrices directly. Routers (particularly older
routers) may not support an adequate mechanism for such measurements (or suffer
a performance hit when the measurements are used), and installation of stand-alone
measurement devices can be costly. On the other hand, the Simple Network Man-
agement Protocol (SNMP) is almost ubiquitously available,and has little overhead.
Unfortunately, it provides only link-load measurements, not traffic matrices. How-
ever, the two are simply related by (1.18). Inferringx from y is a so-called “network
tomography” problem. For a typical network the number of link measurements is
O(N) (for a network ofN nodes), whereas the number of traffic matrix elements is
O(N2) leading to a massively underconstrained linear inverse problem. Some type
of side-information is needed to solve such problems, usually in the form of a model
that roughly describes a typical traffic matrix. We then estimate the parameters of
this crude model (which we shall callm), and perform a regularization with respect
to the model and the measurements by solving the minimization problem

argmin
x

‖y−Ax‖2
2+ λ 2d(x,m), (1.20)

where‖·‖2 denotes thel2 norm,λ > 0 is a regularization parameter, andd(x,m) is a
distance between the modelm and our estimated traffic matrixx. Examples of suit-
able distance metrics are standard or weighted Euclidean distance and the Kullback-
Leibler divergence. Approaches of this type, generally calledstrategies for regular-
ization of ill-posed problemsare more generally described in [29], but have been
used in various forms in many works on traffic matrix inference. The method works
because the measurements leave the problem underconstrained, thereby allowing
many possible traffic matrices that fit the measurements, butthe model allows us to
choose one of these as best. Furthermore, throughλ the method allows us to trade-
off our belief about the accuracy of the model against the expected errors in the
measurements.

We can utilize TM structure to interpolate missing values bysolving a similar
optimization problem

argmin
x

‖A (x)−M‖2
2+ λ 2d(x,mg), (1.21)

whereA (x) = M expresses the available measurements as a function of the traffic
matrix (whether these be link measurements or direct measurements of a subset
of the TM elements we don’t care), andmg is the gravity model. This regularizes
our model with respect to the measurements that are considered valid. Note that the
gravity model in this approach will be skewed by missing elements, so this approach
is only suitable for interpolation of a few elements of the traffic matrix. If larger
numbers of elements are missing, we can use more complicatedtechniques such as
those proposed in [51] to interpolate the missing data.
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1.5 Optimal Network Plans

Once we have obtained predictions of the traffic on our network we can commence
the actual process of making decisions about where links androuters will be placed,
their capacities, and the routing policies that will be used. In this section we discuss
how we may optimize these quantities against a set of goals and constraints.

The first problem we consider concerns capacity planning. Ifthis component
of our network planning worked as well as desired, we could stop there. However
errors in predictions, coupled with the long planning horizon for making changes
to a network mean that we need also to consider a short-term way of correcting
such problems. The solution is typically calledtraffic engineeringor simply load
balancing, and is considered in Section 1.5.2.

1.5.1 Network Capacity Planning

There are many good optimization packages available today.Commercial tools such
as CPLEX are designed specifically for solving optimizationproblems, while more
general purpose tools such as Matlab often include optimization toolkits that can be
used for such problems. Even Excel includes some quite sophisticated optimization
tools, and so we shall not consider optimization algorithmsin detail here. Instead we
will formulate the problem, and provide insight into the practical issues. There are
three main components to any optimization problem: the variables, the objective,
and the constraints.

The variables here are obviously the locations of links, andtheir capacities.
The objective function — the function which we aim to minimize — varies de-

pending on business objectives. For instance, it is common to minimize the cost of
a network (either its capital or ongoing cost), or packet delays (or some other net-
work performance metric). The many possible objectives in network design result
in different problem formulations, but we concentrate hereon the most common
objective of cost minimization.

The cost of a network is a complex function of the number and type of routers
used, and the capacities of the links. It is common, however,to break up the prob-
lem hierarchically into inter-PoP (Point-of-Presence), and intra-PoP design, and we
consider the two separately here.

The constraints in the problem fall into several categories:

1. Capacity constraints require that we have “sufficient” link capacity. These are the
key constraints for this problem so we consider these in moredetail below.

2. Other technological constraints, such as limited port numbers per router.
3. Constraints arising as a result of the difficulties in multi-objective optimization.

For example, we may wish to have a network with good performance and low
cost. However, multiobjective optimization is difficult, so instead we minimize
cost subject to a constraint on network performance.
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4. Reliability constraints require that the network function even under network fail-
ures. This issue is so important that other chapters of this book have been devoted
to this issue, but we shall consider some aspects of this problem here as well.

