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Abstract| An on-line version of the Abry-Veitch

wavelet based estimator of the Hurst parameter is pre-

sented. It has very low memory and computational

requirements and scales naturally to arbitrarily high

data rates, enabling its use in real-time applications

such as admission control, and avoiding the need to

store huge data sets for o�-line analysis. An imple-

mentation for Ethernet based on standard hardware

supporting sampling rates of 1000 data points per sec-

ond is described, and results of its operation presented.

The performance of the estimator as a function of the

length of data processed is demonstrated using simu-

lated data.

I. Introduction

Real-time tra�c measurement is necessary to sup-

port network management tasks such as call admis-

sion control, rate adaptation, and network monitor-

ing. As such activities must take place on the small

time scales implied by the high bandwidth of mod-

ern telecommunications systems, the extent of such

measurements and the complexity of the algorithms

which use them are limited by hard processing con-

straints, a situation which is unlikely to change. Even

in the less demanding case of o�-line processing, the

ever increasing volume of data represented by col-

lection over a given time interval poses huge storage

and processing problems. Such limitations are par-

ticularly serious if parameters crucial to meaningful

tra�c characterization have high computational com-

plexity, say ofO(n

2

) where n is the length of the data.

In the last few years the discovery of the self-similar

nature of many kinds of packet tra�c [9], [11] has in-

spired a small revolution in the way that high-speed

tra�c is viewed. Although no single model is ac-

cepted as de�nitive, the Hurst parameter H, which

describes the degree of self-similarity, holds a central

place in the description of such tra�c. Its accurate

measurement is therefore of considerable importance

for the provision of quality of service as well as for

capacity planning. Unfortunately, methods for the

estimation of this parameter from data have su�ered

from poor statistical performance, and/or high com-

putational complexity inappropriate for large data

sets or real-time use. Recent work based on wavelets

however has provided a semi-parametric estimator

for H which gives unbiased estimates together with

signi�cant computational advantages, notably a run

time complexity of only O(n). Details of this estima-

tor are summarized below and can be found in [7],

[6] (see also [1], [2], [3]). The aim of the present pa-

per is to show how these computational advantages

can be exploited in an on-line setting to allow H to

be estimated in real-time simply, rapidly, and with

very low memory requirements. The method scales

to arbitrary size with respect to both memory and

processing requirements, so that it will remain ap-

plicable as data rates increase with time. It can be

applied not only in traditional real-time settings but

also, by performing estimation at the point of mea-

surement, as a means to radically reduce the volume

of data that needs to be stored for further o�-line

analysis. This work is the subject of an Australian

provisional patent application number PP1692.

II. The Abry-Veitch (AV) estimator

In any data measurement situation a basic theo-

retical framework is required through which to view

the data, to select important parameters which de-

scribe it, and to propose and evaluate estimators

of them. In our case the time varying rate x(t)

of incoming tra�c is the data of interest, and we

model it as a stationary stochastic process. Basic

features of this process are its mean �

x

= E[x],

variance �

2

x

= E[(x � �

x

)

2

], and correlation func-

tion 

x

(k) = E[(x(t + k) � �

x

)(x(t) � �

x

)]. In this

context the self-similar properties of tra�c manifest

themselves in a particular form of 

x

(k), namely a

decrease with lag k so slow that the sum of all cor-

relations downstream from any given time instant is

always appreciable, even if individually the correla-

tions are small. The past therefore exerts a long

term inuence on the future, exaggerating the impact

of tra�c variability and rendering statistical estima-

tion problematic. This phenomenon is known as Long

Range Dependence (LRD), and is commonly de�ned

as 

x

(k) � c



jkj

�(1��)

, � 2 (0; 1), or equivalently

as the power-law divergence at the origin of its spec-

trum: f

x

(�) � c

f

j�j

��

; j�j ! 0. The Hurst param-

eter describes the (asymptotic) self-similarity of the

cumulative tra�c process corresponding to x(t) which

generates the LRD of x(t), itself described by �. It is

nonetheless common practice to speak of H in rela-

tion to LRD. The two are related as H = (1 + �)=2.

