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1.1 Introduction

Building a network encompasses many tasks: from netwonkrjitg to hardware
installation and configuration, to ongoing maintenancehis chapter we focus on
the process ofietwork planninglt is possible (though not always wise) to design a
small network by eye, but automated techniques are needédeaesign of large
networks. The complexity of such networks means that anyhtad design will
suffer from unacceptable performance, reliability andfst penalties.

Network planning involves a series of quantitative taskeasuring the current
network traffic and the network itself; predicting futuretwerk demands; deter-
mining the optimal allocation of resources to meet a set alg@nd validating the
implementation. A simple example is capacity planningidieg the future capac-
ities of links in order to carry forecast traffic loads, whifénimizing the network
cost. Other examples include traffic engineering (balapads across our exist-
ing network) and choosing the locations of Points-of-Pnes€PoPs) though we do
not consider this latter problem in detail in this chaptecaaese of its dependence
on economic and demographic concerns rather than thosevedriéng.

Many academic papers about these topics focus on indivicrabonents of
network planning: for instance, how to make appropriatesueaments, or on par-
ticular optimization algorithms. In contrast, in this chepwe will take a system
view. We will present each part as a component of a largeesysff network plan-
ning. In the process of describing how the various companaimetwork planning
interrelate, we observe several recurring themes:

1. Internet measurements are of varying qualltigey are often imperfect orincom-
plete and can contain errors or ambiguities. Measureméptdd not be taken
at face value, but need to be continually recalibrated [g8hat we have some
understanding of the errors, and can take them into accawsubsequent pro-
cessing. We will describe common measurement strateg®sation 1.2.
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2. Analysis and Modellingf data can allow us to estimate and predict otherwise
unmeasurable quantities. However, in the words of Box araphBr, “Essentially,
all models are wrong, but some are useful” [9]. We must beicaatly concerned
with the quality of model based predictions. In particulamust consider where
they apply, and the consequences of using an inaccuratd rdod@mber of key
traffic models are described in Section 1.3, and their usesidigtion is described
in Section 1.4.

3. Decisions based on quantitative data are at best as goodaasittput data, but
can be worseThe quality of input data and resulting predictions are alaig,
and this can have consequences for the type of planning ggseseve can apply.
Numerical techniques that are sensitive to such errorsasuitable for network
engineering. Discussion of robust, quantitative netwarfieeering is the main
consideration of Sections 1.5 and 1.6.

Noting all of the above, it should not be surprising that ausilbdesign process
requires validation. The strategy of “set and forget” is viable in today’s rapidly
changing networking environment. The errors in initial si@@ments, predictions,
and the possibility for mistakes in deployment mean that eednto test whether
the implementation of our plan has achieved our goals.

Moreover, actions taken at one level of operations may impters. For ex-
ample, Qiuet al. [51] noted that attempts to balance network loads by changin
routing can cause higher-layer adaptive mechanisms suckieaky networks to
change their decisions. These higher-level changes edfffict leading to a change
of the circumstances which originally lead us to reroutffitra

Thus the process aheasure—analyze/predict—control—validate should not
stop. Once we complete this process the cycle begins agéim,owr validation
measurements feeding back into the process as the inpuntdforeixt round of net-
work planning, as illustrated in Figure 1.1. This cycle a#oour planning process
to correct problems, leading to a robust process.

[ measurement

[ decision/control ]4 ' analysis/prediction ]

Fig. 1.1 Robust network planning is cyclic.
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In many ways this resembles the more formal feedback useohitnal systems,
though robust planning involves a range of tasks not tylyicabdelled in formal
control-theory. For instance, the lead times for deployiatyvork components such
as new routers are still quite long. It can take months talhstonfigure and test
new equipment when done methodically. Even customersioglaccess facilities
can experience relatively long intervals from order to\dsly, despite the obvious
benefits to both parties of a quick startup. So if our netwdak s incorrect, we
cannot wait for the planning cycle to complete to redresptioblem.

We need processes where the cycle time is shorter. It isveiatsimple to
reroute traffic across a network. It usually requires onlyakrohanges to router
configurations, and so can be done from day to day (or eveerfdstutomated).
Rebalancing traffic load in the short term — in the interimdsefthe network ca-
pacities can be physically changed — can alleviate congestiused by failures of
traffic predictions. This process is callgdffic engineering

Another aspect of robust planning is incorporation of k&lity analysis. Internet
switches and routers fail from time to time, and must somesitne removed from
service for maintenance. The links connecting routers ke susceptible to fail-
ures, given their vulnerability to natural or man-made dent (the canonical exam-
ple is the careless back-hoe driver). Most network manggarsfor the possibility
of node or link failures by including redundant routers ainétg in their network.
A network failure typically results in traffic being rerodteising these redundant
pathways. Often, however, network engineers do not plaonverloads that might
occur as a result of the rerouted traffic. Again, we need astoplanning process
that takes into account the potential failure loads. We ttadl approacmetwork
reliability analysis

We organize this chapter around the key steps in networkapign\We first con-
sider the standard network measurements that are avaitatdg. Their character-
istics determine much of what we can accomplish in netwodhiping. We then
consider models and predictions, and then finally the psasegsed in making de-
cisions, and controlling our network. As noted, robust plag does not stop there,
we must continue to monitor our network, but there are a numbadditional steps
we can perform in order to achieve a robust network plan andomsider them in
the final section of this chapter.

The focus of this chapter is backbone networks. Though matheaechniques
described here remain applicable to access networks, dnei@number of critical
differences. For instance, access network traffic is ofeagbursty, and this affects
the approaches we should adopt for prediction and capdeityjing. Nevertheless,
the fundamental ideas of robust planning that we discussreanain valid.
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1.2 Standard network measurements

Internet measurements are considered in more detail int€tsap0 and 11, but a
significant factor in network planning is the type of measueats available, and
so we need some planning-specific discussion. In principtegossible to collect
extremely good data, but in practice the measurements ga fldwed, and the
nature of the flaws are important when considering how to hiselata.

The traffic data we might like to collect is a packet trace sisting of a record of
all packets on a subsection of a network along with timestariipere are various
mechanisms for collecting such a trace, for instance, pigaisplitter into an optical
fiber, using a monitor port on a router, or simply runntagdump on one of the
hosts on a shared network segment. A packet trace gives abthk information
we could possibly need but is prohibitively expensive atgbale we require for
planning. The problem with a packet trace (apart from the abistalling dedi-
cated devices) is that the amount of data involved can beveous, for example, on
an OC48 (2.5 Gbps) link, one might collect more than a tembydata per hour.
More importantly, a packet trace is overkill. For planning don’t need such detail,
but we do need good coverage of the whole network. Packetsti@e only used on
lower speed networks, or for specific studies of larger ndtaio

There are several approaches we can use to reduce data teamaocageable
amount. Filtering, so that we view only a segment of the tg#ay the HTTP traf-
fic) is useful for some tasks, but not planning. A more usefyraach is aggrega-
tion, where we only store records for some aggregated vedithe traffic, thereby
reducing the number of such records needed. A common fornggrfegation is
at the flow-level where we aggregate the traffic through sooamencon character-
istics. The definition of “flow” depends on the keys used fogragation, but we
mean here flows aggregated by the five-tuple formed from IRceaand destination
address, TCP port numbers, and protocol number. Flow ddypiisally collected
within some time frame, for instance, 15 minutes periodsavghmore, flow level
collection is often a feature of a router, and so doesn’tirecadditional measure-
ment infrastructure other than the Network Managemenid@®tgNMS) at which
the data is stored. However, the volume of data can still tggeléone network under
study collected 500 GB of data per day), and the collectiacgss may impact the
performance of the router.

As a result, flow-level data is often collected in conjunctwith a third method
for data reduction: sampling. Sampling can be used bothrbé¢fe flows are cre-
ated, and afterwards. Prior to flow aggregation, samplingsél at rates of around
1:100 to 1:500 packets. That is, less than 1% of packets arpled. This has the
advantage that less processing is required to constructréoards (reducing the
load on the router collecting the flows) and typically fewemflrecords will be
created (reducing memory and data transmission requiresinétowever, sampling
prior to flow aggregation does have flaws, most obviouslydses the data col-
lection towards long flows. These flows (involving many paskare much more
likely to be sampled than short flows. However, this has yavekn seen as a prob-
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lem in network planning where we are not typically concerwédi the flow length
distribution.

Sampling can also be used after flow aggregation to redudesthemission and
storage requirements for such data. The degree of sammimgndls on the desired
tradeoff between accuracy of measurements, and storageewgnts for the data.
Good statistical approaches for this sampling, and forestng the resulting ac-
curacy of the samples are available [16, 17], though, addretteve these are pre
dominantly aimed at preserving details such as flow-lengtnibdutions which are
largely inconsequential for the type of planning discudse, so sampling prior to
flow construction is often sufficient for planning.

Of more importance here is the fact that any type of samplitgduces errors
into measurements. Any large-scale flow archives mustweginificant sampling,
and so will contain errors.

An alternative to flow-level data, is data collected via tlima@e Network Man-
agement Protocol (SNMP) [39]. Its advantage over flow-lelagh collection is that
it is more widely supported, and less vendor specific. Howekie data provided is
less detailed. SNMP allows an NMS to poll MIBs (Managemefdidmation Bases)
at routers. Routers maintain a number of counters in the&sMrhe widely sup-
ported MIB-1I contains counters of the number of packetslaytds transmitted and
received at each interface of a router. In effect, we cantsedraffic on each link
of a network. In contrast to flow-level data, SNMP can only k&le volumes, not
where the traffic is going.

SNMP has a number of other issues with regard to data caleciihe polling
mechanism typically uses UDP (the User Datagram Protoaal}, SNMP agents
are given low priority at routers. Hence SNMP measurememtsat reliable, and
it is difficult to ensure that we obtain uniformly sampled érseries. The result is
missing and error-prone data.

Flow-level data contains only flow start and stop times, regails of packet ar-
rivals, and typically SNMP is collected at 5 minute intes/alhe limit on timescale
of both data-sets is important in network planning. We cdy sae average traffic
rates over these periods, not the variations inside thésesal. However, conges-
tion and subsequent packet loss often occur on much shionesdales. The result
is that such average measurements must always be used véthTgpically some
overbuild of capacity is required to account for the sulesival variations in traf-
fic. The exact overbuild will depend on the network in questiand has typically
been derived empirically through ongoing performance aaffit measurements.
Values are usually fairly conservative in major backbomssilting in apparent un-
derutilization (though this term is unfair as it concernsrage utilizations not peak
loads), and more aggressive in smaller networks.

In addition to traffic data, network planning requires a detbview of any ex-
isting network. We need to know

e the (layer 3) topology (the locations of, and the links begweouters);

¢ the network routing policies (for instance link weights istertest-path protocol,
areas in protocols such as OSPF, and BGP policies wherephatititer-domain
links exist); and
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e the mapping between current layer 3 links and physicalifes|(WDM equip-
ment and optical fibers), and the details of the availablesiglay network facili-
ties and their associated costs.

The topology and routing data is principally needed to allswmo map traffic to
links. The mapping is usually expressed throughrthging matrix Formally,A =
{Air } is the matrix defined by

F, if traffic for r traverses link
Air — { s (11)

0, otherwise

whereF; is the fraction of traffic from source/destination peit (s,d) that tra-
verses linki. A network withN nodes, andl links will have anL x N(N — 1) routing
matrix.

Network data is also used to assess how changes in one commythaffect the
network (e.g., how changes in OSPF link weights will impatt loads); determine
shared risk-of-failure between links; and determine hoviniprove our network
incrementally without completely rebuilding it in each ptang cycle. The latter is
an important point because although it might be preferabietiuild a network from
scratch, the capital value of legacy equipment usuallygts/this option, except at
rare intervals.

For a small, static network, the network data may be maiathin a database,
however, best practice for large, complex, or dynamic nete/@s to use tools to
extract the network structure directly from the networkefinare several meth-
ods available for discovering this information. SNMP caavide this information
through the use of various vendor tools (HP Openview, or@CM, for example),
but it is not the most efficient approach. A preferable apghdar finding layer 3
information is to parse the configuration files of routeredily, for instance as de-
scribed in [22, 24]. The technique has been applied in a nuofoeetworks [5, 38].
The advantages of using configuration files are manifold.d#tail of information
available is unparalleled in other data sources. For igstame can see details of the
links (such as their composition should a single logicdt lie composed of more
than one physical link).