1.5.1.1 Capacity constraints and safe-operating points

Unsurprisingly, the primary constraints in capacity planning are the capacity con-
straints. We must have a network with sufficient capacity to carry the offered traffic.
The key issue is our definition of “sufficient”. There are several factors that go into
this decision:

1. Traffic is not constant over the day, so we must design our network to carry loads
at all times of day. Often this is encapsulated in “busy hour”traffic measurements,
but busy hours may vary across a large network, and between customers, and so
it is better to design for the complete cycle.

2. Traffic has observable fluctuations around its average behavior. Capacity plan-
ning can explicitly allow for these variations.

3. Traffic also has unobservable fluctuations on shorter times than our measurement
interval. Capacity planning must attempt to allow for thesevariations.

4. There will be measurement and prediction errors in any setof inputs.

Ideally, we would use queueing models to derive an exact relationship between mea-
sured traffic loads, variations, and so determine the required capacities. However,
despite many recent advances in data traffic modelling, we are yet to agree on suf-
ficiently precise and general queueing models to determine sufficient capacity from
numerical formulae. There is no “Erlang-B” formulae for data networks. As a result,
most network operators use some kind of engineering rule of thumb, which comes
down to an “over-engineering factor” to allow for the above sources of variability.

We adopt the same approach here, but the term “over-engineering factor” is mis-
leading. The factor allows forknownvariations in the traffic. The network is not
over-engineered, it only appears so if capacity is directlycompared to the available
but flawed measurements. In fact, if we follow a well founded process, the network
can be quite precisely engineered6.

We therefore prefer to use the termSafe Operating Point(SOP). A SOP is defined
statistically with respect to the available traffic measurements on a network. For
instance, with five minute SNMP traffic measurements, we might define our SOP
by requiring that the load on the links (as measured by five minute averages) should
not exceed 80% of link capacity more than five times per month.The predicted
traffic model could then be used to derive how much capacity isneeded to achieve
this bound.

Traffic variance depends on the application profile and the scale of aggregation.
Moreover, the desired tradeoff between cost and performance is a business choice

6 It is a common complaint that backbone networks are underutilized. This complaint typically
ignores the issues described above. In reality many of thesenetworks may be quite precisely engi-
neered, but crude average utilization numbers are used to defer required capacity increases.
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for network operators. So there is no single SOP that will satisfy all operators. Given
the lack of precision in current queueing models and measurements, the SOP needs
to be determined by each network operator experimentally, preferably starting from
conservative estimates. Natural variations in network conditions often allow enough
scope to see the impact of variable levels of traffic, and fromthese determine more
accurate SOP specifications, but to do this we need to couple traffic and performance
measurements (a topic we consider later).

A secondary set of capacity constraints arises because there is a finite set of
available link types, and capacity must be bought in multiples of these links. For
instance, many high-speed networks use either SONET/SDH links (typically giving
155 Mbps times powers of 4) and/or Ethernet link capacities (powers of 10 from
10 Mbps to 10 Gbps). We will denote the set of available link capacities (including
zero) byC.

Finally, most high-speed links technologies are duplex, and so we need to allocate
capacity in each direction, but we typically do so symmetrically (i.e., a link has the
same capacity fromi → j as fromj → i even when the traffic loads in each direction
are different).

1.5.1.2 Intra-PoP design

We divide the network design or capacity planning problem into two components
and first consider the design of the network inside a PoP. Typically this involves
designing a tree-like network to aggregate traffic up to regional hubs, which then
transit the traffic onto a backbone7. The exact design of a PoP is considered in more
detail in Chapter 4, but note that in each of the cases considered there we end up
with a very similar optimization problems at this level.

There are two prime considerations in such planning. Firstly, it is typical that
the majority of traffic is non-local, i.e., that it will transit to or from the backbone.
Local traffic between routers within the PoP in the Internet is often less than 1%
of the total. There are exceptions to this rule, but these must be dealt with on an
individual basis. Secondly, limitations on the number of ports on most high-speed
routers mean that we need at least one layer of aggregation routers to bring traffic
onto the backbone: for instance see Figure 1.5. For clarity,we show a very simple
design (see Chapter 4 for more examples). In our example, Backbone Routers (BRs)
and the corresponding links to Aggregation Routers (ARs) are assigned in pairs in
order to provide redundancy, but otherwise the topology is asimple tree.

There are many variations on this design, for instance additional BRs may be
needed, or multiple layers. However in our simple model, thedesign is determined
primarily by the limitations on port density. The routers lie within a single PoP, so
links are short and their cost has no distance dependence (and they are relatively
cheap compared to wide-area links). The number of ARs that can be accommo-

7 In small PoPs, a single router (or redundant pair) may be sufficient for all needs. Little planning
is needed in this case beyond selecting the model of router, and so we do not include this simple
case in the following discussions.