In [7], [6] a semi-parametric joint estimator of

(�; c

f

) is described based on the Discrete Wavelet



Transform (DWT).Wavelet transforms in general can

be understood as a more exible form of a Fourier

transform, where x(t) is transformed, not into a fre-

quency domain, but into a time-scale wavelet do-

main. The sinusoidal functions of Fourier theory

are replaced by wavelet basis functions  

a;t

(u) �

 

0

(

u�t

a

)=

p

a, a 2 IR

+

, t 2 IR generated by simple

translations and dilations of the the mother wavelet

 

0

, a band pass function with limited spread in both

time and frequency. The wavelet transform can thus

be thought of as a method of simultaneously observ-

ing a time series at a full range of di�erent scales

a, whilst retaining the time dimension of the origi-

nal data. Multiresolution analysis theory shows that

no information is lost if we sample the continuous

wavelet coe�cients at a sparse set of points in the

time-scale plane known as the dyadic grid, de�ned by

(a; t) = (2

j

; 2

j

k), j; k 2 IN , leading to the DWT with

discrete coe�cients d

x

(j; k) known as details. Hence-

forth we will deal exclusively with the details of the

DWT. The octave j is simply the base 2 logarithm of

scale a = 2

j

, and k plays the role of time (although

a time whose rate varies with j). For �nite data of

length n, j will vary from j = 1, the �nest scale in

the data, up to some j

max

� log

2

(n). The number

of coe�cients available at octave j is denoted by n

j

,

and approximately halves with each increase of j.

The estimator has excellent computational prop-

erties due to the fast `pyramidal' �lter-bank algo-

rithm [4] for calculation of the discrete wavelet trans-

form, which has a complexity of only O(n). The

number of wavelet coe�cients d

x

(j; k) thus generated

is also of order n, and subsequent computations re-

quired to form the estimate ofH from them have only

this complexity. The overall complexity therefore re-

mains O(n), which clearly scales satisfactorily.

The main feature of the wavelet approach which

makes it so e�ective for the statistical analysis of

scaling phenomenon such as LRD is the fact that

the wavelet basis functions themselves possess a scal-

ing property, and therefore constitute an optimal `co-

ordinate system' from which to view such phenom-

ena. The main practical outcome is that the LRD in

the time domain representation is reduced to resid-

ual short range correlation in the wavelet coe�cient

plane fj; kg, thus removing entirely the special esti-

mation di�culties. Thus for each �xed j, the series

d

x

(j; �) can be regarded as a stationary process with

weak short-range dependence, and these series can be

regarded as independent of each other.

We can now outline the estimator as consisting of

the following three stages:

1. Wavelet decomposition A discrete wavelet

transform of the data is performed, generating the

details d

x

(j; k) over the dyadic grid.

2. Detail variance estimationAt each �xed octave

j the details are squared then averaged across `time'

k to produce an (excellent) estimate of the variance of

the wavelet coe�cients, called �

j

. It has been shown

that the �

j

follow a power-law in j with exponent �.

3. LRD parameters estimation A plot is made of

y

j

= log

2

(�

j

) against j and from it the range of oc-

taves [j

1

; j

2

] where scaling occurs is determined. The

LRD parameters H and c

f

are then extracted by per-

forming a weighted linear regression over those scales.

Notes:

� Since the expectations of the details are all identi-

cally zero [1], the average of the squares of the details

at a given j is an estimate of the variance at that j.

� In forming y

j

small corrective terms g(j) are in fact

subtracted from log

2

(�

j

) to account for the fact that

E [log] (�) 6= log(E [�]).

� H is related to the slope of the plot, and c

f

to a

power of the intercept.

� The weights are the known variances of the y

j

and

do not depend on the data.

� Con�dence intervals for H are derived from the

standard variance formulae for weighted linear regres-

sion with mutually independent y

j

, and so again are

not functions of the data.

An example of the regression �t using a simulated

data set is given in Figure 1. The 95% con�dence

intervals for each y

j

, shown as vertical lines at each

octave j, are seen to increase with j.
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Fig. 1. Stage 3, the estimation. An example of the y

j

against j log-scale diagram and regression line for a LRD

process with strong SRD. The vertical bars at each oc-

tave give 95% con�dence intervals for the y

j

. The series

is simulated farima(0,d,2) with d = 0:25 (� = 0:50) and

	 = [�2;�1] implying c

f

= 6:38. Selecting (j

1

; j

2

) =

(4;10) allows an accurate estimation despite the strong

SRD: �̂ = 0:53� 0:07, ĉ

f

= 6:0 with 4:5 < ĉ

f

< 7:8.

