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Abstract—Recent measurements of various types of network traffic have

shown evidence consistent with long-range dependence and self-similarity.

However, an alternative explanation for these measurements is non-station-

arity. Standard estimators of LRD parameters such as the Hurst parameter

H assume stationarity and are susceptible to bias when this assumption does

not hold. Hence LRD may be indicated by these estimators when none is

present, or alternatively LRD taken to be non-stationarity. The recently de-

veloped Abry-Veitch (AV) joint estimator has much better properties when

a time-series is non-stationary. In particular the effect of polynomial trends

in data may be intrinsically eliminated from the estimates of LRD param-

eters. This paper investigates the behavior of the AV estimator when there

are non-stationarities in the form of a level shift in the mean and/or the

variance of a process. We examine cases where the change occurs both

gradually or as a single jump discontinuity, and also examine the effect of

the size of the shift. In particular we show that although a jump disconti-

nuity may cause bias in the estimates of the H, the bias is negligible except

when the jump is sharp, and large compared with the standard deviation

of the process. We explain these effects and suggest how any introduced

errors might be minimized. We define a broad class of non-stationary LRD

processes so that LRD remains well defined under time varying mean and

variance. The results are tested by applying the estimator to a real data set

which contains a clear non-stationary event falling within this class.

I. INTRODUCTION

In the last few years the discovery of the self-similar nature of

many kinds of packet traffic [12], [15] has inspired a small rev-

olution in the way that high-speed traffic is viewed. Although

no single model is accepted as definitive, the Hurst parameter

H , which describes the degree of self-similarity, holds a central

place in the description of such traffic. Its accurate measure-

ment is therefore of considerable importance for the provision

of quality of service as well as for capacity planning.

The existing literature on traffic modeling, and indeed on tele-

traffic performance analysis, is dominated by stationary models.

However, there are good reasons to suppose that traffic condi-

tions do change; for example the concept of a busy hour is im-

portant both in voice and data networks. Although the discovery

of self-similarity in packet traffic has led to a much wider range

of traffic models, they are nonetheless stationary.

In many traffic situations the changing conditions or non-

stationarity can be safely ignored because, over the time scales

of interest, they have little effect – the process may be well ap-

proximated by a stationary model. However scaling properties

such as self-similarity and Long-Range Dependence (LRD) are

inherently defined over a range of scales, which may well en-

compass periods where stationarity is a poor approximation. In

this event, the question arises as to whether LRD is well defined,

and if so, how to estimate its parameters accurately. Standard

approaches – for example the R/S plot and Whittle estimators –

may be inaccurate to the point of indicating LRD exists when

in fact it does not [13], [18]. This failure of standard estimators

has led some to question the extensive body of data demonstrat-

ing LRD and self-similarity in data traffic. Furthermore the very

nature of LRD processes can cause confusion – the long term

correlations cause apparent trends, encouraging the erroneous

conclusion that the data is non-stationary.

The difficulties of distinguishing LRD and non-stationarity

are not avoided by measuring other features of the data. Even

the perennial sample mean is far more variable for LRD pro-

cesses, so a test for non-stationarity based on the sample mean

under Short Range Dependent (SRD) assumptions would lead

to incorrect conclusions if the process is, in fact, LRD. How-

ever a test for stationarity of the mean under LRD assumptions

requires a reliable estimate of the parameters of LRD! Hence it

is important to be able to measure LRD meaningfully and accu-

rately without a priori knowledge of whether or not a data set is

non-stationary, or the exact form a non-stationary may take.

We present a set of tests of the Abry-Veitch (AV) estimator

for the parameters of LRD [21], [20], and demonstrate that it

is robust to a broad class of non-stationary behavior; that is,

the AV estimator remains accurate even when the assumption of

stationarity upon which it was based is invalid. We explain the

reasons for its robustness, determine its limitations, and suggest

methods for mitigating any residual bias.

We take care to define, in Section II, a class of non-stationary

processes where LRD is well defined. Within this class the mean

and/or variance are allowed to change whilst the parameters of

LRD, including the Hurst parameter, remain well defined and

constant. In previous papers the AV estimator has been shown

to be robust to polynomial trends in the mean [4]. In this paper

we focus on the case where the mean and/or variance undergoes

a level shift, one of the simplest ways to produce a large bias

in estimators of the Hurst parameter. In this context, the mea-

surement of the Hurst parameter corresponds to measuring the

‘stationary part’ of the traffic under non-stationary conditions.

The AV estimator allows this to be achieved robustly.

We describe the AV estimator in Section III, and in Sections IV

its robustness is verified through simulation and well substanti-

ated arguments. The major result is that the AV estimator for H

remains unbiased except in the case of jumps in the mean which

are both large and sharp, where small biases (� 0:05) can be

introduced. The sensitivity of the results to parameters of the

analysis such as the wavelet basis is also discussed.