Page: 26 job: chapter macro: svmult.cls date/time: 12-Jun- 2009/10:36



1 Robust Network Planning 27

to backbone

customers

BR BR

AR AR AR

Fig. 1.5 A typical PoP design. Aggregation Routers (AR) are used to increase the port density in
the PoP and bring traffic up to the Backbone Routers (BR).

dated depends on the number of ports that can be supported by the BRs, so we shall
assume that ARs have a single high-capacity uplink to each BRto allow for a max-
imum expansion factor in a one-level tree. As a result, the job of planning a PoP is
primarily one of deciding how many ARs are needed.

As noted earlier we don’t need a TM for this task. The routing in such a network
is predetermined, and so current port allocations and the uplink load history are
sufficiently invariant for this planning task. We use these to form predictions of
future uplink requirements and the loads on each router. When predictions show
that a router is reaching capacity (either in terms of uplinkcapacity, traffic volume,
or port usage) we can install additional routers based on ourpredictions over the
planning horizon for router installation.

There is an additional improvement we can make in this type ofproblem. It is rare
for customers to use the entire capacity of their link to our network, and so the uplink
capacity between AR and BR in our network need not be the sum ofthe customers’
link capacities. We can take advantage of this fact through simple measurement-
based planning, but with the additional detail that we may allocate customers with
different traffic patterns to routers in such a way as to leverage different peak hours
and traffic asymmetries (between input and output traffic), so as to further reduce
capacity requirements.

The problem resembles the bin packing problem. Given a fixed link capacityC
for the uplinks between ARs and BRs, andK customers with peak traffic demands
{Ti}K

i=1, the bin packing problem would be as follows: determine the smallest integer
B, such that we can find aB-partition{Sk}B

k=1 of the customers8 such that

∑
i∈Sk

Ti ≤C, for all k = 1, . . . ,B. (1.22)

8 A B-partition of our customers is a group ofB non-empty subsetsSk ⊂ {1,2, . . . ,K} that are
disjoint, i.e.,Si ∩Sj = φ for all i 6= j , and which include all customers, i.e.,∪B

k=1Sk = {1,2, . . . ,K}.
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The number of subsetsB gives the number of required ARs, and although the prob-
lem is NP-hard, there are reasonable approximation algorithms for its solution [18],
some of which are online, i.e., they can be implemented without reorganization of
existing allocations.

The real problem is more complicated. There are constraintson the number of
ports that can be supported by ARs dependent on the model of ARs being deployed,
constraints on router capacity, and in addition, we can takeadvantage of the tem-
poral, and directional characteristics of traffic. Customer demands take the form
[Ii(t),Oi(t)], whereIi(t) andOi(t) are incoming and outgoing traffic demands for
customeri at time t. So the appropriate condition for our problem is to find the
minimal numberB of ARs such that

∑
i∈Sk

Ii(t) ≤C, and ∑
i∈Sk

Oi(t) ≤C, for all k,t. (1.23)

This is the so-calledvector bin packingproblem, which has been used to model
resource constrained processor scheduling problems, and good approximations have
been known for some time [15,28].

The major advantage of this type of approach is that customers with different
peak traffic periods can be combined onto one AR so that their joint traffic is more
evenly distributed over each 24 hour period. Likewise, careful distribution of cus-
tomers whose primary traffic flowsinto our network (for instance hosting centers)
together with customers whose traffic flowsout of the network (e.g., broadband ac-
cess companies) can lead to more symmetric traffic on the uplinks, and hence better
overall utilization. In practice, multiplexing gains may improve the situation, so that
less capacity is needed when multiple customers’ traffic is combined, but this effect
only plays a dominant role when large numbers (say hundreds)of small customers
are being combined.

1.5.1.3 Inter-PoP backbone planning

The inter-PoP backbone design problem is somewhat more complicated. We start
by assuming we know the locations at which we wish to have PoPs. The question of
how to optimize these locations does come up, but it is commonthat these locations
are pre-determined by other aspects of business planning. In inter-PoP planning,
distance based costs are important. The cost of a link is usually considered to be
proportional to its length, though this is approximate. Thereal cost of a link has a
fixed component (in the equipment used to terminate a line) inaddition to distance
dependent terms derived from the cost to install a physical line, e.g., costs of cables,
excavation and right of ways. Even where leased lines are used (so there are minimal
installation costs) the original capital costs of the linesare usually passed on through
some type of distance sensitive pricing.

In addition, higher speed links generally cost more. The exact model for such
costs can vary, but a large component of the bandwidth dependent costs is in the
end equipment (router interface cards, WDM mux/demux equipment, etc.). In ac-
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tuality real costs are often very complicated: vendors may have discounts for bulk
purchases, whereas cutting edge technology may come at a premium cost. How-
ever, link costs are often approximated as linear with respect to bandwidth because
we could, in principle, obtain a link with capacity 4c by combining four links of
capacityc.