The other major approach for garnering topology and routifigrmation is to
use a route monitor. Internet routing is built on top of dmited computations
supported by routing protocols. The distribution of thesetgcols is often con-
sidered a critical component in ensuring reliability of fmtocols in the face of
network failures. The distribution also introduces a homktbpology discovery. If
any router must be able to build its routing table from thetirmuinformation dis-
tributed through these protocols, then it must have conalide information about
the network topology. Hence, we can place a dummy routetti@metwork to col-
lect such information. Such routing monitors have beenalega widely over the
last few years. Their advantage is they can provide an ugate-dynamic view. Ex-
amples of such monitors exist for OSPF [62, 63], and 1S-IS0], as well as for
BGP (the Border Gateway Protocol) [2, 3].

Page: 6 job: chapter macro: svmult.cls date/time: 12-Jun-2 009/10:36



1 Robust Network Planning 7

1.3 Analysis and Modeling of Internet Traffic

1.3.1 Traffic Matrices

We will now consider the analysis and modelling of Interregtedin particular traffic
data. When considering inputs to network planning, we feadjy return to the topic
of traffic matrices These are the measurements needed for many network pannin
tasks, and thus the natural structure around which we ghaflé our analysis.

A Traffic Matrix (TM) describes the amount of traffic (the nuertof packets or
more commonly bytes) transmitted from one point in a networ&nother during
some time interval, and they are naturally represented byeeidimensional data
structureT; (i, j) which represents the traffic volume (in bytes or packetshfroo
j during a time intervalt,t + At). The locations and j are generally considered
to be physical geographic locations makingnd j spatial variables. However, in
the Internet, it is common to associatend j with logical structures related to the
address structure of the Internet, i.e. IP addresses, orat@roupings of such by
common prefix corresponding to a subnet.

Origin/Destination Matrices: One natural approach to describe traffic matrices is
with respect to traffic volumes between IP addresses or pefWe refer to this
as an origin/destination TM because the IP addresses egqithe closest approxi-
mation we have for the end-points of the network (though HpféXies, firewalls,
and NAT and other middle-boxes may be obscuring the trugesihd semantics).
IPv4 admits nearly & potential addresses, so we cannot describe the full matrix a
this level of granularity. Typically, such a traffic matrixowld be aggregated into
blocks of IP addresses (often using routing prefixes to férenblocks as these are
natural units for the control of traffic). The origin/desttion matrix is our ideal
input for many network planning tasks, but the Internet iglenap of many con-
nected networks. Any one network operator only sees thfictirried by its own
network. This reduced visibility means that our observedfitr matrix is only a
segment of the real network traffic. So we can’t really obséne origin/destination
TM. Instead we typically observe the ingress/egress traféitrix.

Ingress/Egress vs Origin/Destination:A more practical TM, the ingress/egress
TM provides traffic volumes from ingress link to egress ligkass a single network.
Note that networks often interconnect at multiple pointse Thoice of which route
to use for egress from a network can profoundly change the@af ingress/egress
TMs, so these may have quite different properties to their@dgstination matrix.
Forming an ingress/egress TM from an origin/destination ifiWblves a simple
mapping of prefixes to ingress/egress locations in a netwarkin practice this
mapping can be difficult unless we monitor traffic as it enthesnetwork. We can
infer egress points of traffic using the routing data desctibbove, but inferring
ingress is more difficult [22, 23], so it is better to meastnis tirectly.

Spatial Granularity of Traffic Matrices: As we have started to see with ori-
gin/destination traffic matrices, we can measure them aowarevels of granu-
larity (or resolution). The same is true of ingress/egreds.TAt the finest level,
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we measure traffic per ingress/egress link (or interfacewéver, it is common
to aggregate this data to the ingress/egress router. Weftmngyoup routers into
larger subgroups. A common such group is a Point-of-Pres@aP), though there
are other sub- and super- groupings (e.g. topologicallyvedent edge routers are
sometimes grouped, or we may form a regional group). GivesetsS andD of
locations, may simply aggregate a TM across these by taking

T(SD) = gsngTt(i, j)- (1.2)

Typical large networks might have 10’s of PoPs, and 100’aters, and so such
TMs are of a more workable size. In addition, as we aggregatéctinto larger
groupings, statistical multiplexing reduces the relatraeiance of the traffic and
allows us to perform better estimates of traffic propertigshsas the mean and
variance.

Temporal Granularity of Traffic Matrices: We cannot make instantaneous mea-
surements of a traffic matrix. All such observations occler@ome time interval
[t,t4At). It would be useful to make the intervat smaller (for instance for detect-
ing anomalies), but typically we face a tradeoff againstetrers and uncertainties
in our measurements. A longer time interval allows more fagag-out” of errors,
and minimizes the impact of missing data. The best choicena interval for TMs
is typically determined by the task at hand, and the netwadeu study, but a com-
mon choice is a one hour interval. In addition to being easilgerstood by human
operators, this interval integrates enough SNMP or flovelldata to reduce the im-
pact of (typical) missing data and errors, while allowindastill observe important
diurnal patterns in the traffic.

1.3.2 Patterns in traffic

It is useful to have some understanding of the typical pasteve see in network
traffic. Such patterns are only visible at a reasonable [Evafjgregation (otherwise
random temporal variation dominates our view of the traffacit for high degrees
of aggregation (such as router-to-router traffic matricesadarge backbone net-
work) the pattern can be very regular. There are two mainstgeatterns that have
been observed: patterns across time, and patterns in thialsteucture. Each is
discussed below.

Temporal Patterns: Internet traffic has been observed to follow both daily (daly
and weekly cycles [33-35,57,65]. The origin of these cyidegiite intuitive. They
arise because most Internet traffic is currently generagelduimans whose activ-
ities follow such cycles. Typical examples are shown in Fgul.2 and 1.3. Fig-
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ure 1.2 shows a RRD Tool grapbf the traffic on a link of the Australian Academic
Research Network (AARNet). Figure 1.3 shows the total waffitering AT&T'’s
North American backbone network at a Point of Presence (Be#t)two consecu-
tive weeks in May 2001. The figure illustrates the daily an@khg variations in the
traffic by overlaying the traffic from the two weeks. The stmik similarity between
traffic patterns from week to week is a reflection of the higreleof aggregation
that we see in a major backbone network.

204 1
15.3 M
102N
5.1 1

EBitz per Second

Zat 3un Man Tue Wed Thu Fri Sat 3un

Fig. 1.2 Traffic on one link in the Australian Academic Research Nek{&ARNet) for just over
one week. The two curves show traffic in either direction gltre link.

Traffic: 07-May-2001 (GMT) Traffic: 08-May-2001 (GMT)

traffic rate
traffic rate

—— start 07-May-2001 —— start 08—-May-2001
- - - the following week - - - the following week
Mon Tue Wed Thu Fri Sat Sun Mon 09:00 12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00

time (GMT)

Fig. 1.3 Total traffic into a region over two consecutive weeks. Thigddme is the first week’s
data (starting on May 7th), and the dashed line shows thendegeek’s data. The second figure
zooms in on the shaded region of the first.

The observation of cycles in traffic is not new. For many yehey have been
seen in telephony [13]. Typically telephone service cagaglanning has been
based on a “busy hour”, i.e., the hour of the day that has thkdsi traffic. The
time of the busy hour depends on the application and custbamse. Access net-
works typically have many domestic consumers, and conselyueir busy hour

1 RRDTool (the Round Robin Database tool) [47] and its presemeMRTG (the Multi-Router
Traffic Grapher [46]) are perhaps the most common tools fecting and displaying SNMP

traffic data.
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is in the evening when people are at home. On the other hamtugy hour of busi-

ness customers is typically during the day. Obviously, taoaes have an effect on
the structure of the diurnal cycle in traffic, and so netwarith a wide geographic

dispersion may experience different busy hours on diffigrarts of their network.

In addition to cyclical patterns, Internet traffic has shostrong growth over
many years [45]. This long-term trend has often been appratdéd by exponential
growth, although care must be taken because sometimes stitlates have been
based on poor (short or erratic) data [45]. Long-term trestasuld be estimated
from multiple years of carefully collected data.

One public example is the data collected by the AustraliareBu of Statistics
(ABS)? who have collected historical data on Australian ISP trdéftanany years.
Figure 1.4 shows Australia’s network traffic in petabytes guearter with a log-y
axis. Exponential growth appears as a straight line on tygtaph, so we can ob-
tain simple predictions of traffic growth through linearreggsion. The figure shows
such a prediction based on pre-2005 data. It is interestingte that the most recent
data point does not, as one might assume without analypiegent a significant
drop in traffic growth. Relative to the long-term data the fasint simply represents
a reversion to the long-term growth from rather exceptidreffic volumes over
2007. We will discuss such prediction in more detail in thiéofeing sections.

10

traffic (PB/quarter)
=
OH
a\
AY
\
AY
\
\

10" f

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Fig. 1.4 ABS traffic measurements showing Australian Internet traffith an exponential fit to
the data from 2000-2005. Data is shown by '0’, and the fit bystnaight line. Note that the line
continuing past 2005 is a prediction based on the pre-2065 slaowing also the 95th percentile
confidence bounds for the predictions.

Standard time-series analysis [10] can be used to build aehafdraffic con-
taining long-term trends, cyclical components (ofteneddleasonatomponents in
other contexts) and random fluctuations. We will use the¥falhg notation here:

2 www.abs.gov.au
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S(t) = seasonal (cyclical) component (1.3)
L(t) = long-term trend (1.4)
W(t) = random fluctuations (1.5)

The seasonal component is periodic, iS¢t + kTs) = S(t), for all integers, where
Ts is the period (which is either 24 hours or 1 week). Before we a@ansider how
to estimate the seasonal (and trend) components of thetrafimust model these
component$ At the most basic level, consider the traffic to consist of vem-
ponents, a time varying (but deterministic) memaft) and a stochastic component
W(t). At this level we could construct the traffic by addition or Itiplication of
these components (both methods are used in econometriceasdscdata). How-
ever, in traffic data, a more appropriate model [43,56] is

X(t) = m(t) + /am(t) W(t), (1.6)

wherea is called thepeakednessf the traffic,W(t) is a stochastic process with
zero mean, and unit variance, axd) represents the average rate of some traffic
(say a particular traffic matrix element) at tirheMore highly aggregated traffic is
smoother, and consequently would have a smaller valua.f®he reason for this
choice of model lies in the way network traffic behaves whegregated. When
multiple flows are aggregated onto a non-congested link,heeld expect them to
obey the same model (though perhaps with different paras)e@ur model has
this property: for instance, take traffic streamsq with meanm;, peakednesas;,
and stochastic components which are independent realizatif a (zero mean, unit
variance) Gaussian process. The multiplexed traffic stieam

x:imfimw. (1.7)

The mean of the new processris= SN ; m;, and the peakedness (derived from
the variance) isa = n%zi’\‘:la;m, which is a weighted average of the component
peakednesses. The relative variance becomes

Vi = Var{x} /E{x} %ia;m. (1.8)

If we take identical streams, then the relative varianceeteses as we multiplex
more together, which is to be expected. The result is thatetwark traffic the
level of aggregation is important in determining the relatariance: more highly
aggregated traffic exhibits less random behavior. The dafgure 1.3 from AT&T
shows an aggregate of a very large number of customers (ae €aP of one of
North America’s largest networks). The consequence iswigatan see the traffic

3 The reader should beware of methods which do not explicithgenthe data, because in these
methods there is often an implicit model.
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is very smooth. In contrast the traffic shown in Figure 1.2 ichmless aggregated,
and shows more random fluctuations.

The model above is not perfect (none are) but it is useful b (i) allows
us to calculate variances for aggregated traffic streamscimnaistent way and to
use these when planning our network, and (ii) its parameterselatively easy to
measure, and therefore to use in traffic analysis. To do seever, we find it useful
to spilt the meamm(t) into the cyclic component (which we dendg)) and the
long-term trend_(t) by taking the product

m(t) = L(t)S(t). (1.9)

We combine the two components through a product becausesasvérall load
increases the range of variation in the size of cycles alseases. When estimating
parameters of our models, it is important to allow for unlsn@nomalous events,
forinstance, a Denial of Service (DoS) attack. These e\aetgare (we hope), but it
is important to separate them from the normal traffic. Suaingecan sometimes be
very large, but we don't plan network capacity to carry Da@eks! The network is
planned around the paying customers. We separate them loglimg an impulsive
term,1(t), in the model, so that the complete model is

X(t) = L(t)S(t) + /aL(t)S(t) W(t) + 1 (t). (1.10)

We will further discuss this model in Section 1.4, where w# eonsider how to
estimate its parameters, and to use it in prediction.