In addition to simulations we examine a real Ethernet dataset

in Section V which appears to contain a non-stationary level

shift. We show that the robustness property holds for this data

set, simultaneously verifying the robustness of the AV estimator

for real data, and the conclusion that Ethernet traffic is consis-

tent with a non-stationary LRD model.

The non-stationary LRD traffic models and robustness results

presented here lend credence to recent studies such as [8], [9],

[10], [4], [21] and [16] which use the AV estimator to demon-

strate LRD in data traffic, and to the study of LRD in traffic in

general. Furthermore, this study adds to the list of benefits of

using the AV estimator, which already includes a run time com-

plexity of only O(n), negligible bias, statistical efficiency [21],

the ability to be performed in real time [16], joint estimation of

LRD parameters other than just the Hurst parameter [21], [3],



[20], known confidence intervals for estimates [21], [4], [2], and

the possibility of performing a test of the constancy of H and

other scaling exponents [19].

II. THE TRAFFIC MODELS

A. Preliminaries

In this paper we deal with second order traffic modeling, that

is Gaussian models, where the autocovariance function and the

mean specify the model completely. In general terms the results

of the paper are also valid for non-Gaussian processes, however

in that case the second order statistics cannot specify the pro-

cesses fully. The models will be defined in discrete time, corre-

sponding to the discrete time series obtained from real data.

We define the mean of a processX(t) to bem
X

(t) = IE[X(t)],

and its variance as �2
X

(t) = IE[(X(t) �m

X

(t))

2

]. The autoco-

variance is given by R
X

(t; s) = IE[(X(t) � m

X

(t))(X(s) �

m

X

(s))], and the autocorrelation is defined to be �

X

(t; s) =

R

X

(t; s)=�

X

(t)�

X

(s). If X is stationary then the mean and

variance are the constantsm
X

and �2
X

respectively, and the auto-

covariance and autocorrelation are functions of the lag k = jt�

sj only, and we denote them byR
X

(k) and �

X

(k) = R

X

(k)=�

2

X

respectively. In the stationary case the Fourier Transform ofR
X

is known as the spectral density and we denote it by f
X

.

LRD is commonly defined by the slow, power-law decrease

in the autocovariance function of a second order stationary pro-

cess: R

X

(k) � c

r

jkj

�(1��), k ! 1, � 2 (0; 1), or equiva-

lently as the power-law divergence at the origin of its spectrum:

f

X

(�) � c

f

j�j

��, j�j ! 0, ([6], p.160). The power-law decay

is such that the sum of all correlations is always appreciable,

even if individually the correlations are small. The past there-

fore exerts a long term influence on the future, exaggerating the

impact of traffic variability and rendering statistical estimation

problematic. The main parameter of LRD is the dimensionless

scaling exponent �. It describes the qualitative nature of scal-

ing – how behavior on different scales is related. The second

parameter, c
r

or c
f

, is a quantitative parameter which gives a

measure of the magnitude of LRD induced effects. The two are

related by c
f

= 2(2�)

��

c




�(�) sin((1 � �)�=2), where � is

the Gamma function.

As an example of the importance of each parameter, consider

the statistical behavior of the sample mean estimator of the mean

of a stationary process X(t) with data length n. The classical

result is that for large n the sample mean follows a normal dis-

tribution, with expectation equal to m
X

, and variance �2
X

=n. In

the case where X is LRD the sample mean is also asymptoti-

cally normally distributed with mean m
X

, however the variance

is given by 2c

r

n

�

(1+�)�

�

1

n

[6]. Note that both c
r

and � appear in this

expression, but the variance does not. Note also that the vari-

ance in the LRD case shrinks at a slower rate with n than in the

classical case, so that for large n the confidence intervals will be

far larger than classical theory would predict.

Although LRD is typically defined in relation to the auto-

covariance function, an entirely equivalent definition could be

made in terms of the autocorrelation function:

�

W

(k) � c
r

jkj

�(1��)

; k !1 � 2 (0; 1); (1)

where the dimensionless constant c
r

� c

r

=�

2

X

has replaced c
r

,

which has the dimensions of variance. We adopt this normal-

ized way of defining LRD, as it is central to our generaliza-

tion to non-stationary LRD models. Note that both c
r

, and the

frequency domain equivalent c
f

, take values in (0; 1). Second

order stationary processes which are not LRD are called Short

Range Dependent (SRD), corresponding to � = 0.

It is common practice to describe LRD through the Hurst

parameter H = (1 + �)=2, though in fact H is the parame-

ter of self-similarity and is properly used to describe only self-

similar processes, which are non-stationary. The connection to

LRD is that if a process Y (with finite second moments) is self-

similar with parameter H 2 (0; 1), then its increment process

X(t) = Y (s+ t)� Y (s) is LRD with � = 2H � 1. We follow

this convention of writing H instead of �.