III. The on-line estimator

The AV estimator summarized above is gaining ac-

ceptance as the method of choice for measuring LRD

in tra�c [5], [8]. Until now however it has been used

as a batch estimator, that is where a data set is col-

lected and analyzed o�-line. It is ideally suited to



on-line use however, making it usable within network

elements such as switches as well as network monitor-

ing systems. By on-line estimation we mean a data

processing method whereby new fragments of data

are processed as they arrive. In what follows we con-

centrate on the estimation of H, although the second

LRD parameter, c

f

, is also estimated by the method.

On-line estimation has two main requirements:

1. That an algorithm be devised such that newly ac-

quired data elements can be processed individually

and merged with existing processed data, rather than

requiring complete re-computation.

2. That the algorithm be e�cient enough to imple-

ment the above at the rate that new data arrives.

The �rst requirement is critical for on-line estima-

tion, whereas the second is an issue of the neces-

sary computing power versus its cost. Because of the

steadily increasing bandwidth of networks however,

the method must be scalable, so the second require-

ment is in fact principally an issue of the time and

memory complexity of the algorithm.

The AV algorithm can be adapted to satisfy both

requirements. The �rst stage of the estimator, the

wavelet decomposition, is easily implemented in an

on-line fashion using a real-time pyramidal �lter-bank

(Figure 2). Indeed, such �lter-banks were devised

with on-line applications in mind. The second stage

is trivial and can be performed on-line as follows. Let

the current stored sum of squares at octave j calcu-

lated from the �rst n

j

values be S

j

=

P

n

j

k=1

d

x

(j; k)

2

.

Assume that the arrival of the new data point x(n)

results in a new coe�cient d

x

(j; n

j

+ 1) at octave j

from the �lter-bank. The sum is then updated:

n

j

 n

j

+ 1;

S

j

 S

j

+ d

x

(j; n

j

)

2

:

When the variance estimate at octave j is required

for the �nal stage it can be calculated as �

j

= S

j

=n

j

.

The �nal stage of the estimation algorithm need not

be adapted to an on-line version, as there is no need

to compute H every time a new data point is ac-

quired. It may be re-calculated only as needed, typi-

cally at `human' time-scales several orders of magni-

tude larger than the data collection rate. In any case

the complexity of the �nal stage is only O(log

2

(n)).

Some explanation is required to explain why the

�rst stage of the on-line estimator is scalable. The

on-line �lter-bank, illustrated in Figure 2, consists of

a number of �lters of �xed size K connected in series

(typically the size of these �lters is small, say K = 6).

Because the output rate of each �lter is only half of its

input rate, data of length n is e�ectively summarized

and held in the �lter-bank in the form of K log

2

(n)

`half-processed' values. These numbers are the only

ones which must be stored in memory, not the full set

of historical input data x(t). Regarding the run-time

complexity, on average each new data point x(n) re-

sults in 2(K + 1) operations, a number independent

of n. The maximum possible number of operations

scales as O(log

2

(n)), however if problems of proces-

sor load arise the �lter-bank can be naturally imple-

mented in Digital Signal Processing (DSP) hardware.
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Fig. 2. The �lter-bank. At each level in the recursive structure,

the Band Pass (BP) output: d

x

(j; �), and the Low Pass

(LP) output: a(j; �), occur at half the rate of the input

a

x

(j � 1; �).

Section V shows how a quite modest computer is

capable of performing the AV estimation algorithm,

on-line and in real-time on Ethernet data sampled at

1000 times per second.

The obvious advantage of computing estimates on-

line is that results are immediately available, rather

than after a lengthy cycle of collection and analy-

sis. As mentioned earlier, this is essential for real-

time network management purposes, but also o�ers

important advantages for tra�c collection and analy-

sis in general. For example, apart from reducing the

analysis delay, this approach allows the decision as to

whether enough data has been collected to be made

as it arrives. It is also advantageous to be able to

detect unusual events as they occur, enabling imme-

diate modi�cations to the collection/analysis e�ort.

The other central advantage of on-line estimation

is the reduction in memory requirements, both in

terms of the algorithm itself and of the storage of data

sets. Batch analysis requires the collection and anal-

ysis of very large data sets, and samples larger than

any standard computer's memory space are easy to

collect. For example, a traditional Ethernet sampled

every 1000ms over 1 week represents 604 million sam-

ple points, which stored as four byte integers requires

approximately 2.4 GB of space. Thus capture of this

data may be a problem, as the data cannot all be

stored in memory and then saved to disk. Similarly

for analysis, the data cannot be held in memory all

at the same time resulting in large delays due to disk

paging. In contrast, as explained above, on-line mea-

surement does not have substantial memory require-

ments. Thus a tra�c stream can be monitored and

measured continuously for weeks at a time, without

any delay in the estimation at the end of the process,

and without a large memory.