Spatial Patterns: Temporal models are adequate for many applications: ftars
where we consider dimensioning of a single bottleneck lpgciiaps in the design
of an access network). However, spatial patterns in traffiwigde us with addition
planning capabilities. For instance, if two traffic souraesactive at different times,
then clearly we can carry them both with less capacity thémei§ activate simulta-
neously.

Spatial patterns refer to the structure of a Traffic MatridTat a single time
interval. It is common that TM elements are strongly cotetlebecause they show
similar diurnal (and weekly) patterns. For example, in adgpnetwork (without
wide geographic distribution) one will find that the busy hsualmost the same for
all elements of the TM, but there is additional structure.

For a start, TMs often come from skewed distributions. A camraxample is
where the distribution follows a rough 80-20 law (80% of fiafs generated by
the largest 20% of TM elements). Similar distributions haften been observed,
though often even more skewed: for instance 90-10 laws a@rermcmmmon. How-
ever the distribution is not “heavy-tailed”. Observed digitions have shown a
lighter tail than the log-normal distribution [55]. Conseaptly, traffic matrix work
often concentrates on these larger flows, but traditiorshér than heavy-tailed)
statistical techniques are still applicable.

Another simple feature one might naively expect of TMs — syetrjn — is
not present. Internet routing is naturally asymmetric, sagpplication traffic (a
large amount of traffic still follows a client-server modehieh results in strongly
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asymmetric traffic). Hence, the matrix will not (generalbg symmetric [21], i.e.,
T(0.9) # T ().

We observe some additional structure in these matricessifiy@est model that
describes some of the observed structure igytia@ity model In network applica-
tions, gravity models have been used to model the volumelgbliene calls in a
network [31]. Gravity models take their name from Newtordslof gravitation,
and commonly used by social scientists to model the moveoigrgople, goods or
information between geographic areas [49, 50, 64]. In Neisttaw of gravitation
the force is proportional to the product of the masses ofwtlwedbjects divided by
the distance squared. Similarly, in gravity models foriatéions between cities, the
relative strength of the interaction might be modeled apg@rional to the product
of the cities’ populations, so a general formulation of asgyamodel is given by

. A
T(I,J)=R']cij L

(1.11)

whereR; represents theepulsivefactors that are associated with leaving frém
A; represents thattractivefactors that are associated with goingjtand fj; is a
friction factor fromi to j. The gravity model was first used in the context of Internet
traffic matrices in [68] where we can naturally interpret tepulsion factolR as
the volume of incoming traffic at location and the attractivity factoA; as the
outgoing traffic volume at locatiop The friction matrix( fjj) encodes the locality
information specific to different source-destination paitowever, as locality is not
as large a factor in Internet traffic as in the transport ofgitgl goods, itis common
to assumefj; = const The resulting gravity model simply states that the traffic
exchanged between locations is proportional to the voluenésring and exiting at
those locations.

Formally, letT™"(i) andT°!Y(j) denote the total traffic that enters the network via
i, and exits viaj, respectively. The gravity model can then be computed by

T(,]) = 7Tm(i¥0?m(j), (1.12)

whereT™! is the total traffic across the network. Implicitly, this neddelies on a
conservation assumption, i.e., traffic is neither creatediestroyed in the network
so thafT™® = 5, T"(k) = 3, T°"(k). The assumption may be violated, for instance
when congestion causes packet loss. However, in most baeklbongestion is kept
low, and so the assumption is reasonable.

In the form just described, the gravity model has distinetitations. For in-
stance, real traffic matrices may have non-constan{perhaps as a result of dif-
ferent time-zones). Moreover, even if an origin destimati@ffic matrix matches
the gravity model well, the ingress/egress TM may be sydtieaily distorted [7].
Typically, networks use hot-potato routing, i.e., they ab® the egress point clos-
est to the ingress point, and this results in a systematiortien of ingress/egress
traffic matrices away from the simple gravity model. Thessaltions and others
related to the asymmetry of traffic and distance sensitivify be incorporated in
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generalizations of the gravity model where sufficient dadate to measure such
deviations [13, 21, 68].

The use of temporal patterns in planning is relatively obsidhe use of spatial
patterns such as the gravity model is more subtle. The $g#tigture gives us the
capability to fill in missing values of the traffic matrix whenr data is not perfect.
Hence we can still plan our network, even in the extreme cdsrewve have no
data at all.

1.3.3 Application Profile

We have so far discussed network traffic along two dimensitmstemporal and
spatial. There is a third aspect of traffic to consider: itligption breakdown, or
profile. Common applications on the Internet are email, wedwbing (and other
server based interactions), peer-to-peer file transfédgovand voice. Each may
have a different traffic matrix, and as some networks movetdw differentiated
Quality of Service (QoS) for different classes of traffic, may have to plan net-
works based on these different traffic matrices.

Even where differentiated service is not going to be pravjdeknowledge of the
application classes in our network can be very useful. Fstaimce

¢ voice traffic is less variable than data, and so can requssedgerhead for sub-
measurement interval variations;

e peer-to-peer applications typically generate more symioteaffic than web traf-
fic, and so downstream capacity (towards customer eyelmlik@ly to be more
balanced when peer-to-peer applications dominate;

e we may be planning to eliminate some types of traffic in futoeéwvorks (e.qg.
peer-to-peer traffic has often been considered to violatécgeagreements that
prohibit running servers).

The breakdown of traffic on a network is not trivial to measue noted, typi-
cal flow level data collection includes TCP/UDP port numbarsl these are often
associated to applications using the IANA (Internet Assijumbers Authority)
list of registered porfs However, the port numbers used today are often associated
with incorrect applications because:

e Ports are not defined with IANA for all applications, e.g. $opeer-to-peer ap-
plications.

e An application may use ports other than its well-known péotsircumvent
access control restrictions,e.g., non-privileged ustenaun WWW servers on
ports other than port 80, which is restricted to privilegedns on most operating
systems, while port 80 is often used for other applicatitimar( HTTP) in order
to work around firewalls.

4 http://www.iana.org/assignments/port-numbers
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e In some cases server ports are dynamically allocated asdeEdr example,
FTP allows the dynamic negotiation of the server port useth®@data transfer.
This server port is negotiated on an initial TCP connectitiictvis established
using the well-known FTP control port, but which would appas a separate
flow.

e Malicious traffic (e.g. DoS attacks) can generate a largenaelof bogus traffic
that should not be associated with the applications thahally use the affected
ports.

In addition, there are some incorrect implementations ofquols, and ambiguous
port assignments that complicate the problem. Better aqmbwes to classification of
traffic exist (e.g. [59]), but are not always implemented ommercial measurement
systems.

Application profiles can be quite complex. Typical Interpetviders will see
some hundreds of different applications. However, theeehao major simplifica-
tions we can often perform. The first is a clustering of agians into classes. QoS
sometimes forms natural classes (e.g. real-time vs bahster classes), but regard-
less we can often group many applications into similarlyctrred classes, e.g., we
can group a number of protocols (IMAP, POP, SMTP, ...) inte olass “email”.
Common groupings are shown in Table 1.1, along with exenggplications.

Class example applications
bulk-data FTP, FTP-Data
database acceg3racle, MySQL

email IMAP, POP, SMTP
information finger, CDDBP, NTP
interactive SSH, Telnet
measurement [SNMP, ICMP, Netflow
network contro|BGP, OSPF, DHCP, RSVP, DNIS
news NNTP

online gaming |Quake, Everquest
peer-to-peer |Kazaa, Bit-torrent
voice over IP  [SIP, Skype

www HTTP, HTTPS

Table 1.1 Typical application classes grouped by typical use.

There may be a larger number of application classes, and tftre is a sig-
nificant group of unknown applications, but a typical apgiion profile is highly
skewed. Again, it is common to see 80-20 or 90-10 rules. Isdloases, it is com-
mon to focus attention on those applications that gendnatenbst traffic, reducing
the complexity of the profile.

However, care must be taken because some applications \ghiodrate rela-
tively little traffic on average may be considered very intpot, and/or may gener-
ate high volumes of traffic for short bursts. There are ségeich examples in enter-
prise networks, for instance, consider a CEQO’s once-a-weekany-wide broad-
cast, or nightly backups. Both generate a large amount fifctraut in a relative
short-time interval, so their proportion of the overallwetk traffic may be small.
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More generally, much of the control-plane traffic (e.g. megtprotocol traffic) in
networks is relatively low volume, but of critical importzen

1.4 Prediction

There are two common scenarios for network planning:

1. incremental planning for network evolution,
2. green-fields planning.

In the first case, we have an existing network. We can measurerrent traffic, and
extrapolate trends to predict future growth. In combinatigth business data, quite
accurate assessments of future traffic are possible. Tiypitamporal models are
sufficient for incremental network planning, though betésults might be possible
with recently developed full spatio-temporal models [52].

In green-fields planning, we have the advantage that we d@reomstrained in
our network design. We may start from a clean-slate, witltoanterning ourselves
with a legacy network. However, in such planning we have nasueements on
which to base predictions. All is not lost, however, as we ragpgloit the spatial
properties of traffic matrices in order to obtain predictiowe discuss each of these
cases below.

There are other scenarios of concern to the network plaRoeexample

e Network mergers, for instance when two companies merge ahsdegjuently
combine their networks.

e Network migrations, for instance as significant servicehsas voice or frame-
relay are migrated to operate on a shared backbone.

e Addition (or loss) of a large customer (say a broadband aqoes/ider, a major
content provider, or a hosting center).

e A change in inter-domain routing relationships. For ins&rthe conversion of
a customer to a peer would mean that traffic no longer trafrsits that peer,
altering traffic patterns.

The impact of these types of event is obviously dependenhendlative volume

of the traffic affected. Such events can be particularly ificant for smaller net-
works, but it is not unheard of for them to cause unexpectetbaels on the largest
networks (for instance the migration of an estimated halfien customers from
Excite@home to AT&T in 200%. However, the majority of such cases can be cov-
ered by one or both of the techniques below.

5 http://news.cnet.com/ExciteHome-to-shut-down-ATT-dr ops-bid/
2100-1033_3-276550.html
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1.4.1 Prediction for incremental planning

Incremental planning involves extending, or evolving arent network to meet
changing patterns of demands, or changing goals. The problelves prediction
of future network demands, based on extrapolation of paspeagsent network mea-
surements. The planning problems we encounter are oftestraomed by the fact
that we can make only incremental changes to our networkwe cannot throw
away the existing network and start from a clean slate, hutddirst consider the
problem of making successful traffic predictions.

Obviously, oumplanning horizonthe delay between our planning decisions and
their implementation) is critical. The shorter this horizahe more accurate our
predictions are likely to be, but the horizon is usually deteed by external factors
such as delays between ordering and delivery of equipmesitanhd verification of
equipment, planned maintenance windows, availabilitgofinical staff, and capital
budgeting cycles. These are outside the control of the rm&tplanner, so we treat
the planning horizon as a constant.

The planning horizon also suggests how much historical dat@eded. It is a
good idea to start with historical data extending sevemahping horizons into the
past. Such arecord not only allows better determinatioreofds, but also allows an
assessment of the quality of our prediction process thranglysis of past planning
periods. If such data is unavailable, then we must consigergfields planning (see
Section 1.4.2), though informed by what measurements ai&hble.

Given such a historical record, our primary means for ptetficis temporal
analysis of traffic data. That is, we consider the traffic measents of interest
(often a traffic matrix) as a set of time-series.

However, as noted earlier the more highly we aggregatedyalffe smaller its
relative variance, and the easier it is to work with. As a itgegican be a good idea
to predict traffic at a high level of aggregation, and thenaispatial model to break
it into components. For instance, we might perform prediifor the total traffic
in each region of our network, and then break it into comptsasing the current
traffic matrix percentages, rather than predicting eacmei# of the traffic matrix
separately.

There are many techniques for prediction, we concentraigdrejust one, which
works reasonably for a wide range of traffic, but we shoulcertbait as in all of
the work presented here, the key is not the individual ators but their robust
application through a process of measurement, planningalidhtion.