In the simple case then, cost per link has the form

f (de,ce) = α + βde+ γce, (1.24)

whereα is the fixed cost of link installation,β is the link cost per unit distance andγ
is the cost per unit bandwidth. As the distance of a link is typically a fixed property
of the link, we often rewrite the above cost in the form

fe(ce) = αe+ γce, (1.25)

where now the cost function depends on the link indexe.
We further simplify the problem by assuming that BRs are capable of dealing

with all traffic demands so that only two (allowing for redundancy) are needed in
each PoP, thus removing the costs of the router from the problem.

Finally, we simplify our approach by assuming that routes are chosen to follow
the shortest possible geographic path in our network. Thereare reasons (which we
shall discuss in the following section) why this might not bethe case, however,a
priori , it makes sense to use the shortest geographic path. There are costs that arise
from distance. Most obviously, if packets traverse longer paths, they will experience
longer delays, and this is rarely desirable. In addition, packets that traverse longer
paths use more resources. For instance, a packet that traverses two hops rather than
one uses up capacity on two links rather than one.

As noted earlier, we need to specify the problem constraints, the basic set of
which are intended to ensure there is sufficient capacity in the network. When con-
gestion is avoided, queueing delays will be minimal, and hence delays across the
network will be dominated by propagation delays (the speed of light cannot be in-
creased). So ensuring sufficient capacity implicitly serves the purpose of reducing
networking delays. As noted, we adopt the approach of specifying a SOP, which we
do in the form of a factorλ ∈ (0,1), which specifies the traffic limit with respect to
capacity. That is, we shall require that the link capacityce be sufficient that traffic
takes up onlyλ of the capacity, leaving 1−λ of the capacity to allow for unexpected
variations in the traffic.

The possible variables are now the link locations and their capacities. So, given
the (vectorized) traffic matrixx, our job is to determine link locations and capacities
ce, which implicitly defined the network routes (and hence the routing matrixA),
such that we solve

minimize ∑
e∈E

αeI(ce > 0)+ γce

such thatAx ≤ λc,
ce ∈C,

(1.26)
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whereAx = y, the link loads,c is the vector of links capacities,E is the set of
possible links,I(ce > 0) is an indicator function (which is 1 where we build a link,
and 0 otherwise), andC is the set of available link capacities (which includes 0).

Implicit in the above formulation is the routing matrixA, which results from the
particular choice of links in the network design, soA is in fact a function of the
network design. Its construction imposes constraints requiring that all traffic on the
network can be routed. The problem can be rewritten in a more explicit form using
flow-based constraints, but the above formulation is convenient for explaining the
differences and similarities between the range of problemswe consider here.

There may be additional constraints in the above problem resulting from router
limitations, or due to network performance requirements. For instance, if we have a
maximum throughput on each router, we introduce a set of constraints of the form
Bx ≤ ηr , wherer are router capacities, andB is similar to a routing matrix in that
it maps end-to-end demands to the routers along the chosen path. Port constraints
on a router might be expressed by taking constraints of the form ∑ j I(ci, j > 0)≤ pi ,
wherepi is the port limit on routeri. Port constraints are complicated by the many
choices of line cards available for high-speed routers, andso have sometimes been
ignored, but they are a key limitation in many networks. The issue is sometimes
avoided by separation of inter- and intra-PoP design, so that a high port density on
BRs is not needed.

The other complication is that we should aim to optimize the network for 24×7
operations. We can do so simply by including one set of capacity constraints for
each time of day and week, i.e.,Axt ≤ λc. The resulting constraints are in exactly the
same form as in (1.26) but their number increases. However, it is common that many
of these constraints are redundant, and so can be removed from the optimization
(without effect) by a pre-filtering phase.

The full optimization problem is a linear integer program, and there are many
tools available for solution of such programs. However, it is not uncommon to relax
the integer constraints to allow anyce ≥ 0. In this case there is no point in having
excess capacity, and so we can replace the link capacity constraint byAx = λc. We
then obtain the actual design by rounding up the capacities.This approach reduces
the numerical complexity of the problem, but results in a potentially suboptimal
design. Note though, that integer programming problems areoften NP hard, and
consequently solved using heuristics which likewise can lead to suboptimal designs.
Relaxation to a linear program is but one of a suite of techniques that can be used to
solve problems in this context, often in combination with other methods.

Moreover, it is common the mathematical community to focus on finding prov-
ably optimal designs, but this is not a real issue. In practical network design we
know that the input data contains errors, and our cost modelsare only approximate.
Hence, the mathematically optimal solution may not have thelowest cost of all re-
alizable networks. The mathematical program only needs to provide us with a very
good network design.