The number of available scales increases with the

length n of the data. Ideally the number of avail-

able octaves is simply j

max

= log

2

(n), however edge

e�ects limit the number in practice. Figure 3 shows

the number of octaves in the data, and the number

of octaves actually available, as functions of n.



Note that the on-line algorithm allows all of the

scales available in the data to be seen and used, rather

than deciding a-priori which scales will be examined.
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Fig. 3. The number of available scales as a function of n.

IV. Performance

The performance of the batch joint AV estimator,

and comparisons with other methods of estimating

LRD parameters, have been described in detail else-

where [7], [6] (for H only see also [2], [1], [3]). Briey,

the estimator o�ers excellent statistical performance:

negligible bias, close to optimal variance, and robust-

ness of various kinds including with respect to super-

imposed deterministic non-stationarities. The aim

here is not to repeat these studies but to illustrate

the dependence of certain properties on n, as the new

feature of the on-line version is that the length of the

data is constantly increasing.

The series used in this section were all realizations

of the fractional Gaussian noise (fGn) process, precal-

culated using a standard spectral synthesis technique.

In each case values from the series were piped to the

on-line estimator one at a time, in order to simulate

the arrival of raw measurements in real-time. Thus

the estimator used here is identical to that used with

the working on-line system described in the next sec-

tion. The interval chosen between the execution of

stage 3 of the estimator, the actual estimation of H,

was every 2

8

data points. There is a warm up pe-

riod at the beginning of the measurement run to wait

for the octaves required for the analysis to become

available (see Figure 3).

For each of the values H = 0:6, 0:7, 0:8 and 0:9,

100 independent realizations of length n = 2

16

were

generated. Figure 4 shows three randomly chosen ex-

amples from the set with H = 0:6. The graph illus-

trates typical behavior of the estimator in time. Here

as in the other series, we use prior knowledge of the

fGn process to choose the lower end of scaling range

to be j

1

= 3, and the upper end j

2

= j

max

to be

be the largest octave available. A point of interest is

that there is no immediate jump in accuracy when a

new octave (scale) becomes available for use in the

estimation. This is because when this occurs there

are still relatively few data points at the new octave,

and so the weighted regression gives little weight to

them.
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Fig. 4. Three example sample paths. The dashed line shows

the true Hurst parameter while the solid lines show exam-

ples of the on-line Hurst parameter estimates.

In Figure 5, for each H, averages over the set of

100 realizations are plotted. The fact that the aver-

aged estimates tend to the correct values illustrates

the lack of bias of the estimator. The speed of conver-

gence to the correct value with increasing n is shown

by the shrinking standard deviation of the 100 esti-

mates shown to either side. These sample standard

deviations constitute empirical estimates of the stan-

dard deviation of the estimator.
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Fig. 5. The average (solid lines) of the estimates of the Hurst

parameter, and the standard deviation around the average

(dotted lines) for each set of 100 data sequences.
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Fig. 6. The MSE of the estimated Hurst parameter for each

of the four sets of 100 sample paths.

To further illustrate this convergence, Figure 6

shows a log-log plot of the mean squared error (MSE)

of the estimates as a function of n. The MSE corre-

sponds closely to an empirical measure of the variance

of the estimator, as we know the bias to be negligible.

The fact that an approximately straight line is seen

suggests that the variance of the estimator decreases

as a power law. It is also noteworthy that the MSE

seems to have very little dependence on the Hurst pa-

rameter. Both of these facts are in agreement with

the theoretical results of [7] which state that there is

no H (nor c

f

, nor �

x

, nor �

2

x

) dependence in the vari-

ance of the estimate of H, and that the asymptotic

variance is

var(

^

H(n)) �

2

j

1

�3

ln

2

2

n

�1

;

where j

1

is the smallest scale used in the estimation.