1.4.1.1 Extracting the long-term trend

We will exploit the previously presented temporal model tiaffic, and note that
the key to providing predictions for use in planning is toiregte the long-term
trend in the data. We could form such an estimate simply byeagging our time-
series over periods of one week (to average away the diundakaekly cycles) and
then performing standard trend analysis. However, knogéex the cycles in traffic
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data is often useful. Sometimes we design networks to gdtisfdemand during a
“busy hour”. More generally though, the busiest hours fdiedént components of
the traffic may not match (particularly in international wetks distributed over
several time-zones), and so we need to plan our network ® $fficient capacity
at all hours of the day or night.

Hence, the approach we present provides the capabilityitoas both the long-
term trend, and the seasonal components of the traffic.dtedlsws an estimate of
the peakedness, providing the ability to estimate thessitzdi variations around the
expected traffic behavior. The method is hardly the onlyiapple time-series algo-
rithm for this type of analysis (for another example see )44t it has the advantage
of being relatively simple. The method is based on a simgjeaiprocessing tool,
theMoving AveragdéMA) filter, which we discuss in detail below.

The moving average can be thought of as a simple low-passdité “passes”
low-frequencies, or long-term behavior, but removes sterh variations. As such
it is ideally suited to extracting the trend in our traffic @adlthough there are many
forms of moving average, we shall restrict our attentiomtogimplest: a rectangular

moving average
S=t+n

M&am%:E%IZM$, (1.13)

wheren is the width of the filter, and 2+ 1 is its length. The length of the filter
must be longer than the period of the cyclic component in oradilter out that
component. Longer filters are often used to allow for averggut of the stochastic
variation as well. The shortest filter we should considerdxiracting the trend
is three times the period, which in Internet traffic data igidglly one week. For
example, given traffic datgt), measured in one hour intervals, we could form our
estimatd:(t) of the trend by taking a filter of length 3 weeks (e.qnA421 = 504=
24 x 7 x 3),i.e., we might také(t) = MA(t; 252) whereMAy is defined in (1.13).

Care must always be taken around the start and end of theWdtan n data
points of the edges the MA filter will be working with incompdedata, and so these
estimates should be discounted in further analysis.

Once we have obtained estimates for the long-term trendanenodel its be-
havior. Over the past decade, the Internet has primarilegspced exponential
growth (for instance see Figure 1.4 or [45]).

L(t) = L(0)e™, (1.14)

whereL(0) is the starting value, anfl is the growth rate. If exponential growth is
suspected the standard approach is to transform the datg s log function so
that we see

logL(t) = logL(0) + Bt, (1.15)

where we can now estimat€0) and3 can be estimated from linear regression of
the observed data. Care should obviously be taken that thiehis reasonable. Re-
gression provides diagnostic statistics to this end, botparisons to other models
(such as a simple linear model) can also be helpful.
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Such a model can be easily extrapolated to provide long-peedtictions of traf-
fic volumes. Standard diagnostics from the regression camltsd used to provide
confidence bounds for the predictions, allowing us to ptefttiest” and “worst”
case scenarios for traffic growth, and an example of suchigiieas is given in
Figure 1.4 using the data from 2000-2004 to estimate theltramd then extrapo-
lating this until 2009. The figure shows the extrapolatedmistic and pessimistic
trend estimates. We can see that actual traffic growth fro8b2D07 was on the
optimistic side of growth, but that in 2008 the measureditrafas again close to
the long-term trend estimate.

This example clearly illustrates that understanding thtemtial variations in our
trend estimate is almost as important as obtaining the estiin the first place. It
also illustrates how instructive historical data can bessegsing appropriate models
and prediction accuracy.

Often, in traffic studies, managers are keen to knowditnbling time the time
it takes traffic to double. This can be easily calculated hiyreging the value of
such thaL (t) = 2L(0), oreft = 2. Again, taking logs we get the doubling time

., 1
t B In2. (1.16)
The Australian data shown in Figure 1.4 has a doubling tin#7Gfdays.

The trend by itself can inform us of growth rate but modellihg cyclic varia-
tions in traffic is also useful. We do this by extending theaapt of moving average
to theseasonal moving averagbut before doing so we broadly remove the long-
term trend from the data (by dividing our measuremetisby L (t)).

1.4.1.2 Extracting the the cyclical component

The goal of a Seasonal Moving Average (SMA) is to extract §@ic component
of our traffic. We knowa priori, the period (typically 7 days) and so the design of
a filter to extract this component is simple. It resembledviideused previously in
that it is an average, but in this case it is an average of meamnts separated in
time by the period. More precisely we form the SMA of the ti@affith the estimated
trend removed, e.g.,

§t) = % NZ:X(t +nTs)/L(t +nTs), (1.17)

whereTsis the period, antll Tsis the length of the filter. In effect the SMA estimates
the traffic volume for each time of day and week as if they wepasate time series.
It can be combined with a short MA filter to provide some adxitil smoothing of
the results if needed.

The advantage of using a SMA as opposed to a straight foreasbsal average
is that the cyclical component of network traffic can changerdime. Using the
SMA allows us to see such variability, while still providirgreasonably stable
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model for extrapolation. There is a nhatural tradeoff betwide length of the SMA,
and the amount of change we allow over time (longer filtersinadlly smooth out
transient changes). Typically, the length of filter desideghends on the planning
horizon under which we are operating. We extrapolate the Sivi¥arious ways,
but the simplest is to repeat the last cycle measured in daridto the future, as
if the cyclical component remained constant into the futtience, when operating
with a short planning horizon (say a week), we can allow matite week to week
variations, and still obtain reasonable predictions, ama dilter length of 3 to 4
cycles is often sufficient. Where our planning horizon isgen(say a year) we
must naturally assume that the week to week variations igyhkcal behavior are
smaller in order to extrapolate, and so we use a much longek, $ivkferably at
least of the order of the length of the planning horizon.

1.4.1.3 Estimating the magnitude of random variations

Once we understand the periodic and trend components afilfie tthe next thing
to capture is the random variation around the mean. Mostieseaif variation used
in capacity planning do not account for the time-varying poment, and so are
limited to busy-hour analysis. In comparison, we now haveehan estimate of
m(t) = L(t)§(t) and so can use (1.6) to estimate the stochastic or randomorenp
of our traffic byz(t) = (x(t) — m(t))/4/M(t). We can now measure the variability
of the random component of the traffic using the variancgf which forms an
estimateafor the traffic’'s peakedness. The estimatordancluding the correction
for bias is given in [58]. Note that it is also important to aegte the impulsive,
anomaly terms from the more typical variations. There areyn@aomaly detection
techniques available (see [67] for a review of a large groupuch algorithms).
These algorithms can be used to select anomalous data fmanisan then be ex-
cluded from the above analysis.

1.4.1.4 From traffic matrix to link loads

Once we have predictions of a TM, we often need to use thesenpuate the link
loads that would result. The standard approach is to wrgd ¥ in vectorized form

X, where the vectox consists of the columns of the TM (at a particular time) stack
one on top of another. The link loagisan then be estimated through the equation

y = AX, (1.18)

whereA is the routing matrix. The equation above can also be extetalproject
observations or predictions of a TM over time into equivalak loads.

Although there are multiple time-series approaches thatbeaused to predict
future behavior (e.g., Holt-Winters [11]), our approacts lhe advantage that it
naturally incorporates multiplexing. As a result, equatft.18) can be extended to
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other aspects of the traffic model. For instance, the vagisuiot independent flows
are additive (the variance of the multiplexed traffic is thenf the variances of the
components), and so the variance of link traffic follows thee relationship, i.e.,

Vy == AVX, (1.19)

wherevy andvy are the variances of the link loads and TM, respectively. #euse
vy to deduce peakedness parameters for the link traffic usimg (1

So far, we have assumed that the network (at least the locatilinks, and the
routing) is static. In reality, part of network planning aives changing the network,
and so the matriA is really a potential variable. When we consider networkpla
ning, A appears implicitly as one of our optimization variableskedwise,A may
change in response to link or router failures.

The reason traffic matrices are so important is that theyirapginciple,invariant
under changes tA. Hence predictions of link loads under the change& @an be
easily made. For example, imagine a traffic engineeringlprolwhere we wish
to balance the load on a network’s internal links more efffett. We will change
routing in the network in order to balance the traffic on limkere effectively. In
doing so, the link loads are not invariant (the whole poirtraffic engineering is to
change these). However the ingress/egress TM is invadadtprojecting this onto
the links (via the routing matrix) will predict the link loadinder proposed routing
changes.

In reality invariance is an approximation. Real TMs are mvariant under all
network changes, for instance, if network capacities a@seh to be too small,
congestion will result. However, the Transmission Confaitocol (TCP) will act
to alleviate this congestion by reducing the actual trafficried on the network,
thereby changing the traffic matrix. In general differerts s measurements will
have different degrees of invariance. For instance, arrddgstination TM is invari-
ant to changes in egress points (due to routing changespasian ingress/egress
TMis not. Itis clearly better to use the right data set forteplanning problem, but
the desired data is not always available.

The lack of true invariance is one of the key reasons for tt@icyapproach
to network planning. We seek to correct any problems caugedbations in our
inputs in reponse to our new network design.

1.4.2 Prediction for Green-fields planning

The above assumes that we have considerable historicataathich we apply
time-series techniques to extrapolate trends, and heeckicpthe future traffic de-
mands on our network. This has two major limitations:

1. IP traffic is constrained by the pipe through which it pas§6CP congestion
control ensures that such traffic does not overflow by lingitine source trans-
mission rate. In most networks our measurements only peaviecarried load
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not theoffered load If the network capacities change, the traffic may increase i
response. This is a concern if our current network is loadetktr its capacity,
and in this case we must discount our measurements, or atleasthem with
caution.

2. When we design a new network there is nothing in place féo nseasure.

We will start by considering available strategies for théelacase. We can draw
inspiration from the spatial models previously presentdt fact that the simple
gravity model describes, to some extent, the spatial straaif Internet traffic ma-
trices presents us with a simple approach to estimate aal iméffic matrix.

The first step is to estimate the total expected traffic forrta®vork, based on
demographics and market projections. Let us take a simpl@pbe: in Australia the
ABS measures internet usage. Across a wide customer basedhage usage per
customer was roughly 3 GB/month (since 2006). The totafitrédr our network
is the usage per customer multiplied by the projected nurobeustomers. We
can derive traffic estimates per marketing region in the sastd@on. Note that the
figure used above is for the broad Australian market and i&kelglto be correct
elsewhere (typical Australian ISPs have an tiered pricingcture). Where more
detailed figures exist in particular markets these shoulasieel.

The second step is to estimate the “busy hour” traffic. As welsaen previously
the traffic is not uniformly distributed over time. In the abse of better data, we
might look at existing public measurements (such as preddntFigures 1.2 and
1.3, or as appears in [44]) where the peak to mean ratio iseobttier of three to
two. Increasing our traffic estimates by this factor giveangstimate of the peak
traffic loads on the network.

The third step is to estimate a traffic matrix. The best apgrpia the absence of
other information, to derive the traffic matrix is to applgthravity model (1.12). In
the simple case, the gravity model would be applied diragtlyg the local regional
traffic estimates. However, where additional informatiboat the expected appli-
cation profile exists, we might use this to refine the resudtagithe “independent
flow model” of [21]. Additional structural information abbthe network might al-
low use of the “generalized gravity model” of [69]. Each oésle approaches allows
us to use additional information, but in the absence of snfdrmation the simple
gravity model gives us our initial estimate of the netwodéfic matrix.

What about the case where we have historical network trafi@surements, but
suspect that the network is congested so that the carridddaagnificantly below
the offered load? In this case, our first step is to determinat\parts of the traffic
matrix are affected. If a large percentage of the traffic masraffected, then the
only approach we have available is to go back through thefiisi record until
we reach a point (hopefully) where the traffic is not capacitgstrained. This has
limitations: for one thing, we may not find a sufficient set atal where capacity
constraints have left the measurements uncorrupted. EReravwve do obtain suffi-
cient data, the missing (suspect) measurements increagertiow over which we
must make predictions, and therefore the potential errotisése predictions.