The components of real network suffer outages on a regular basis: planned main-
tenance, and accidental fiber cuts are simple examples (for more details see Chapters
3 and 4). The final component of network planning that we discuss here is relia-
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bility planning: analyzing the reliability of a network. There are many algorithms
aimed at maintaining network connectivity, ranging from simple designs such as
rings or meshes, through to formal optimization problems including connectivity
constraints. Commonly, networks are designed to survive all single link or node out-
ages, though more careful planning would concern all SharedRisk Groups (SRG),
i.e., groups of links and/or nodes who share fates under common failures. For in-
stance, IP links that use wavelengths on the same fiber will all fail simultaneously if
the fiber is cut.

However, when a link (or SRG) fails, maintaining connectivity is not the only
concern. Rerouted traffic creates new demands on links. If this demand exceeds
capacity, then the resulting congestion will negatively impact network performance.
Ideally, we would design our network to accommodate such failures, i.e., we would
modify our earlier optimization problem (1.26) as follows:

minimize ∑
e∈E

αeI(ce > 0)+ γce

such thatAx ≤ λc,
and Aix ≤ ζc, ∀i ∈ F ,

(1.27)

whereF is the set of all failure scenarios considered likely enoughto include, and
Ai is the routing matrix under failure scenarioi. Naively implemented withλ = ζ ,
this approach has the limitation that the capacity constraints under failures can come
to dominate the design of the network so that most links will be heavily underuti-
lized under normal conditions. Hence, we allow that the SOPswith respect to normal
loads, and failure loads to be different,λ < ζ < 1, so that the mismatch is some-
what balanced, i.e., under normal conditions links are not completely underutilized,
but there is likely to be enough capacity under common failures. For example, we
might require that under normal loads, peak utilizations remain at 60%, while under
failures, we allow loads of 85%.

Additionally, the number of possible failure scenarios canbe quite large, and
as each introduces constraints, it may not be practical to consider all failures. We
may need to focus on the likely failures, or those that are considered to be most
potentially damaging. However, it is noteworthy that only constraints that involve
rerouting need be considered. In most failures, a large number of links will be un-
affected, and hence the constraints corresponding to thoselinks will be redundant,
and may be easily removed from the problem.

The above formulation presumes that we design our network from scratch, but
this is the exception. We typically have to grow our network incrementally. This
introduces challenges — for instance, it is easy to envisagea series of incremental
steps that are each optimal in themselves, but which result in a highly suboptimal
network over time. So it is sometimes better to design an optimal network from
scratch, particularly when the network is growing very quickly. In the mean time we
can include the existing network through a set of constraints in the formce≥ le+c′e,
wherele is the legacy link capacity on linke, andc′e is the additional link capacity.
The real situation is complicated by some additional issues: (i) typical IP router
load-balancing is not well suited for multiple parallel links of different capacities so
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we must choose between increasing capacity through additional links (with capacity
equal to the legacy links) or paying to replace the old links with a single higher
capacity link; and (ii) the costs for putting additional capacity between two routers
may be substantially different from the costs for creating an entirely new link. Some
work [40] has considered the problem of evolvability of networks, but without all
of the addition complexities of IP network management, so determining long-term
solutions for optimal network evolution is still an open problem.

1.5.2 Traffic Engineering

In practice, it takes substantial time to build or change a network, despite modern
innovations in reconfigurable networks. Typical changes toa link involve physically
changing interface cards, wiring, and router configurations. Today these changes are
often made manually. They also need to be performed carefully, through a process
where the change is documented, carefully considered, acted upon, and then tested.
The time to perform these steps can vary wildly between companies, but can easily
be 6 months once budget cycles are taken into account.

In the mean time we might find that our traffic predictions are in error. The best
predictions in the world cannot cope with the convulsive changes that seem to occur
on a regular basis in the Internet. For instance, the introduction of peer-to-peer net-
working both increased traffic volumes dramatically in a very short time frame, and
changed the structure of this traffic (peer-to-peer traffic is more symmetric that the
previously dominant client-server model). YouTube again reset providers’ expecta-
tions for traffic. The result will be a suboptimal network, insome cases leading to
congestion.

As noted, we cannot simply redesign the network, but we can often alleviate con-
gestion by better balancing loads. This process, calledtraffic engineering(or just
load balancing) allows us to adapt the network on shorter time scales than network
planning. It is quite possible to manually intervene in a network’s traffic engineering
on a daily basis. Even finer time scales are possible in principle if traffic engineer-
ing is automated, but this is uncommon at present because there is doubt about the
desirability of frequent changes in routing. Each change torouting protocols can
require a reconvergence, and can lead to dropped packets. More importantly, if such
automation is not very carefully controlled it can become unstable, leading to oscil-
lations and very poor performance.