For simulation purposes sample paths of Fractional Gaussian

Noise (FGN) are generated using a standard spectral technique.

The FGN is a well known canonical Gaussian LRD process

which is the increment process of the Fractional Brownian Mo-

tion. The FGN Z(t) has autocorrelation function

�

Z

(k) =

1

2

�

jk + 1j

2H

� 2k

2H

+ jk � 1j

2H

�

; (2)

for k � 0. Note that if H =

1

2

then �

Z

(k) = 0 for all k � 1,

corresponding to white noise, but when H 6=

1

2

�

Z

(k) � H(2H � 1)k

2H�2

; k !1; (3)

identifying c
r

as c
r

= H(2H � 1). The identity given above

yields the following useful relation between the variance of a

FGN and its value of c
f

:

c

f

= �

2

Z

�2(2�)

1�2H

H(2H�1)�(2H�1) sin(�(1�H)); (4)

In this paper, by FGN we refer to FGN with �
Z

= 1, the so

called standard FGN. Further details on the FGN process can

be found in [6], [17].

B. A Stationary Class of LRD Models

Stationary models dominate traffic modeling, and performance

analysis in general. Formally, a stochastic process X(t) is sta-

tionary if, for each m, the m dimensional joint distribution of

fX(t

1

+ �); X(t

2

+ �); : : : ; X(t

m

+ �)g is independent of � for

any set of m times ft
1

; t

2

; : : : ; t

m

g.

A stationary Gaussian model for X(t) can be expressed as

two simple transformations of a stationary Gaussian processW (t)

with zero mean and unit variance. Namely the variance of the

normalized W (t) may be changed by multiplication, and the

mean changed by addition, yielding X(t;m;�;�

W

) = m +

�W (t), wherem and � are positive constants. The above param-

etrisation separates out the location parameterm
X

= m, and the

scale parameter �
X

= � of the process, from the shape parame-

ter, which is the role played by the entire, as yet unspecified, au-

tocorrelation function �

X

(k) = �

W

(k) = R

W

(k) = IE[W (t +

k)W (t)]. The autocovariance of X is just R
X

(k) = �

2

�

W

(k).

We now partially specify �

X

by requiring that X be LRD,

that is, we assume that it obeys (1). A semi-parametric class of

LRD traffic models can therefore be defined as

X(t;m;�;H; c
r

) = m+ �W (t;H; c
r

): (5)

C. A Non-Stationary Class of LRD models

Despite the dominance of stationary modeling, it has long

been known that traffic conditions do change. Stationary mod-

els, even fractal ones, are not always adequate. It is difficult



however to move to non-stationary paradigms, as there are so

many kinds of non-stationarity, and which ones are most ap-

propriate involves many unanswered empirical issues. In this

section we present a class of Non-Stationary LRD models (NS

LRD), where long range dependent processes are generalized

to allow non-stationarities of certain well defined kinds. More

specifically, we begin with a stationary LRD model, and define a

class of non-stationary variations by transforming it to induce a

change in the mean and/or variance, whilst the parameters mea-

suring the LRD, includingH , remain well defined and constant.

In this way some time-varying properties are allowed, and are

well defined, but important features of the original stationary

model remain, and remain well defined also.

A class of non-stationary LRD models for the traffic rateX(t)

is again given by transformation of the mean zero, unit variance

LRD W (t;H; c
r

), resulting in

X(t;m;�;H; c
r

) = m(t) + �(t)W (t;H; c
r

); (6)

where m(t) and �(t) are positive functions of time. Compar-

ing with (5), we see that the location and scale parameters have

become time varying, but the shape function �

W

, and its associ-

ated parameters (H; c
r

), do not change. In fact m
X

(t) = m(t),

and �2
X

(t) = �

2

(t) and

R

X

(t; s) = �(t)�(s)�

W

(t� s;H; c
r

);

�

X

(t; s) = �

W

(t� s;H; c
r

) � �

W

(k;H; c
r

): (7)

Thus, although the autocovariance function is no longer a func-

tion of the lag only, the autocorrelation function retains this

property despite the non-stationarities in location and scale. Since

we have used a definition of LRD based on such an autocor-

relation function, it remains well defined, and gives a precise

meaning to the notion of non-stationary LRD models, where the

LRD parameters (H; c
r

) retain their physical meanings, and re-

main constant. Thus, in this framework the estimation of (H; c
r

)

has the meaning of measuring the ‘stationary part’ of the non-

stationary traffic model. In this paper we concentrate on the

robust estimation of H . Although the estimation of c
r

in the

normal stationary context is well understood ([21], [20]), the es-

timation of c
r

in the non-stationary context is more difficult and

will be studied elsewhere.