However, if only a small part of the traffic matrix is affectag may exploit
techniques developed for traffic matrix inference to fill ire tsuspect values with
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more accurate estimates. These methods originated due difficulties in collect-
ing flow-level data to measure traffic matrices directly. ®osi (particularly older
routers) may not support an adequate mechanism for suctureg@aesnts (or suffer
a performance hit when the measurements are used), ankhisiteof stand-alone
measurement devices can be costly. On the other hand, th@eShetwork Man-
agement Protocol (SNMP) is almost ubiquitously availahte] has little overhead.
Unfortunately, it provides only link-load measurements, tnaffic matrices. How-
ever, the two are simply related by (1.18). Inferrinfjomy is a so-called “network
tomography” problem. For a typical network the number ok Imeasurements is
O(N) (for a network ofN nodes), whereas the number of traffic matrix elements is
O(N?) leading to a massively underconstrained linear inversblgne. Some type
of side-information is needed to solve such problems, lsirathe form of a model
that roughly describes a typical traffic matrix. We thenmaate the parameters of
this crude model (which we shall call), and perform a regularization with respect
to the model and the measurements by solving the minimizatioblem

arg&nin”y—Ax|\§+)\2d(x,m), (1.20)

where| - || denotes th&? norm,A > 0 is a regularization parameter, ahck, m) is a
distance between the modeland our estimated traffic matrik Examples of suit-
able distance metrics are standard or weighted Euclidessauratie and the Kullback-
Leibler divergence. Approaches of this type, generallieckdtrategies for regular-
ization of ill-posed problemare more generally described in [29], but have been
used in various forms in many works on traffic matrix infererithe method works
because the measurements leave the problem undercoedirtiisreby allowing
many possible traffic matrices that fit the measurementghleunodel allows us to
choose one of these as best. Furthermore, thrautie method allows us to trade-
off our belief about the accuracy of the model against thesetqul errors in the
measurements.

We can utilize TM structure to interpolate missing valuessbiving a similar
optimization problem

argmin/|/ (x) — M |3 +A2d(x, mg), (1.21)

whereZ (x) = M expresses the available measurements as a function offfie tr
matrix (whether these be link measurements or direct measemts of a subset
of the TM elements we don't care), ana is the gravity model. This regularizes
our model with respect to the measurements that are cossigalid. Note that the
gravity model in this approach will be skewed by missing edais, so this approach
is only suitable for interpolation of a few elements of thaffic matrix. If larger
numbers of elements are missing, we can use more compliatlediques such as
those proposed in [51] to interpolate the missing data.
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1.5 Optimal Network Plans

Once we have obtained predictions of the traffic on our ndtwa@ can commence
the actual process of making decisions about where linksautdrs will be placed,
their capacities, and the routing policies that will be usedhis section we discuss
how we may optimize these quantities against a set of godisamstraints.

The first problem we consider concerns capacity planninghif component
of our network planning worked as well as desired, we couwg shere. However
errors in predictions, coupled with the long planning honZor making changes
to a network mean that we need also to consider a short-terynofvaorrecting
such problems. The solution is typically calledffic engineeringor simply load
balancing, and is considered in Section 1.5.2.

1.5.1 Network Capacity Planning

There are many good optimization packages available tataymercial tools such
as CPLEX are designed specifically for solving optimizapooblems, while more
general purpose tools such as Matlab often include optiioiz¢éoolkits that can be
used for such problems. Even Excel includes some quite stigditied optimization
tools, and so we shall not consider optimization algoritimtietail here. Instead we
will formulate the problem, and provide insight into the giieal issues. There are
three main components to any optimization problem: thealdes, the objective,
and the constraints.

The variables here are obviously the locations of links, thed capacities.

The objective function — the function which we aim to minimiz- varies de-
pending on business objectives. For instance, it is commaninimize the cost of
a network (either its capital or ongoing cost), or packeagel(or some other net-
work performance metric). The many possible objectivesatwork design result
in different problem formulations, but we concentrate hemethe most common
objective of cost minimization.

The cost of a network is a complex function of the number ape tyf routers
used, and the capacities of the links. It is common, howewdireak up the prob-
lem hierarchically into inter-PoP (Point-of-Presenceay] antra-PoP design, and we
consider the two separately here.

The constraints in the problem fall into several categories

1. Capacity constraints require that we have “sufficiemik kapacity. These are the

key constraints for this problem so we consider these in rdetail below.

. Other technological constraints, such as limited pontiners per router.

3. Constraints arising as a result of the difficulties in rirolijective optimization.
For example, we may wish to have a network with good perfocaamd low
cost. However, multiobjective optimization is difficulp énstead we minimize
cost subject to a constraint on network performance.

N
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4. Reliability constraints require that the network funateven under network fail-
ures. This issue is so important that other chapters of tog have been devoted
to this issue, but we shall consider some aspects of thidgmrobere as well.

1.5.1.1 Capacity constraints and safe-operating points

Unsurprisingly, the primary constraints in capacity plizugnare the capacity con-
straints. We must have a network with sufficient capacityatwycthe offered traffic.

The key issue is our definition of “sufficient”. There are sevéactors that go into

this decision:

1. Traffic is not constant over the day, so we must design awork to carry loads
atall times of day. Often this is encapsulated in “busy haffic measurements,
but busy hours may vary across a large network, and betwestornars, and so
it is better to design for the complete cycle.

2. Traffic has observable fluctuations around its averageMeh Capacity plan-
ning can explicitly allow for these variations.

3. Traffic also has unobservable fluctuations on shortestitmen our measurement
interval. Capacity planning must attempt to allow for theagations.

4. There will be measurement and prediction errors in angfseputs.

Ideally, we would use queueing models to derive an exadioakship between mea-
sured traffic loads, variations, and so determine the reduiapacities. However,
despite many recent advances in data traffic modelling, egetrto agree on suf-
ficiently precise and general queueing models to determiffieignt capacity from
numerical formulae. There is no “Erlang-B” formulae foralattworks. As a result,
most network operators use some kind of engineering rulbwhb, which comes
down to an “over-engineering factor” to allow for the abowveises of variability.

We adopt the same approach here, but the term “over-engigdactor” is mis-
leading. The factor allows foknownvariations in the traffic. The network is not
over-engineered, it only appears so if capacity is diremtiyjnpared to the available
but flawed measurements. In fact, if we follow a well foundeaess, the network
can be quite precisely engineefed

We therefore prefer to use the teBafe Operating PoiriSOP). A SOP is defined
statistically with respect to the available traffic measueats on a network. For
instance, with five minute SNMP traffic measurements, we imiigine our SOP
by requiring that the load on the links (as measured by fivaiteiaverages) should
not exceed 80% of link capacity more than five times per montie predicted
traffic model could then be used to derive how much capacitygéded to achieve
this bound.

Traffic variance depends on the application profile and taéesaf aggregation.
Moreover, the desired tradeoff between cost and performena business choice

6 It is a common complaint that backbone networks are undizrdi This complaint typically
ignores the issues described above. In reality many of thetseorks may be quite precisely engi-
neered, but crude average utilization numbers are usedaomeuired capacity increases.
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for network operators. So there is no single SOP that wiléBaall operators. Given
the lack of precision in current queueing models and measemes, the SOP needs
to be determined by each network operator experimentabtifepably starting from
conservative estimates. Natural variations in networlddtmns often allow enough
scope to see the impact of variable levels of traffic, and ftlogse determine more
accurate SOP specifications, but to do this we need to caafiie and performance
measurements (a topic we consider later).

A secondary set of capacity constraints arises because thex finite set of
available link types, and capacity must be bought in mudspbf these links. For
instance, many high-speed networks use either SONET/Sid (typically giving
155 Mbps times powers of 4) and/or Ethernet link capacitpesvers of 10 from
10 Mbps to 10 Gbps). We will denote the set of available lingamaties (including
zero) byC.

Finally, most high-speed links technologies are dupled ssmwe need to allocate
capacity in each direction, but we typically do so symmathc(i.e., a link has the
same capacity from— j as fromj — i even when the traffic loads in each direction
are different).

1.5.1.2 Intra-PoP design

We divide the network design or capacity planning probleto two components
and first consider the design of the network inside a PoP.c@lgithis involves
designing a tree-like network to aggregate traffic up toaegi hubs, which then
transit the traffic onto a backboh&he exact design of a PoP is considered in more
detail in Chapter 4, but note that in each of the cases comgldbere we end up
with a very similar optimization problems at this level.

There are two prime considerations in such planning. Kirgtlis typical that
the majority of traffic is non-local, i.e., that it will traitgo or from the backbone.
Local traffic between routers within the PoP in the Intersetfiten less than 1%
of the total. There are exceptions to this rule, but theset neiglealt with on an
individual basis. Secondly, limitations on the number oftp@n most high-speed
routers mean that we need at least one layer of aggregatitersao bring traffic
onto the backbone: for instance see Figure 1.5. For claviéyshow a very simple
design (see Chapter 4 for more examples). In our examplé&fddae Routers (BRS)
and the corresponding links to Aggregation Routers (ARs)aasigned in pairs in
order to provide redundancy, but otherwise the topologysisrple tree.

There are many variations on this design, for instance iaddit BRs may be
needed, or multiple layers. However in our simple model dégign is determined
primarily by the limitations on port density. The routers lithin a single PoP, so
links are short and their cost has no distance dependendelian are relatively
cheap compared to wide-area links). The number of ARs thatbeaaccommo-

7 In small PoPs, a single router (or redundant pair) may becgeiti for all needs. Little planning
is needed in this case beyond selecting the model of routdrsa we do not include this simple
case in the following discussions.
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to backbone

customers

Fig. 1.5 A typical PoP design. Aggregation Routers (AR) are useddemmse the port density in
the PoP and bring traffic up to the Backbone Routers (BR).

dated depends on the number of ports that can be supported BRis, so we shall
assume that ARs have a single high-capacity uplink to eactoBitow for a max-
imum expansion factor in a one-level tree. As a result, theojoplanning a PoP is
primarily one of deciding how many ARs are needed.

As noted earlier we don't need a TM for this task. The routmguch a network
is predetermined, and so current port allocations and thiekufwad history are
sufficiently invariant for this planning task. We use thesddrm predictions of
future uplink requirements and the loads on each router.nAffredictions show
that a router is reaching capacity (either in terms of uptiagacity, traffic volume,
or port usage) we can install additional routers based orpradictions over the
planning horizon for router installation.

There is an additional improvement we can make in this typeaiblem. Itis rare
for customers to use the entire capacity of their link to atmork, and so the uplink
capacity between AR and BR in our network need not be the suhreafustomers’
link capacities. We can take advantage of this fact througiple measurement-
based planning, but with the additional detail that we mé&ycake customers with
different traffic patterns to routers in such a way as to legerdifferent peak hours
and traffic asymmetries (between input and output traffic)as to further reduce
capacity requirements.

The problem resembles the bin packing problem. Given a fixdgdchpacityC
for the uplinks between ARs and BRs, akldcustomers with peak traffic demands
{Ti }iK:r the bin packing problem would be as follows: determine thelkest integer
B, such that we can find B-partition {Sc}E_, of the customefssuch that

Ti<C, forallk=1,...,B. (1.22)

i€

8 A B-partition of our customers is a group Bfnon-empty subset§  {1,2,...,K} that are
disjoint, i.e..§NS; = gfor alli # j, and which include all customers, i.ef_ S ={1,2,...,K}.
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The number of subseBgives the number of required ARs, and although the prob-
lem is NP-hard, there are reasonable approximation algosifor its solution [18],
some of which are online, i.e., they can be implemented with@organization of
existing allocations.

The real problem is more complicated. There are constraimthe number of
ports that can be supported by ARs dependent on the model®baRg deployed,
constraints on router capacity, and in addition, we can takentage of the tem-
poral, and directional characteristics of traffic. Customemands take the form
[li(t),Ci(t)], wherel;j(t) andO;(t) are incoming and outgoing traffic demands for
customer at timet. So the appropriate condition for our problem is to find the
minimal numbemB of ARs such that

li(t) <C,and } Oi(t) <C, forall kt. (1.23)

i€ i€

This is the so-calledector bin packingproblem, which has been used to model
resource constrained processor scheduling problems gategpproximations have
been known for some time [15, 28].

The major advantage of this type of approach is that custonvih different
peak traffic periods can be combined onto one AR so that tbigit fraffic is more
evenly distributed over each 24 hour period. Likewise, ftamistribution of cus-
tomers whose primary traffic flowiato our network (for instance hosting centers)
together with customers whose traffic floast ofthe network (e.g., broadband ac-
cess companies) can lead to more symmetric traffic on thakgyland hence better
overall utilization. In practice, multiplexing gains mayprove the situation, so that
less capacity is needed when multiple customers’ traffiomslined, but this effect
only plays a dominant role when large numbers (say hunddfdshall customers
are being combined.