The Traffic Engineering (TE) problem is very similar to the network design prob-
lem. The goal, or optimization objective is often closely related to that in design.
The constraints are usually similar. The major difference is in the planning horizon
(typically days to weeks), and as a result the variables overwhich we have control.
The restriction imposed by the planning horizon for TE is that we cannot change
the network hardware: the routers and links between them arefixed. However, we
can change the way packets are routed through the network, and we can use this to
rebalance the traffic across the existing network links.
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There are two methods of TE that are most commonly talked about. The most
often mentioned uses MultiProtocol Label Switching (MPLS)[54], by which we
can arbitrarily tunnel traffic across almost any set of pathsin our network. Finding
a general routing minimizing max-utilization is an instance of the classical multi-
commodity flow problem which can be formulated as a linear program [6, Chapter
17], and is hence solvable using commonly available tools. We shall not spend much
time on MPLS TE, because there is sufficient literature already (for instance see
[19,36]). We shall instead concentrate on a simpler, less well known, and yet almost
as powerful method for TE.

Remember that we earlier argued that shortest-geographic paths made sense for
network routing. In fact, shortest-path routing does not need to be based on geo-
graphic distances. Most modern Interior Gateway Protocolsallow administratively
defined distances (for instance Open Shortest Path First (OSPF) [42] and Intermedi-
ate System-Intermediate System (IS-IS) [14]). By tweakingthese distances we can
improve network performance. By making a link distance smaller, you can make a
link more “attractive”, and so route more traffic on this link. Making the distance
longer can remove traffic. Configurable link weights can be used, for example, to
direct traffic away from expensive (e.g., satellite) links.

However, we can formulate the TE problem more systematically. Let us consider
a shortest-path protocol with administratively configuredlink weights(the link dis-
tances)we on each linke. We assume that the network is given (i.e., we know its
link locations and capacities), and that the variables thatwe can control are the
link weights. Our objective is to minimize the congestion onour network. Several
metrics can be used to describe congestion. Network-wide metrics such as that pro-
posed in [25,26] can have advantages, but we use the common metric of maximum
utilization here for its simplicity.

In many cases, there are additional “human” constraints on the weights we can
use in the above optimization. For instance, we may wish thatthe resulting weights
don’t change “too much” from our existing weights. Each change requires recon-
figuration of a router, and so reducing the number of changes with respect to the
existing routing may be important. Likewise the existing weights are often chosen
not just for the sake of distance, but also to make the networkconceptually simpler.
For instance, we might choose smaller weights inside a “region” and large weights
between regions, where the regions have some administrative (rather than purely ge-
ographical) significance. In this case, we may wish to preserve the general features
of the routing, while still fine tuning the routes. We can express these constraints in
various ways, but we do so below by setting minimum and maximum values for the
weights. Then the optimization problem can be written: choose the weightsw, such
that we

minimize max
e∈E

ye/ce

such thatAx = y,
and wmin

e ≤ we ≤ wmax
e , ∀e∈ E

(1.28)

where A is the routing matrix generated by shortest-path routing given by link
weightswe, and the link utilizations are given byye/ce (the link load divided by
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its capacity). Thewmin
e andwmax

e constrain the weights for each link into a range
determined by existing network policies (perhaps within some bound of the existing
weights). Additional constraints might specify the maximum number of weights we
are allowed to change, or require that links weights be symmetric, i.e.,w(i, j) = w( j ,i).

The problem is in general NP-hard, so it is non-trivial to finda solution. Over the
years, many heuristic methods [12,20,25,26,37,41,53] have been developed for the
solution of this problem.

The exciting feature of this approach is that it is very simple. It uses standard IP
routing protocols, with no enhancements other than the clever choice of weights.
One might believe that the catch was that it cannot achieve the same performance as
full MPLS TE. However, the performance of the above shortest-path optimization
has been shown on real networks to suffer only by a few percent[60,61], and impor-
tantly, it has been shown to be more robust to errors in the input traffic matrices than
MPLS optimization [61]. This type of robustness is criticalto real implementations.

Moreover, the approach can be used to generate a set of weights that work well
over the whole day (despite variations in the TM over the day)[61], or that can
help alleviate congestion in the event of a link failure [44], a problem that we shall
consider in more detail in the following section.

1.6 Robust Planning

A common concern in network planning is the consequence of mistakes. Traffic
matrices used in our optimizations may contain errors due tomeasurement arti-
facts, sampling, inference, or predictions. Furthermore there may be inconsistencies
between our planned network design, and the actual implementation through mis-
configuration or last minute changes in constraints. There may be additional incon-
sistencies introduced through the failure of invariance inTMs used as inputs, for
example, caused by congestion alleviation in the new network.