For the remainder of the paper we will consider a particular

form ofm(t) and �(t), namely that of a level shift – a monotone

transition from one constant level to another, with a smoothness

parameter specifying the abruptness of the transition. The mo-

tivation for this is two-fold. First, by studying such changes of

level, we consider a conceptually simple yet quite extreme form

of non-stationarity which is also physically meaningful. Second,

as discussed in more detail below, it has already been shown [4]

how polynomial trends and trends well approximated by poly-

nomials are eliminated using a wavelet based estimator. Discon-

tinuous changes on the other hand are poorly approximated by

polynomials and require a separate treatment.

The level shifts are defined using the following family of tran-

sition functions:

T (t; J; S; L) = 1 +

J

2

+

J

�

arctan

�

t� L

S

�

; (8)

where J 2 IR is the size of the level shift, S � 0 is a smooth-

ness parameter, and L 2 IR is a location parameter. The tran-

sition is made from a level of 1 to 1 + J . In Figure 1 four
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Fig. 1. The transition functions, with jump size J = 1:0.
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members of the family are illustrated with smoothness values

S = f0; 40; 300; 1200g, each with J = 1 and L = 8192. The

same smoothness values are used in simulations although, due

to space limitations, typically only results for S = f0; 300gwill

be shown. The case S = 0 corresponds to the limit of the above

function as S ! 0 from above, namely a step function. The

smoothness parameter has the dimensions of time and gives a

measure of the duration of the ‘transition region’. A dimen-

sionless measure of the rapidity of change across the region,

a shape-like parameter, is given by J=S. Two jump sizes are

considered here, J = 2� and J = 4�. For simplicity we set

� = 1 in what follows. Data sequences are typically of length

n = 2

14

= 16384, with a level shift occurring in the middle, so

that L = n=2 as in Figure 1. Figure 2 shows an example data

sequence.

III. THE ABRY-VEITCH JOINT ESTIMATOR

In [21], [20] a semi-parametric joint estimator of LRD in the

frequency domain, i.e. of (H; c
f

), is described based on the Dis-

crete Wavelet Transform (DWT). We now summarize this ap-

proach and the properties of the estimator.

A. Wavelets and the Dyadic Grid

The Wavelet transform can be understood as a more flexible

form of a Fourier transform, where X(t) is transformed, not

into a frequency domain, but into a time-scale wavelet domain



(a; t), a 2 IR+, t 2 IR. The sinusoids of Fourier theory are re-

placed by wavelet basis functions  
a;t

(u) �  

0

(

u�t

a

)=

p

a gen-

erated by simple translations and dilations of the mother wavelet

 

0

, a band pass function with limited spread in both time and

frequency. The wavelet transform can thus be thought of as a

method of simultaneously observing a time series at a full range

of different scales a, whilst retaining the time dimension of the

original data. Multiresolution analysis theory [7], [1] shows that

no information is lost if we sample the continuous wavelet coef-

ficients at a sparse set of points in the time-scale plane known as

the dyadic grid, defined by (a; t) = (2

j

; 2

j

k), j; k 2 IN , lead-

ing to the Discrete Wavelet Transform with discrete coefficients

d

X

(j; k) known as details. By using the DWT very significant

computational advantages are gained, as the details can be com-

puted by a fast pyramidal algorithm with complexity of only

O(n). In fact the computational load and memory requirements

are so low that real-time implementations are possible with in-

expensive hardware [16]. Henceforth we deal exclusively with

the details of the DWT. The octave j is simply the base 2 log-

arithm of scale a = 2

j , and k plays the role of time (although

a time whose rate varies with j). For finite data of length n, j

will vary from j = 1, up to some j
2

� log

2

(n). The number of

coefficients available at octave j is denoted by n
j

' n=2

j .

B. The Logscale Diagram

The wavelet approach is so effective for the analysis of scal-

ing phenomenon because the wavelet basis themselves possess a

scaling property, and therefore generate a matched ‘co-ordinate

system’ naturally suited to the study of scaling. The practi-

cal outcome is that the LRD in the time domain is reduced to

residual short range correlation in the wavelet coefficient plane

fj; kg, thus removing entirely the special estimation difficulties.

In fact for each fixed j, we can regarded the detail series d
X

(j; �)

as a stationary process with weak short range dependence, and

the series as uncorrelated across scales. To exploit these proper-

ties, averages are taken across time, to form

�

j

=

1

n

j

n

j

X

k=1

jd

X

(j; k)j

2

: (9)

The random variable �
j

is a non-parametric, unbiased estimator

of the variance of d
X

(j; �) (the means of the details are zero),

and can be thought of as a way of concentrating the gross sec-

ond order behavior of X at octave j. Furthermore, the �
j

are

themselves only weakly dependent, so the analysis of each scale

is largely decoupled from that at other scales. To analyze the

second order dependence of X(t) on scale therefore, we are

naturally lead to study �

j

as a function of j. Since we con-

sider LRD to be essentially a power-law behavior of second or-

der moments, this is naturally done in a log-log plot, called the

Logscale Diagram, examples of which appear throughout the

paper, for example in Figure 3. Note that the vertical confidence

intervals about each of the y
j

= log

2

(�

j

) increase with j since

n

j+1

= n

j

=2. (Note that in forming y
j

small corrective terms

are in fact subtracted from log

2

(�

j

)). Prior to any estimation

LRD must first be detected by detecting regions of alignment in

the Logscale Diagram from some lower scale j
1

up to the largest

scale in the data. Further discussion on the use of the Logscale

Diagram and detailed issues which cannot be entered into here

can be found in [4], [21], [5], [3].