The 1=n decrease is the normal rate characteristic of

the variance of estimators in a short range depen-

dent context (for example independent random vari-

ables), vindicating the claim that the AV estimator

obtains short range dependent statistics from long-

range dependent data. The hypotheses used to ob-

tain the theoretical results are never exactly satis�ed

in practice however, not even for a `model' LRD pro-

cess such as the fGn. We therefore repeated the test

for H = 0:6, shown in Figure 7, this time over 500

realizations each of length 2

19

, in order to determine

the actual decay rate of the MSE. In the plot the

MSE is compared to the asymptotic theoretical pre-

diction given above, and the full theoretical variance

prediction of [7]. Performing a linear regression on

the mean square errors in the plot leads to a slope of

�1:04, which agrees with the predicted rate of n

�1

,

the minor deviation from �1 being easily accounted

for by the asymptotic nature of the 1=n dependence

together with statistical uctuations in the MSE.
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Fig. 7. The dependence of the MSE of the estimates on n.

V. Real-time estimation for Ethernet

We have explained in section III how the on-line

estimator is scalable, and in section IV demonstrated

the estimator using simulated on-line data. In this

section we use the estimator to analyze Ethernet data

on the local area network at the Software Engineering

Research Centre without the use of high performance

hardware, proving that it is e�cient enough to be

used on real, low-cost systems.

An Ethernet was chosen for two reasons. First it

was the �rst type of data network where self-similar

tra�c was shown to exist [9]. Second, it is relatively

easy to extract tra�c from an Ethernet because of

the broadcast nature of the medium. The Berkeley

Packet Filters (BPF), which are part of the kernel

of FreeBSD (a variant of the Unix operating system

suitable for Intel PCs), were used to capture and time

stamp packets. The packet capture and the estima-

tion algorithm were all run on a 133MHz Pentium

computer. Though the timestamping of the BPF is

not as accurate as that obtained in the original Bell-

core study [9], that same study showed that times-

tamping accuracy of the order of 1ms is quite su�-

cient to demonstrate self-similarity.

The output from the BPF passes through a sim-

ple pre-�ltering program which generates a sequence

of data values corresponding to the number of bytes

transferred over the Ethernet during each sampling

interval. This sequence is the raw data series x(t)

to be analyzed by the on-line estimator. A sampling

interval of 10ms was generally used, though experi-

ments with intervals as �ne as 1ms posed no computa-

tional problems for the 133 MHz processor. At 10ms

the series is approximately Gaussian, and thus satis-

�es an important hypothesis upon which con�dence

intervals are calculated. Octaves (j

1

; j

2

) = (8; j

max

)

were used in the estimation, based on visual inspec-

tion of the log-scale diagrams (log-log plots).



Figure 8(a) shows Ethernet data averaged over

2

16

ms ' 1 minute intervals. Figure 8(b) shows the

on-line estimation for the same data, based on the

�ner 10ms sampling. The intent of these �gures is
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Fig. 8.

not to demonstrate self-similarity in Ethernet tra�c

as this has already be achieved. Rather the results

are intended to show that the algorithm is e�cient

and robust enough to apply to real data, in real time.

In higher speed environments such as ATM net-

works the sampling rate needs to increase to monitor

the tra�c on an adequate range of time-scales, re-

sulting in an increase in processing requirements. If,

as network speed increases, a point is reached where

those requirements exceed the capacity of the proces-

sor chips available at the time, the algorithm could be

implemented using Digital Signal Processing (DSP)

hardware, to which it is ideally suited. Such a solu-

tion would be able to cope with any data rates cur-

rently envisaged with room to spare.

VI. Conclusion

We have shown that the Abry-Veitch estimator for

the measurement of the parameters of long-range de-

pendence, including the Hurst parameter, can be suc-

cessfully applied on-line, in real-time, enabling their

use in real-time applications such as admission con-

trol. Furthermore, the immediate analysis of data

at the point of measurement avoids the storage of

huge data sets for o�-line analysis. The scalability

of the method was demonstrated both with respect

to memory requirements, which are very modest, and

processing complexity. The algorithm's performance

was demonstrated by applying it to simulated on-

line data, and found to be excellent and in agree-

ment with theoretical results. The algorithmwas also

demonstrated in a working system using a modest PC

to make real-time measurements of Ethernet tra�c.

Thus the method is e�cient enough to deal with high

data rates on inexpensive hardware.

There is much scope for future work, notably:

1. Methods for discarding old data - windowing and

smoothing (Kalman �ltering).

2. E�ects of non-stationarities of various kinds.

3. Automatic choice of scaling octaves (j

1

; j

2

).

Other problems with LRD parameter estimation

under real tra�c conditions are discussed in [10],

though the robustness of the wavelet based analysis

e�ectively eliminates many of these, including those

due to load variations in the network [2].
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