1.5.1.3 Inter-PoP backbone planning

The inter-PoP backbone design problem is somewhat more lmatga. We start
by assuming we know the locations at which we wish to have PiiRsquestion of
how to optimize these locations does come up, but it is contmatrthese locations
are pre-determined by other aspects of business planmingtdr-PoP planning,
distance based costs are important. The cost of a link isllyszensidered to be
proportional to its length, though this is approximate. Téal cost of a link has a
fixed component (in the equipment used to terminate a linajldition to distance
dependent terms derived from the cost to install a physioa) €.g., costs of cables,
excavation and right of ways. Even where leased lines ak(gsdhere are minimal
installation costs) the original capital costs of the linesusually passed on through
some type of distance sensitive pricing.

In addition, higher speed links generally cost more. Thecersodel for such
costs can vary, but a large component of the bandwidth depertsts is in the
end equipment (router interface cards, WDM mux/demux egeimt, etc.). In ac-
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tuality real costs are often very complicated: vendors masetdiscounts for bulk
purchases, whereas cutting edge technology may come atraupnecost. How-
ever, link costs are often approximated as linear with retsfpebandwidth because
we could, in principle, obtain a link with capacityc 4y combining four links of
capacityc.

In the simple case then, cost per link has the form

f(de,Ce) = a + Bde+ YCe, (1.24)

whereq is the fixed cost of link installatiorf is the link cost per unit distance apd
is the cost per unit bandwidth. As the distance of a link isdglty a fixed property
of the link, we often rewrite the above cost in the form

fe(Ce) = O+ YCe, (1.25)

where now the cost function depends on the link index

We further simplify the problem by assuming that BRs are bépaf dealing
with all traffic demands so that only two (allowing for redamty) are needed in
each PoP, thus removing the costs of the router from the @mobl

Finally, we simplify our approach by assuming that routesarosen to follow
the shortest possible geographic path in our network. Taereeasons (which we
shall discuss in the following section) why this might notthe case, howevea,
priori, it makes sense to use the shortest geographic path. Tleetesis that arise
from distance. Most obviously, if packets traverse longehp, they will experience
longer delays, and this is rarely desirable. In additiortkets that traverse longer
paths use more resources. For instance, a packet thatsieav@ro hops rather than
one uses up capacity on two links rather than one.

As noted earlier, we need to specify the problem constraihts basic set of
which are intended to ensure there is sufficient capacitigemetwork. When con-
gestion is avoided, queueing delays will be minimal, andcketelays across the
network will be dominated by propagation delays (the spddidjlot cannot be in-
creased). So ensuring sufficient capacity implicitly sertree purpose of reducing
networking delays. As noted, we adopt the approach of sgagih SOP, which we
do in the form of a factoA € (0, 1), which specifies the traffic limit with respect to
capacity. That is, we shall require that the link capacitype sufficient that traffic
takes up only of the capacity, leaving4 A of the capacity to allow for unexpected
variations in the traffic.

The possible variables are now the link locations and thegiacities. So, given
the (vectorized) traffic matrix, our job is to determine link locations and capacities
Ce, Which implicitly defined the network routes (and hence theting matrixA),
such that we solve

minimize EEael (Ce > 0)+ yce
ec

such thatAx < Ac, (1.26)
Ce€C,
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where Ax =y, the link loads,c is the vector of links capacitieg, is the set of
possible links] (ce > 0) is an indicator function (which is 1 where we build a link,
and 0 otherwise), and is the set of available link capacities (which includes 0).

Implicit in the above formulation is the routing mate which results from the
particular choice of links in the network design, &ds in fact a function of the
network design. Its construction imposes constraintsiremuthat all traffic on the
network can be routed. The problem can be rewritten in a nxquko@ form using
flow-based constraints, but the above formulation is coi@rgrior explaining the
differences and similarities between the range of problemsonsider here.

There may be additional constraints in the above problenitieg from router
limitations, or due to network performance requirements.iffstance, if we have a
maximum throughput on each router, we introduce a set oftcgings of the form
Bx < nr, wherer are router capacities, afglis similar to a routing matrix in that
it maps end-to-end demands to the routers along the chosenRmat constraints
on a router might be expressed by taking constraints of the 3 1 (¢ ; > 0) < p;,
wherep; is the port limit on router. Port constraints are complicated by the many
choices of line cards available for high-speed routers,sankdave sometimes been
ignored, but they are a key limitation in many networks. Té&ue is sometimes
avoided by separation of inter- and intra-PoP design, stoethiégh port density on
BRs is not needed.

The other complication is that we should aim to optimize tbevork for 24x 7
operations. We can do so simply by including one set of c#paoinstraints for
each time of day and week, i.8x; < Ac. The resulting constraints are in exactly the
same form as in (1.26) but their number increases. Howenecommon that many
of these constraints are redundant, and so can be removedHi optimization
(without effect) by a pre-filtering phase.

The full optimization problem is a linear integer programgdahere are many
tools available for solution of such programs. Howeves itdét uncommon to relax
the integer constraints to allow amy > 0. In this case there is no point in having
excess capacity, and so we can replace the link capacityraortdy Ax = Ac. We
then obtain the actual design by rounding up the capacikigis.approach reduces
the numerical complexity of the problem, but results in agptilly suboptimal
design. Note though, that integer programming problems#en NP hard, and
consequently solved using heuristics which likewise cad te suboptimal designs.
Relaxation to a linear program is but one of a suite of tealsghat can be used to
solve problems in this context, often in combination withetmethods.

Moreover, it is common the mathematical community to focadinding prov-
ably optimal designs, but this is not a real issue. In prattietwork design we
know that the input data contains errors, and our cost madelenly approximate.
Hence, the mathematically optimal solution may not havddhest cost of all re-
alizable networks. The mathematical program only needsdeige us with a very
good network design.

The components of real network suffer outages on a regusas:@anned main-
tenance, and accidental fiber cuts are simple examples (e details see Chapters
3 and 4). The final component of network planning that we disdwere is relia-
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bility planning: analyzing the reliability of a network. €e are many algorithms
aimed at maintaining network connectivity, ranging froimgie designs such as
rings or meshes, through to formal optimization problendduiding connectivity
constraints. Commonly, networks are designed to survhsirgjle link or node out-
ages, though more careful planning would concern all ShRigkl Groups (SRG),
i.e., groups of links and/or nodes who share fates under aonfailures. For in-
stance, IP links that use wavelengths on the same fiber Widlissimultaneously if
the fiber is cut.

However, when a link (or SRG) fails, maintaining connecyivé not the only
concern. Rerouted traffic creates new demands on linksidfdamand exceeds
capacity, then the resulting congestion will negativelpauot network performance.
Ideally, we would design our network to accommodate sudhrks, i.e., we would
modify our earlier optimization problem (1.26) as follows:

minimize EEael (Ce > 0)+ yce

ec
such thatAx < Ac, (1.27)
and Ax < {c, Vie #,

where.% is the set of all failure scenarios considered likely enctaginclude, and
A is the routing matrix under failure scenaridNaively implemented witih = ¢,
this approach has the limitation that the capacity constisainder failures can come
to dominate the design of the network so that most links wélhieavily underuti-
lized under normal conditions. Hence, we allow that the S@Bsrespect to normal
loads, and failure loads to be differeit,< { < 1, so that the mismatch is some-
what balanced, i.e., under normal conditions links are notpletely underutilized,
but there is likely to be enough capacity under common faguFor example, we
might require that under normal loads, peak utilizatiomsain at 60%, while under
failures, we allow loads of 85%.

Additionally, the number of possible failure scenarios t@nquite large, and
as each introduces constraints, it may not be practical nsider all failures. We
may need to focus on the likely failures, or those that aresiclamed to be most
potentially damaging. However, it is noteworthy that onnstraints that involve
rerouting need be considered. In most failures, a large enmwblinks will be un-
affected, and hence the constraints corresponding to thdsewill be redundant,
and may be easily removed from the problem.

The above formulation presumes that we design our network Bcratch, but
this is the exception. We typically have to grow our netwarkrementally. This
introduces challenges — for instance, it is easy to envisaggries of incremental
steps that are each optimal in themselves, but which resalthighly suboptimal
network over time. So it is sometimes better to design amwdtnetwork from
scratch, particularly when the network is growing very ¢ycln the mean time we
can include the existing network through a set of constsamthe formce > le+ i,
wherel is the legacy link capacity on ling andc, is the additional link capacity.
The real situation is complicated by some additional iss(i¢sypical IP router
load-balancing is not well suited for multiple paralleldof different capacities so
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we must choose between increasing capacity through additioks (with capacity
equal to the legacy links) or paying to replace the old link#hwva single higher
capacity link; and (ii) the costs for putting additional eafty between two routers
may be substantially different from the costs for creatingatirely new link. Some
work [40] has considered the problem of evolvability of netls, but without all
of the addition complexities of IP network management, derd@ning long-term
solutions for optimal network evolution is still an open plkem.

1.5.2 Traffic Engineering

In practice, it takes substantial time to build or change tavagk, despite modern
innovations in reconfigurable networks. Typical changesliok involve physically
changing interface cards, wiring, and router configuraidoday these changes are
often made manually. They also need to be performed cayefaibugh a process
where the change is documented, carefully considered] apien, and then tested.
The time to perform these steps can vary wildly between canegabut can easily
be 6 months once budget cycles are taken into account.

In the mean time we might find that our traffic predictions areiiror. The best
predictions in the world cannot cope with the convulsivendies that seem to occur
on a regular basis in the Internet. For instance, the intolu of peer-to-peer net-
working both increased traffic volumes dramatically in ansrort time frame, and
changed the structure of this traffic (peer-to-peer traffimore symmetric that the
previously dominant client-server model). YouTube aga#et providers’ expecta-
tions for traffic. The result will be a suboptimal network,some cases leading to
congestion.

As noted, we cannot simply redesign the network, but we ceamafileviate con-
gestion by better balancing loads. This process, catltic engineering(or just
load balancing) allows us to adapt the network on shortez 8oales than network
planning. Itis quite possible to manually intervene in avwek’s traffic engineering
on a daily basis. Even finer time scales are possible in pliedi traffic engineer-
ing is automated, but this is uncommon at present becauseithdoubt about the
desirability of frequent changes in routing. Each changeotding protocols can
require a reconvergence, and can lead to dropped packets.iiiportantly, if such
automation is not very carefully controlled it can becomstahle, leading to oscil-
lations and very poor performance.

The Traffic Engineering (TE) problem is very similar to thewerk design prob-
lem. The goal, or optimization objective is often closeliated to that in design.
The constraints are usually similar. The major differersc@ithe planning horizon
(typically days to weeks), and as a result the variables atéch we have control.
The restriction imposed by the planning horizon for TE ist tiva cannot change
the network hardware: the routers and links between therfixa@. However, we
can change the way packets are routed through the netwatkyarcan use this to
rebalance the traffic across the existing network links.

Page: 32 job: chapter macro: svmult.cls date/time: 12-Jun- 2009/10:36



1 Robust Network Planning 33

There are two methods of TE that are most commonly talked tabdwe most
often mentioned uses MultiProtocol Label Switching (MPLIS4], by which we
can arbitrarily tunnel traffic across almost any set of patteur network. Finding
a general routing minimizing max-utilization is an instaraf the classical multi-
commaodity flow problem which can be formulated as a lineagpam [6, Chapter
17], and is hence solvable using commonly available tooésskéll not spend much
time on MPLS TE, because there is sufficient literature dlye@or instance see
[19,36]). We shall instead concentrate on a simpler, lesldavewn, and yet almost
as powerful method for TE.

Remember that we earlier argued that shortest-geograpttis made sense for
network routing. In fact, shortest-path routing does nachto be based on geo-
graphic distances. Most modern Interior Gateway Protoaldsy administratively
defined distances (for instance Open Shortest Path Fir®EpP82] and Intermedi-
ate System-Intermediate System (I1S-1S) [14]). By tweakivese distances we can
improve network performance. By making a link distance $enayou can make a
link more “attractive”, and so route more traffic on this lifMaking the distance
longer can remove traffic. Configurable link weights can bedusor example, to
direct traffic away from expensive (e.g., satellite) links.

However, we can formulate the TE problem more systemayidadt us consider
a shortest-path protocol with administratively configulied weights(the link dis-
tanceswe on each linke. We assume that the network is given (i.e., we know its
link locations and capacities), and that the variables twatcan control are the
link weights. Our objective is to minimize the congestionam network. Several
metrics can be used to describe congestion. Network-widgaasuch as that pro-
posed in [25, 26] can have advantages, but we use the comntaio ofenaximum
utilization here for its simplicity.