C. The Estimator

Assuming that a valid alignment has been detected between

octaves j
1

and j
2

, the Abry-Veitch joint estimator of the LRD

parameters (�; c

f

) can then be used by performing a weighted

linear regression over the scales j 2 [j

1

; j

2

]. Exact expressions

for the weights are available in terms of special functions [21],

however for moderate to large n
j

they are very well approxi-

mated by 2(log

2

e)

2

=n

j

at octave j. The slope of the regression

is simply the exponent�, andH is estimated as ^

H = (1+ �̂)=2.

The estimator ĉ
f

of c
f

is related to the intercept of the regression:

ĉ

f

= p2

â where â is the intercept and p a known bias correc-

tion factor (see [21] for details). The normalized form can be

estimated using ^c
f

= ĉ

f

=S

2 where S2 is the unbiased sample

variance estimator of the variance of X . It can be shown that

this joint estimator, under some additional technical hypotheses

[21], [3], is unbiased and has very close to minimal variance. It

performs well under deviations from the said hypotheses, and is

close to unbiased in practice even for short sequences. Note that

the multiplication of X(t) by a factor � induces corresponding

factors of �2 in c
f

and ĉ
f

, but does not affect H or c
f

, nor their

estimates. Further details of the wavelet based estimation of H ,

can be found in [4], [21], [5], [2], [3].

An important flexibility inherent in the wavelet based analysis

is the ability to freely choose a property of the mother wavelet,

the number N of vanishing moments [7]. This property has im-

portant implications with respect to robustness to smooth addi-

tive trends [4]. More precisely, if p(t) is a polynomial of order s

with s < N , then the details of X(t) = p(t) +W (t) will be the

same as those of W (t), as wavelets with N > s are ‘blind’ to

such polynomials. The polluting polynomial does not have to be

small in magnitude, it can in fact be far larger than the random

signal itself. In practice, estimation bias due to the presence of

deterministic ‘trends’ which are smooth, though not polynomial,

can also be largely eliminated [4], [3]. Such trends include si-

nusoidal, power-law decreasing, and even power-law increasing

functions (provided their exponent does not exceed that of the

stochastic component). Discontinuous ’trends’ however cannot

be eliminated in this way, motivating us to study them here.

IV. ROBUSTNESS TESTS

In this section we investigate level changes in mean and vari-

ance separately. Models which are particular combinations of

level changes in mean and variance can be naturally understood

by combining the individual effects of the mean and variance

transformations in the appropriate way.

A. Robustness to Mean Level Changes

We begin by investigating the robust estimation of (H; c
f

) of

a standard FGN to which a transition function has been added,

corresponding to an increase in mean with constant variance:

X(t) = T (t; J; S; n=2) +W (t;H; c
f

): (10)

Note that for this model c
f

remains well defined, as the variance

is constant. We therefore include estimates for c
f

using the joint

AV estimator [21], though the focus will remain on H .