Robust planning is the process of acknowledging these flaws,and still design-
ing good networks. The key to robustness is the cyclic approach described in the
introduction: measure→ predict→ plan→ and then measure again. However, with
some thought, this process can be made tighter. We have already seen one example
of this through TE, where a short-term alteration in routingis used to counter errors
in predicted traffic. In this section we shall also consider some useful additions to
our kitbag of robust planning tools.

1.6.1 Verification Measurements

One of the most common sources of network problems is misconfiguration. Extreme
cases of misconfigurations that cause actual outages are relatively obvious (though
still time consuming to fix). However, misconfigurations canalso result in more
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subtle problems. For instance, a misconfigured link weight can mean that traffic
takes unexpected paths, leading to delays or even congestion.

One of the key steps to network planning is to ensure that the network we planned
is the one we observe. Various approaches have been used for router configuration
validation: these are considered in more detail in Chapter 9. In addition, we recom-
mend that direct measurements of the network routing, link loads, and performance
be made at all times. Routing can be measured through mechanisms such as those
discussed earlier in Section 1.2 and in more detail in Chapter 11. When performed
from edge node to edge node, we can use such measurements to confirm that traffic
is taking the routes we intended it to take in our design.

By themselves, routing measurements only confirm the direction of traffic flows.
Our second requirement is to measure link traffic to ensure itremains within the
bounds we set in our network design. Unexpected traffic loadscan often be dealt
with by TE, but only once we realize there is a problem.

Finally, we must always measure performance across our network. In principle,
the above measurements are sufficient, i.e., we might anticipate that a link is con-
gested only if traffic exceeds the capacity. However, in reality, the typical SNMP
measurements used to measure traffic on links are five minute averages. Conges-
tion can occur on smaller time scales, leading to brief, but non-negligible packet
losses that may not be observable from traffic measurements alone. We aim to re-
duce these through choice of SOP, but note that this choice isempirical in itself, and
an accurate choice relies on feedback from performance measurements. Moreover,
other components of a network have been known to cause performance problems
even on a lightly loaded network. For instance, such measurements allowed us to
discover and understand delays in routing convergence times [32,62], and that dur-
ing these periods bursts of packet loss would occur, from which improvements to
Interior Gateway Protocols have been made [27]. The importance of the problem
would never have been understood without performance measurements. Such mea-
surements are discussed in more detail in Chapter 10.

1.6.2 Reliability Analysis

IP networks and the underlying SONET/WDM strata on which they run are often
managed by different divisions of a company, or by completely different compa-
nies. In our planning stages, we would typically hope for joint design between these
components, but the reality is that the underlying physical/optical networks are of-
ten multiuse, with IP as one of several customers (either externally or internally)
that use the same infrastructure. It is often hard to prescribe exactly which circuits
will carry a logical IP link. Therefore, it is hard in some cases to determine, prior to
implementation, exactly what SRG exist.

We may insist, in some cases, that links are carried over separate fibers, or even
purchase leased lines from separate companies, but even in these cases great care
should be taken. For instance, it was only during the Baltimore train tunnel fire
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(2001) [4] that it was discovered that several providers ranfiber through the same
tunnel.

Our earlier network plan can only accommodate planned network failure scenar-
ios. In robust planning, we must somehow accommodate the SRGs that have arisen
in the implementation of our planned network. The first step,obviously, is to de-
termine the SRGs. The required data mapping IP links to physical infrastructure is
often stored in multiple databases, but with care it is possible to combine the two to
obtain a list of SRGs. Once we have a complete list of failure scenarios we could
go through the planning cycle again, but as noted, the time horizon for this process
would leave our network vulnerable for some time.

The first step therefore is to perform a network reliability analysis. This is a sim-
ple process of simulating each failure scenario, and assessing whether the network
has sufficient capacity, i.e., whetherAix ≤ ζc. If this condition is already satisfied,
then no action need be taken. However, where the condition isviolated, we must
take one of two actions. The most obvious approach to deal with a specific vulnera-
bility is to expedite an increase in capacity. It is often possible to reduce the planning
horizon for network changes at an increased cost. Where small changes are needed,
this may be viable, but it is clearly not satisfactory to try to build the whole network
in this way.

The second alternative is to once again use traffic engineering. MPLS provides
mechanisms to create failover paths, however, it does not tell you where to route
these to ensure congestion does not occur. Some additional optimization and con-
trol is needed. However, we cannot do this after the failure,or recovery will take
an unacceptable amount of time. Likewise, it is impracticalin today’s networks to
change link weights in response failures. However, previous studies have shown
that shortest-path link weight optimization can be used to provide a set of weights
that will alleviate congestive effects under failures [44], and such techniques have
(anecdotally) been used in large networks with success.