In many cases, there are additional “human” constrainthemieights we can
use in the above optimization. For instance, we may wishtteatesulting weights
don’t change “too much” from our existing weights. Each aamnequires recon-
figuration of a router, and so reducing the number of changésrespect to the
existing routing may be important. Likewise the existinggtes are often chosen
not just for the sake of distance, but also to make the neteonkeptually simpler.
For instance, we might choose smaller weights inside a 6régand large weights
between regions, where the regions have some administfatither than purely ge-
ographical) significance. In this case, we may wish to pkestite general features
of the routing, while still fine tuning the routes. We can eegw these constraints in
various ways, but we do so below by setting minimum and mawinalues for the
weights. Then the optimization problem can be written: ceothe weightsv, such
that we

minimize maxye/cCe
ecE
such thatAx =y, (1.28)
and W' < we < W' Vec E

where A is the routing matrix generated by shortest-path routingmiby link
weightswe, and the link utilizations are given by /ce (the link load divided by
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its capacity). Ther™" andwl'® constrain the weights for each link into a range
determined by existing network policies (perhaps withimedound of the existing
weights). Additional constraints might specify the maximoumber of weights we
are allowed to change, or require that links weights be symaenee.,w; ;) = W ;).

The problem is in general NP-hard, so it is non-trivial to finsolution. Over the
years, many heuristic methods [12,20, 25,26,37,41,53] baen developed for the
solution of this problem.

The exciting feature of this approach is that it is very siea uses standard IP
routing protocols, with no enhancements other than theeclekoice of weights.
One might believe that the catch was that it cannot achievedme performance as
full MPLS TE. However, the performance of the above shofnedh optimization
has been shown on real networks to suffer only by a few pef68r#1], and impor-
tantly, it has been shown to be more robust to errors in thatimaffic matrices than
MPLS optimization [61]. This type of robustness is crititateal implementations.

Moreover, the approach can be used to generate a set of wéliglitwork well
over the whole day (despite variations in the TM over the d&¢], or that can
help alleviate congestion in the event of a link failure [4&problem that we shall
consider in more detail in the following section.

1.6 Robust Planning

A common concern in network planning is the consequence efaikes. Traffic
matrices used in our optimizations may contain errors dumé¢asurement arti-
facts, sampling, inference, or predictions. Furthermioeed may be inconsistencies
between our planned network design, and the actual impl&tien through mis-
configuration or last minute changes in constraints. Thexg oe additional incon-
sistencies introduced through the failure of invarianc@Ms used as inputs, for
example, caused by congestion alleviation in the new nétwor

Robust planning is the process of acknowledging these flamd still design-
ing good networks. The key to robustness is the cyclic ampraiscribed in the
introduction: measure» predict— plan— and then measure again. However, with
some thought, this process can be made tighter. We havelplsean one example
of this through TE, where a short-term alteration in roufsigsed to counter errors
in predicted traffic. In this section we shall also considane useful additions to
our kitbag of robust planning tools.

1.6.1 Verification Measurements

One of the most common sources of network problems is mispanafiion. Extreme
cases of misconfigurations that cause actual outages ativedt obvious (though
still time consuming to fix). However, misconfigurations caro result in more
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subtle problems. For instance, a misconfigured link weigit mean that traffic
takes unexpected paths, leading to delays or even congestio

One of the key steps to network planning is to ensure thateéheark we planned
is the one we observe. Various approaches have been usexlifer configuration
validation: these are considered in more detail in Chapthr &ddition, we recom-
mend that direct measurements of the network routing, bakl, and performance
be made at all times. Routing can be measured through mechsisiich as those
discussed earlier in Section 1.2 and in more detail in ChiddteWhen performed
from edge node to edge node, we can use such measurememntséitmcbat traffic
is taking the routes we intended it to take in our design.

By themselves, routing measurements only confirm the dinect traffic flows.
Our second requirement is to measure link traffic to ensurenitains within the
bounds we set in our network design. Unexpected traffic lcadsoften be dealt
with by TE, but only once we realize there is a problem.

Finally, we must always measure performance across oumnletin principle,
the above measurements are sufficient, i.e., we might patiithat a link is con-
gested only if traffic exceeds the capacity. However, initgahe typical SNMP
measurements used to measure traffic on links are five mivetages. Conges-
tion can occur on smaller time scales, leading to brief, lmrt-negligible packet
losses that may not be observable from traffic measuremkams.aNe aim to re-
duce these through choice of SOP, but note that this choamajsrical in itself, and
an accurate choice relies on feedback from performanceureragnts. Moreover,
other components of a network have been known to cause pefme problems
even on a lightly loaded network. For instance, such measemés allowed us to
discover and understand delays in routing convergencetj## 62], and that dur-
ing these periods bursts of packet loss would occur, frontivimprovements to
Interior Gateway Protocols have been made [27]. The impogaf the problem
would never have been understood without performance memsmts. Such mea-
surements are discussed in more detail in Chapter 10.

1.6.2 Reliability Analysis

IP networks and the underlying SONET/WDM strata on whictythen are often
managed by different divisions of a company, or by compyetifferent compa-
nies. In our planning stages, we would typically hope fonjaiesign between these
components, but the reality is that the underlying phy#igaical networks are of-
ten multiuse, with IP as one of several customers (eithesreatly or internally)
that use the same infrastructure. It is often hard to pres@kactly which circuits
will carry a logical IP link. Therefore, it is hard in some eado determine, prior to
implementation, exactly what SRG exist.

We may insist, in some cases, that links are carried overaepfibers, or even
purchase leased lines from separate companies, but evhase tases great care
should be taken. For instance, it was only during the Baltertoain tunnel fire
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(2001) [4] that it was discovered that several providersfifaer through the same
tunnel.

Our earlier network plan can only accommodate planned rmétfadure scenar-
ios. In robust planning, we must somehow accommodate thes$® have arisen
in the implementation of our planned network. The first stapyiously, is to de-
termine the SRGs. The required data mapping IP links to ph¥sifrastructure is
often stored in multiple databases, but with care it is gidssd combine the two to
obtain a list of SRGs. Once we have a complete list of failwenarios we could
go through the planning cycle again, but as noted, the timedwfor this process
would leave our network vulnerable for some time.

The first step therefore is to perform a network reliabiliabysis. This is a sim-
ple process of simulating each failure scenario, and asgeahether the network
has sufficient capacity, i.e., wheth&ix < {c. If this condition is already satisfied,
then no action need be taken. However, where the conditisiviated, we must
take one of two actions. The most obvious approach to dehlasdpecific vulnera-
bility is to expedite an increase in capacity. It is oftengibke to reduce the planning
horizon for network changes at an increased cost. Wherd shaalges are needed,
this may be viable, but it is clearly not satisfactory to mbuild the whole network
in this way.

The second alternative is to once again use traffic engimgpeMPLS provides
mechanisms to create failover paths, however, it does Hiotde where to route
these to ensure congestion does not occur. Some additiptiadipation and con-
trol is needed. However, we cannot do this after the failareecovery will take
an unacceptable amount of time. Likewise, it is impractingbday’s networks to
change link weights in response failures. However, previstudies have shown
that shortest-path link weight optimization can be usedrtwige a set of weights
that will alleviate congestive effects under failures [4did such techniques have
(anecdotally) been used in large networks with success.

1.6.3 Robust Optimization

The fundamental issue we deal with is “Given that | have sriermy data, how
should | perform optimization?” Not all the news is bad. Rwstance, once we ac-
knowledge that our data is not perfect, we realize that figdie mathematically
optimal solution for our problem is not needed. Insteadyiséa solutions that find
a near optimal solution will be just as effective. This clesé$ not principally con-
cerned with optimization, and so we will not spend a great deame on specific
algorithms, but note that once we decide that heuristictiewis will be sufficient,
several meta-heuristics such as genetic algorithms andatied annealing become
attractive. They are generally easy to program, and venbflexand so allow us to
use more complex constraints and optimization objectivetions than we might
otherwise have chosen. For instance, it becomes easy tpoete the true link
costs, and technological constraints on available capacit
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The other key aspect to optimization in network planningcliy concerns ro-
bustness. We know there are errors in our measurements adittpns. We can
save much time and effort in planning if we accommodate sootiem of these er-
rors in our optimization. A number of techniques for suchimjation have been
proposed: oblivious routing [8], and Valiant network des[@0, 71]. These papers
present methods to design a network and/or its routing datthél work well for
any arbitrary traffic matrix. However, this is perhaps gdiog far. In most cases we
do have some information about possible traffic whose useuadto improve our
network design.

A simple approach is to generate a series of possible trafiitices by adding
random noise to our predicted matrix, i.e., by taking- x+ g, fori =1,2,...,M.
Where sufficient historical data exists, the noise tesamshould be generated in
such a way as to model the prediction errors. We can then g@iagainst the set
of TMs, i.e.,

minimize EE Oel (Ce > 0) + yCe
ec (1.29)
such thatAx; < Ac, Vi=1,2,....M.

Once again this can increase the number of constraints dicaihg particularly in
combination with reliability constraints, unless we realthat again many of these
constraints will be redundant, and can be pruned by prepsitg

The above approach is somewhat naive. The size of the set sftdMise is
not obvious. Also we lack guidance about the choice we shma#le forA. In
principle, we already accomodate variations explicitlytiie above optimization
and so we might expedt = 1. However, as before we nedd< 1 to accomodate
inter-measurement time interval variations in traffic,ubb the choice should be
different than in past problems.

Moreover, there may be better robust optimization stratetfiat can be applied
in the future. For instance, robust optimization has begiieghto the traffic engi-
neering problem in [66], where the authors introduce tha iwfeCOPE (Common-
case Optimization with a Penalty Envelope) where the gotd find the optimal
routing for a predicted TM, and to ensure that the routind molt be “too bad” if
there are errors in the prediction.

1.6.4 Sensitivity Analysis

Even where we believe that our optimization approach issbue must test this
hypothesis. We can do so by performing a sensitivity anslyBhe standard ap-
proach in such an analysis is to vary the inputs and exami@entipact on the
outputs. We can vary each possible input to detect robustoesrors in this input,
though the most obvious to test is sensitivity to variationshe underlying traf-
fic matrix. We can test such sensitivity by considering th& Ipads under a set of
TMs generated, as before, by adding prediction errors ®ri@.,x; = X + g, for
i=1,2,...,M, and then simply calculating the link loags= Ax;. There is an obvi-
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ous relationship to robust optimization, in that we shoutl e testing against the
same set of matrices against which we optimized. Moreonesensitivity analysis
itis common to vary the size of the errors. However, simpiedr algebra allows us
to reduce the problem to a fixed load compongeat Ax and a variable component
w; = Ag;, which scales linearly with the size of the errors, and witiah be used to
see the impact of errors in the TM directly.

1.7 Summary

“Reliability, reliability, reliability” is the mantra of god network operators. At-
taining reliability costs money, but few companies can raffto waste millions of
dollars on an inefficient network. This chapter is aimed ahdestrating how we
can use robust network planning to attain efficient but bi¢iametworks, despite the
imprecision of measurements, uncertainties of predistiand general vagaries of
the Internet.

Reliability should mean more than connectivity. Networkfpemance measured
in packet delay or loss rates is becoming an important migtricustomers deciding
between operators. Network design for reliability has tooamt for possible con-
gestion caused by link failures. In this chapter we considethods for designing
networks where performance is treated as part of relighilit

The methodology proposed here is built around a cyclic aggrdo network
design exemplified in Figure 1.1. The processrefasure— analyze/predict —
control — validate should not end, but rather, validation measurements are fed
back into the process so that we can start again. In this wagtiain some measure
of robustness to the potential errors in the process. Howthwe planning horizon
for network design is still quite long (typically several nths) and so a combination
of techniques such as traffic engineering are used at diff¢éirae scales to ensure
robustness to failures in predicted behavior. It is the domtion of this range of
techniques that provides a truly robust network design ousitogy.

Acknowledgement

This work was informed by the period M.Roughan was employ@d &T research,
and the author owes his thanks to researchers there for naiughble discussions on
these topics. M.Roughan would also like to thank the AuisinaResearch Council
from whom he receives support, in particular through graP0665427.

Page: 38 job: chapter macro: svmult.cls date/time: 12-Jun- 2009/10:36



1 Robust Network Planning 39

References

FNEARNE

[

10.
. J. D. Brutag. Aberrant behavior detection and contreinme series for network monitoring.
12.