Apart from the work mentioned above where use is made of

the vanishing moments of the wavelets, there is some previ-

ous work on the efficient detection of LRD and measurement

of H in the presence of deterministic non-stationarities in the



Stationary FGN Estimates NS FGN: Mean Shift Variance Shift

H S J

^

H ĉ

f

^

H ĉ

f

^

H

0.50 0 4.0 0.498� 0.0032 0.9792 0.555� 0.0029 0.7743 0.497� 0.0034

2.0 0.521� 0.0029 0.8907 0.498� 0.0031

40 4.0 0.515� 0.0029 0.9096 0.497� 0.0033

2.0 0.505� 0.0028 0.9515 0.498� 0.0031

300 4.0 0.498� 0.0029 0.9782 0.497� 0.0032

2.0 0.498� 0.0029 0.9790 0.498� 0.0030

1200 4.0 0.498� 0.0029 0.9793 0.498� 0.0030

2.0 0.498� 0.0029 0.9793 0.498� 0.0029

0.80 0 4.0 0.799� 0.0032 0.2716 0.811� 0.0035 0.2581 0.799� 0.0051

2.0 0.802� 0.0036 0.2679 0.799� 0.0047

40 4.0 0.801� 0.0036 0.2689 0.799� 0.0051

2.0 0.799� 0.0036 0.2710 0.799� 0.0046

300 4.0 0.799� 0.0036 0.2715 0.799� 0.0049

2.0 0.799� 0.0036 0.2716 0.799� 0.0045

1200 4.0 0.799� 0.0036 0.2716 0.799� 0.0046

2.0 0.799� 0.0036 0.2716 0.799� 0.0043

TABLE I

HURST PARAMETER ESTIMATES WITH j

1

= 2 BEFORE AND AFTER A MEAN CHANGE OR A VARIANCE CHANGE. EACH OF THE RESULTS ^

H AND ĉ

f

ARE

THE AVERAGE OF 30 TESTS. IN ADDITION FOR H THE 95% CONFIDENCE INTERVALS ARE SHOWN, BASED ON THE KNOWN PERFORMANCE OF THE

ESTIMATOR FOR THE STATIONARY FGN AND THE VARIANCE OF THE 30 TESTS IN THE NS FGN CASES.

mean. In [18] modifications to estimators of Whittle type al-

low LRD and two kinds of non-stationarities in the mean: levels

changes and decreasing power-law trends, to be distinguished.

We show below that the wavelet-based approach outlined here

is more powerful as it allows for robust estimation without the

need for a preliminary analysis to check for and to determine the

type of non-stationarity, and a wider range of non-stationarities

are allowed. It also leads to estimates where the bias due to the

non-stationarities is lower.

We perform the AV estimation procedure both on realizations

of standard FGN, and on those same realizations after transfor-

mation, and compare the two. As noted in [21], although FGN

has an almost ‘pure’ power-law spectrum, not all scales can be

used due mainly to the presence of initialization errors in the

wavelet decomposition. The lower cutoff scale used in the esti-

mation is therefore set to j
1

= 2.

The estimates of H and c
f

presented in Table I are averages

of AV estimates over 30 realizations, and can be thought of as

estimates of the expectation of the estimators. The 95% con-

fidence intervals noted in the table – measured in the NS case

and known in the stationary case – indicate the variance of the

average estimates, and can therefore be used to compare the sta-

tionary and non-stationary results. It is important to understand

that, since the transformations are deterministic, in Table I we

are not so much interested in the statistical performance of the

estimators, but rather the systematic change in the estimates in-

duced by the transformation. Indeed the performance before the

transformation is already known for both H and c
f

.

The first two result columns show the estimates of (H; c
f

) ob-

tained for the original stationary FGN, to be used as a control.

The second column shows the NS FGN estimates after the mean

level shift transformation. It is seen that, except in 5 cases, the

NS estimates of H fall within the control confidence intervals

based on the stationary FGN. The exceptions: (H;S; J) =

(0:5; 0; 2), (0:5; 0; 4), (0:5; 40; 2), (0:5; 40; 4), (0:8; 0; 4), occur

when the transition is sharp and the level shift large, and are

more severe for low H . The changes in the estimates for c
f

are

also only notable for sharp, large shifts. Moreover, even in the

most extreme case the bias is � 10% – hence it is very unlikely

that apparent strong evidence for LRD, such as a measurement
^

H > 0:6, is in fact due to non-stationarity in the mean. Fur-

thermore, any non-stationarity large and sharp enough to cause

a 10% bias is easy to detect as the jump size is of the order of

four times the standard deviation of the process.

For a deeper understanding of these results we must examine

the Logscale Diagrams of the data. The deterministic changes

caused by the addition of the transition function can be observed

by superposing in the same Logscale Diagram the results before

and after the transformation, as shown in Figure 3 for two values

of H . Again, averages of 30 realizations are given to show the

systematic changes due to the transformation. These average y
j

values can be taken to be valid estimates of the expectation of

the respective y
j

’s. The vertical 95% confidence intervals shown

correspond to a single observation, and were calculated based on

the 30 measurements of the NS y
j

’s.

When H = 0:8 we can see in Figure 3, that in most cases

there is very little change between the mean y
j

’s for the NS FGN

and the stationary FGN. Hence the accuracy of the estimates of

(H; c

f

). When there is a large, sharp jump (for instance J =

4; S = 0) there is a noticeable deviation at higher scales from

the values of y
j

for the stationary control. This leads to bias in

the estimates, though it is limited because the regression used to

estimate (H; c

f

) from the y
j

is weighted, giving less weight to

higher scales. This corruption of the higher scale y
j

’s is more

evident when the Hurst parameter is smaller. It is most evident

in Figure 3 when H = 0:5.

To explain the results we examine Figure 4 which shows the

Logscale Diagrams of the transitions functions T (t; J; S; L) de-
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Fig. 3. Logscale Diagrams for a shift in the mean. The (*) show the sample mean of the y
j

for the NS FGN, and the squares show the sample mean for the original
FGN realizations. The vertical lines show the one standard deviation of the NS FGN results. The smoothness and jump size parameters are shown in the figures.

fined in (8). These are obtained exactly as if the process were

stochastic, that is, the wavelet transform is performed, the av-

erage squared coefficient at each octave is computed, and the

y

j

’s are calculated by taking the log (after removing the small

logarithm generated bias term).