1.6.3 Robust Optimization

The fundamental issue we deal with is “Given that I have errors in my data, how
should I perform optimization?” Not all the news is bad. For instance, once we ac-
knowledge that our data is not perfect, we realize that finding the mathematically
optimal solution for our problem is not needed. Instead, heuristic solutions that find
a near optimal solution will be just as effective. This chapter is not principally con-
cerned with optimization, and so we will not spend a great deal of time on specific
algorithms, but note that once we decide that heuristic solutions will be sufficient,
several meta-heuristics such as genetic algorithms and simulated annealing become
attractive. They are generally easy to program, and very flexible, and so allow us to
use more complex constraints and optimization objective functions than we might
otherwise have chosen. For instance, it becomes easy to incorporate the true link
costs, and technological constraints on available capacities.
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The other key aspect to optimization in network planning directly concerns ro-
bustness. We know there are errors in our measurements and predictions. We can
save much time and effort in planning if we accommodate some notion of these er-
rors in our optimization. A number of techniques for such optimization have been
proposed: oblivious routing [8], and Valiant network design [70, 71]. These papers
present methods to design a network and/or its routing so that it will work well for
any arbitrary traffic matrix. However, this is perhaps goingtoo far. In most cases we
do have some information about possible traffic whose use is bound to improve our
network design.

A simple approach is to generate a series of possible traffic matrices by adding
random noise to our predicted matrix, i.e., by takingxi = x+ei, for i = 1,2, . . . ,M.
Where sufficient historical data exists, the noise termsei should be generated in
such a way as to model the prediction errors. We can then optimize against the set
of TMs, i.e.,

minimize ∑
e∈E

αeI(ce > 0)+ γce

such thatAxi ≤ λc, ∀i = 1,2, . . . ,M.
(1.29)

Once again this can increase the number of constraints dramatically, particularly in
combination with reliability constraints, unless we realize that again many of these
constraints will be redundant, and can be pruned by preprocessing.

The above approach is somewhat naive. The size of the set of TMs to use is
not obvious. Also we lack guidance about the choice we shouldmake forλ . In
principle, we already accomodate variations explicitly inthe above optimization
and so we might expectλ = 1. However, as before we needλ < 1 to accomodate
inter-measurement time interval variations in traffic, though the choice should be
different than in past problems.

Moreover, there may be better robust optimization strategies that can be applied
in the future. For instance, robust optimization has been applied to the traffic engi-
neering problem in [66], where the authors introduce the idea of COPE (Common-
case Optimization with a Penalty Envelope) where the goal isto find the optimal
routing for a predicted TM, and to ensure that the routing will not be “too bad” if
there are errors in the prediction.

1.6.4 Sensitivity Analysis

Even where we believe that our optimization approach is robust, we must test this
hypothesis. We can do so by performing a sensitivity analysis. The standard ap-
proach in such an analysis is to vary the inputs and examine the impact on the
outputs. We can vary each possible input to detect robustness to errors in this input,
though the most obvious to test is sensitivity to variationsin the underlying traf-
fic matrix. We can test such sensitivity by considering the link loads under a set of
TMs generated, as before, by adding prediction errors errors, i.e.,xi = x + ei , for
i = 1,2, . . . ,M, and then simply calculating the link loadsyi = Axi. There is an obvi-
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ous relationship to robust optimization, in that we should not be testing against the
same set of matrices against which we optimized. Moreover, in sensitivity analysis
it is common to vary the size of the errors. However, simple linear algebra allows us
to reduce the problem to a fixed load componenty = Ax and a variable component
wi = Aei , which scales linearly with the size of the errors, and whichcan be used to
see the impact of errors in the TM directly.

1.7 Summary

“Reliability, reliability, reliability” is the mantra of good network operators. At-
taining reliability costs money, but few companies can afford to waste millions of
dollars on an inefficient network. This chapter is aimed at demonstrating how we
can use robust network planning to attain efficient but reliable networks, despite the
imprecision of measurements, uncertainties of predictions, and general vagaries of
the Internet.

Reliability should mean more than connectivity. Network performance measured
in packet delay or loss rates is becoming an important metricfor customers deciding
between operators. Network design for reliability has to account for possible con-
gestion caused by link failures. In this chapter we considermethods for designing
networks where performance is treated as part of reliability.

The methodology proposed here is built around a cyclic approach to network
design exemplified in Figure 1.1. The process ofmeasure→ analyze/predict→
control → validate should not end, but rather, validation measurements are fed
back into the process so that we can start again. In this way, we attain some measure
of robustness to the potential errors in the process. However, the planning horizon
for network design is still quite long (typically several months) and so a combination
of techniques such as traffic engineering are used at different time scales to ensure
robustness to failures in predicted behavior. It is the combination of this range of
techniques that provides a truly robust network design methodology.
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