13.
14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.
25.

26.

. Python routing toolkit ('pyrt’).http://ipmon.sprintlabs.com/pyrt/
. Ripe NCC: routing information servicéttp://www.ripe.net/projects/ris/
. University of Oregon Route Views Archive Projeatww.routeviews.org

CSX train derailment. Nanog mailing listhttp://www.merit.edu/mail.
archives/nanog/2001-07/msg00351.html , 18th July 2001.

. Abilene/Internet2. http://www.internet2.edu/observatory/archive/

data-collections.html#netflow

. R. K. Ahuja, T. L. Magnanti, and J. B. OrlilNetwork Flows: Theory, Algorithms, and Appli-

cations Prentice Hall, Upper Saddle River, New Jersey, 1993.

. D. Alderson, H. Chang, M. Roughan, S. Uhlig, and W. WilengThe many facets of Internet

topology and traffic Networks and Heterogeneous Medi$4):569—600, December 2006.

. D. Applegate and E. Cohen. Making intra-domain routinigust to changing and uncertain

traffic demands: Understanding fundamental tradeoffsAGM SIGCOMM pages 313—-324,
Karlsruhe, Germany, August 2003.

. G. E. P. Box and N. R. DrapeResponse Surfaces, Mixtures and Ridge Analysitey, 2nd

edition, 2007.
P. Brockwell and R. Davislime Series: Theory and MethodSpringer-Verlag, 1987.

In Proceedings of the 14th Systems Administration Conferdd&A 2000) New Orleans,
LA, USA, December 2000. USENIX.

L. S. Buriol, M. G. C. Resende, C. C. Ribeiro, and M. Thorypnemetic algorithm for OSPF
routing. InProc. 6th INFORMS Telecgrpages 187-188, 2002.

R. S. CahnWide Area Network DesigrMorgan Kaufman, 1998.

R. Callon. Use of OSI IS-IS for routing in TCP/IP and dualieonments. Network Working
Group, Request for Comments: 1195, December 1990.

C. Chekuri and S. Khanna. On multidimensional packingpblegms. SIAM J. Comput.
33(4):837-851, 2004.

N. Duffield and C. Lund. Predicting resource usage andatbn accuracy in an IP flow
measurement collection infrastructure. ACM SIGCOMM Internet Measurement Confer-
ence Miami Beach, Florida, October 2003. Availablehdtp://www.icir.org/vern/
imc-2003/program.html .

N. Duffield, C. Lund, and M. Thorup. Flow sampling undercheesource constraintsSIG-
METRICS Perform. Eval. ReB82(1):85-96, 2004.

J.E. G. Coffman, M. R. Garey, and D. S. Johnson. Approtanalgorithms for Bin Packing:
A Survey. In D. Hochbaum, editoApproximation Algorithms for NP-Hard ProblemBWS
Publishing, 1997.

A. Elwalid, C. Jin, S. H. Low, and |. Widjaja. MATE: MPLS agittive traffic engineering. In
INFOCOM, pages 1300-1309, 2001.

M. Ericsson, M. Resende, and P. Pardalos. A geneticitiigofor the weight setting problem
in OSPF routing.J. Combinatorial Optimization6(3):299-333, 2002.

V. Erramilli, M. Crovella, and N. Taft. An independeragrmection model for traffic matrices.
In ACM SIGCOMM Internet Measurement Conference (IMC@&pes 251-256, New York,
NY, USA, 2006. ACM.

A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and XfdRd. Netscope: Traffic engi-
neering for IP networkslEEE Network Magazingpages 11-19, March/April 2000.

A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rekfand F. True. Deriving traffic
demands for operational IP networks: Methodology and éepee.|[EEE/ACM Transactions
on Networking pages 265-279, June 2001.

A. Feldmann and J. Rexford. IP network configuration fdradomain traffic engineering.
IEEE Network Magazingpages 46-57, September/October 2001.

B. Fortz and M. Thorup. Internet traffic engineering byimgzing OSPF weights. IfProc.
19th IEEE Conf. on Computer Communications (INFOCOp&lges 519-528, 2000.

B. Fortz and M. Thorup. Optimizing OSPF/IS-IS weightsiichanging world|IEEE Journal
on Selected Areas in CommunicatipB6(4):756—767, 2002.

Page: 39 job: chapter macro: svmult.cls date/time: 12-Jun- 2009/10:36



40

27.
28.
29.

30.

31.
32.

33.

34.
35.
36.

37.

38.

39.
40.

41.
42.

43,
44,

45.
46.
. T. Oetiker. RRDtoolhttp://oss.oetiker.ch/rrdtool/ .
48.

49.
50.

51.
52.
53.
54.

55.

Authors Suppressed Due to Excessive Length

P. Francois, C. Filsfils, J. Evans, and O. Bonaventurgie¥ig sub-second IGP convergence
in large IP networksSIGCOMM Comput. Commun. Re85(3):35-44, 2005.

M. Garey, R. Graham, D. Johnson, and A. Yao. Resourcdreamed scheduling as general-
ized bin packing.J. Comb. Theory A21:257-298, 1976.

P. C. HansenRank-Deficient and Discrete Ill-Posed Problems: Numerkspects of Linear
Inversion SIAM, 1997.

G. lannaccone, C.-N. Chuah, R. Mortier, S. Bhattactergmd C. Diot. Analysis of link fail-
ures over an IP backbone. ACM SIGCOMM Internet Measurement Workshbfarseilles,
France, November 2002.

J. Kowalski and B. Warfield. Modeling traffic demand bedweodes in a telecommunications
network. INATNAC'95 1995.

C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delaygdrhet routing convergence. In
Proceedings of ACM SIGCOMN2000.

A. Lakhina, M. Crovella, and C. Diot. Characterizatidmetwork-wide anomalies in traffic
flows. INACM SIGCOMM Internet Measurement Confergni@rmina, Sicily, Italy, October
2004.

A. Lakhina, M. Crovella, and C. Diot. Diagnosing netwavide traffic anomalies. IMACM
SIGCOMM 2004.

A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Dol&czyk, and N. Taft. Structural
analysis of network traffic flows. IACM SIGMETRICS / Performanc2004.

U. Lakshman and L. Lobo. MPLS traffic engineering. CisaesB http://www.
ciscopress.com/articles/article.asp?p=426640 , 2006.

F. Lin and J. Wang. Minimax open shortest path first rquéityorithms in networks suppor-
ing the SMDS services. IRroc. IEEE International Conference on CommunicationsQ)C
volume 2, pages 666—670, 1993.

D. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjalmtysson, and3keenberg. Routing design in
operational networks: A look from the inside. ACM SIGCOMM Portland, OR, USA, 2004.
D. R. Mauro and K. J. SchmidEssential SNMPO’Reilly, 2001.

N. F. Maxemchuk, |. Ouveysi, and M. Zukerman. A gquaritiatneasure for comparison
between topologies of modern telecommunications netwdrkiEEE Globecom2000.

D. Mitra and K.G.Ramakrishnan. A case study of multigervmultipriority traffic engineer-
ing design for data networks. FProc. IEEE GLOBECOMpages 1077-1083, 1999.

J. T. Moy. OSPF version 2. Network Working Group, Reqi@stComments: 2328, April
1998.

I. Norros. A storage model with self-similar inp@ueueing System$6:387—396, 1994.

A. Nucci and K. PapagiannakiDesign, Measurement and Management of Large-Scale IP
Networks Cambrigde University Press, 2009.

A. M. Odlyzko. Internet traffic growth: Sources and ingplions. In B. B. Dingel, W. Weier-
shausen, A. K. Dutta, and K.-I. Sato, editoBptical Transmission Systems and Equipment
for WDM Networking 1) volume 5247, pages 1-15. Proc. SPIE, 2003.

T. Oetiker. MRTG: the multi-router traffic graphéttp://oss.oetiker.ch/mrtg//

V. Paxson. Strategies for sound Internet measuremem®CM Sigcomm Internet Measure-
ment Conference (IMC)Yaormina, Sicily, Italy, October 2004.

R. B. Potts and R. M. OliveElows in Transportation Network#Academic Press, 1972.

P. Pyhnen. A tentative model for the volume of trade betweuntriesWeltwirtschaftliches
Archive 90:93-100, 1963.

L. Qiy, Y. R. Yang, Y. Zhang, and S. Shenker. On selfishingut internet-like environments.
In ACM SIGCOMM pages 151-162, 2003.

L. Qui, Y. Zhang, M. Roughan, and W. Willinger. Spatioatgoral compressive sensing and
Internet traffic matrices. Ito appear in ACM Sigcompugust 2009.

K. Ramakrishnan and M. Rodrigues. Optimal routing inrgst-path data network$.ucent
Bell Labs Technical Journab(1), 2001.

E. C. Rosen, A. Viswanathan, and R. Callon. Multiprotdabel switching architecture.
Network Working Group, Request for Comments: 3031, 2001.

M. Roughan. Simplifying the synthesis of Internet taffiatrices. ACM SIGCOMM Com-
puter Communications Revig@5(5):93-96, October 2005.

Page: 40 job: chapter macro: svmult.cls date/time: 12-Jun- 2009/10:36



1 Robust Network Planning 41

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

M. Roughan and J. Gottlieb. Large-scale measurementmanigling of backbone Internet
traffic. In SPIE ITCOM Boston, MA, USA, 2002.

M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewiczafes/ and Y. Zhang. Experi-
ence in measuring Internet backbone traffic variability:ddis, metrics, measurements and
meaning. InProceedings of the International Teletraffic Congress (&), pages 221-230,
2003.

M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz.afes/ and Y. Zhang. Experi-
ence in measuring Internet backbone traffic variability:ddis, metrics, measurements and
meaning. InProceedings of the International Teletraffic Congress (&), pages 379-388,
Berlin, Germany, 2003.

M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. @&S&rvice Mapping for QoS: A
statistical signature-based approach to IP traffic clasgifin. INnACM SIGCOMM Internet
Measurement Workshppages 135-148, Taormina, Sicily, Italy, 2004.

M. Roughan, M. Thorup, and Y. Zhang. Performance of eggohtraffic matrices in traffic
engineering. IMMCM SIGMETRICSpages 326—327, San Diego, CA, USA, 2003.

M. Roughan, M. Thorup, and Y. Zhang. Traffic engineerinthwstimated traffic matrices.
In ACM SIGCOMM Internet Measurement Conference (IMf2ges 248-258, Miami Beach,
FL, USA, 2003.

A. Shaikh and A. Greenberg. Experience in black-box OB8RERsurement. Ifroc. ACM
SIGCOMM Internet Measurement Workshppges 113-125, 2001.

A. Shaikh and A. Greenberg. OSPF Monitoring: ArchiteetiDesign and Deployment Ex-
perience. InProc. USENIX Symposium on Networked System Design andnhaptation
(NSDI), March 2004.

J. Tinbergen. Shaping the world economy: Suggestiararfinternational economic policy.
The Twentieth Century Fund, 1962.

S. Uhlig, B. Quoitin, S. Balon, and J. Lepropre. Provigublic intradomain traffic matrices
to the research communit'CM SIGCOMM Computer Communication Revig®(1):83-86,
January 2006.

H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. GreertbeCOPE: traffic engineering
in dynamic networks. IACM SIGCOMM pages 99-110, 2006.

Y. Zhang, Z. Ge, M. Roughan, and A. Greenberg. Networkrarysaphy. InProceedings of
the Internet Measurement Conference (IMC (Bgrkeley, CA, USA, October 2005.

Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg. Fastimte computation of large-
scale IP traffic matrices from link loads. ACM SIGMETRICSpages 206—-217, San Diego,
California, June 2003.

Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An inforimatiheoretic approach to traffic
matrix estimation. IlPACM SIGCOMM pages 301-312, Karlsruhe, Germany, August 2003.
R. Zhang-Shen and N. McKeown. Designing a predictalileriiet backbone. [k otNets
IIl, San Diego, CA, November 2004ttp://tiny-tera.stanford.edu/ ~ nickm/
papers/index.html .

R. Zhang-Shen and N. McKeown. Designing a predictaltieriet backbone with Valiant
load-balancing. IfThirteenth International Workshop on Quality of Service&/QoS) Pas-
sau, Germany, June 200Bttp://tiny-tera.stanford.edu/ ~ nickm/papers/
index.html

Page: 41 job: chapter macro: svmult.cls date/time: 12-Jun- 2009/10:36