Observe that, just as for LRD processes, the y
j

are increasing

with j, and are larger for larger J , and smaller S. That is, the y
j

for a transition function increase when the level shift in the mean

is larger and sharper, and are approximately linear in j. Figure 4

also shows the Logscale Diagrams for a set of realizations of

FGN with H = 0:5; 0:6; 0:7; 0:8 and 0:9.

Now the DWT is built from linear filters, and is therefore lin-

ear. Furthermore the computation of the �
j

is approximately

linear, so that, if we take M signals Xm

t

with mean squared

detail at scale j of �m
j

then, as n
j

! 1, the estimates of �
j

follow
�

j

!

X

m

�

m

j

; (11)

We can consider the NS FGN with a mean level shift to be

constructed from two parts, a LRD stochastic processW (t), and

a deterministic mean rate m(t). The sum of X(t) = m(t) +

W (t), is used to give the coefficients �X
j

, which we now know

can be approximated by �

X

j

= �

m

j

+ �

W

j

. Since, to obtain

y

X

j

, we essentially take the log of �
j

, if the ratio of �m
j

to �W
j

is large (resp. small), then the response of m(t) (resp. W (t))

will dominate the result. In Figure 4 the sizes of the y
j

for both

components of X(t) appear in the same Logscale Diagram and

can be compared. It is seen that in most cases the coefficients

for the FGN are significantly larger than those for m(t) (note

the log scale), the exception being that those for the transition

function dominate for large j when S = 0.

The conclusion is that, except for large j in the case of very

abrupt jumps with large magnitude, the FGN dominates the Log-

scale Diagram, and therefore we obtain accurate estimates of y
j

.

The accuracy of the estimates of H and c
f

clearly follows from

that of the y
j

. However even when the upper scale y
j

’s are in-
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accurate the resultant estimate for (H; c
f

) is not strongly biased

because, as noted above, the weighted regression underlying the

estimator places less weight on the higher scale data, as these

have naturally greater variability.

B. Robustness to Variance Changes

We next consider the robust estimation of H of a standard

FGN transformed by multiplication by a transition function,

corresponding to a level increase in variance with constant mean:

X(t) = T (t; J; S; n=2) �W (t;H; c
f

): (12)

Now that the variance of X is time varying, c
f

is no longer de-

fined, and we do not consider it here.

Table I shows the effect of the level change in variance on the

estimates of the Hurst parameter. The results are again the av-

erage of 30 realizations. Note that the change in variance intro-

duces only very minor variation in the Hurst parameter estimates

– we can conclude that no significant bias is introduced.

We can explain this result by considering the Logscale Di-

agram shown in Figure 5. The plot shows three superimposed

Logscale Diagrams, each of which displays averaged results over

transformations of the same 30 realizations of an underlying sta-

tionary FGN. The lower and upper rows of points correspond to

the underlying FGN with standard deviations matched to that of

the NS FGN at time zero and at time n (the end of the data). The

NS FGN plot is the one lying between these two extremes.

The figure displays the main feature of a change in variance.

Each y
j

is shifted so that it lies directly between the y
j

of the sta-

tionary process with the same variance as the initial (smallest)

variance of the NS FGN, and the y
j

of the stationary process

with the final (largest) variance of the NS FGN. The effect is

similar for the H = 0:5 case (space limitations prevent showing

the plots here). This effect is to be expected. The y-intercept

of the Logscale Diagram for the stationary FGN is directly re-

lated to c
f

(see Section III-C) and the variance of each process

is proportional to its value of c
f

via (4). The NS FGN variance

function lies between the constant variances of the two station-

ary FGNs and therefore the y
j

of the NS FGN curve should lie

between the y
j

of the two extremes. The same conclusion fol-
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Fig. 5. An example Logscale Diagram for a change in the variance, H = 0:8.
The (*) show the sample mean of the y

j

for the NS FGN, and the (2) and (�)
show the sample mean of the y

j

’s for FGN processes with variance matched
to that of the NS FGN at time 0 and time n respectively. The vertical lines
show the one standard deviation of the NS FGN results.

lows from the observation that the �
j

� 2

y

j , in both the station-

ary or non-stationary cases, is a measure of the average energy

in the data at scale j, and an increase in variance corresponds to

an increase in energy.

A further, key observation is that the size of the shift is almost

the same for each j, that is the NS FGN curve appears to be sim-

ply a shifted version of the stationary curves. The slope of the

NS FGN curve is therefore almost the same as before the trans-

formation, and therefore the estimate of H will be essentially

unchanged as observed above.

Again the explanation for this behavior lies in the linearity

of the estimates. We consider the extreme case – a jump shift

discontinuity. The process can be decomposed into two process

– one which is just a stationary FGN, and a second, which is

zero for the first half of the data sequence and a stationary FGN

for the second half. By linearity the �
j

for the original process

will be �
j

= �

(1)

j

+ �

(2)

j

, where �
(1)

j

and �
(2)

j

are those for

the stationary FGN and the FGN which starts half way through

the data sequence. The former is well understood (as it is just

that for a stationary FGN) while the later will be those for a

stationary FGN of half the length of the original data – the zero

terms will not contribute anything, and the edge effects can be



assumed to be minimal in this context. Hence the final �
j

are

given by �
(1)

j

shifted by an amount such that in the Logscale

plot the shift is almost constant.

C. Sensitivity to Other Parameters

The previous sections have all used the same length sequences,

and the same wavelet bases for the purposes of comparison, but

it is important to study the sensitivity of the results to sequence

length and to wavelet basis.

First we varied the sequence length from 2

14 to 2

18 data points.

The same transformations were performed, though the smooth-

ness parameter was scaled by S0 = Sn

0

=n in order that the tran-

sition region takes up the same proportion of the total length of

the data. We find that overall the bias remains at a similar level

for this increase in sequence length leading us to the conclusion

that our results are not highly sensitive to the length of the data.

We next examined the sensitivity to the wavelet basis func-

tions. Previously in this paper we have used a single wavelet

basis for the DWT, namely the Daubechies wavelet basis with

N = 5 vanishing moments. We also examined the behavior

both for the Daubechies wavelet basis with 3 vanishing mo-

ments (with filters 6 taps long), and with N = 10 (filters 20

taps long). The most noticeable effect is that when we have

more vanishing moments in the wavelet basis the coefficients

y

j

for the transition function are lower. This is beneficial be-

cause it improves the performance of the estimator in the pres-

ence of non-stationarity, but it comes at the cost of a reduction

in the amount of data n
j

available at each scale, resulting in ad-

ditional variance in the estimation, and extra computation due to

the longer filters used.

This effect can be predicted, by approximating the level shift

by a polynomial, from the robustness with respect to N dis-

cussed in Section III-C. Unfortunately the improvement gained

by increasing the number of vanishing moments diminishes, and

values beyond N = 5 seem to give little improvement (see [1]

for more details of such effects).

V. REAL DATA EXAMPLE

The preceding results are based upon FGN, and the question

arises, “How robust is the AV estimator when applied to real

data?” This section demonstrates that the robustness of the AV

estimator extends to real data by testing an Ethernet data set with

an obvious level shift in the mean. The data set is byte counts in

10ms intervals from the ‘pOct’ Bellcore trace [12].

The jump can be clearly seen in Figure 6, which shows the

data over intervals of 10 seconds for easier visualization. The

data shows a distinct level shift in mean at about 1050 seconds

– the mean estimates to the left and right of the transition region

are 2:40 and 4:14 respectively (the exact intervals of measure-

ments are shown in the figure). The variance also increases in

the same region, going from 7:3 to 9:5 as measured over the

same intervals. The mean therefore jumps by J = 1:73 and the

variance by a multiplicative factor of J = 1:3, a mixture of a

mean and variance shift.

It has already been shown in [4] that Hurst parameter esti-

mates using the AV estimator to the right and the left of the level

shift agree both with each other, and with the estimate made

over the whole data set. The work in [4] does not, however,

fully explain how to reconcile these observations, with the non-

stationarity in the mean. It is now possible to recognize that H

may remain constant regardless of the non-stationarity in mean

and variance, and explain the AV estimator’s robustness in the

presence of this non-stationarity.

In addition, the model allows us to meaningfully transform

the data to remove the non-stationarity, and measure the Hurst

parameter under stationary conditions for further comparison.

The results are shown in Table II where it is clear that no notice-

able error has been introduced by the non-stationarity.

^

H 95% CI

original data 0.779 � 0.0072

corrected data 0.779 � 0.0072

data interval (150,950) 0.769 � 0.0108

data interval (1170,1750) 0.779 � 0.0128

TABLE II

THE HURST PARAMETER ESTIMATES FOR THE ORIGINAL DATA, THE DATA

ONCE THE NON-STATIONARITY IN THE MEAN IS REMOVED, AND THE DATA

ON THE TWO INDICATED TIME INTERVALS.

We removed the mean level shift by fitting a transition func-

tion to the data by estimating the mean over the first segment

shown in Figure 6(a), and then the parameters of the transition

function: the transition point, jump size and smoothness. The

latter was done using Matlab’s non-linear minimization func-

tion fmins which performs the Nelder-Mead simplex search

described in [14], [11]. The key point here is that we wish

to show robustness, not absolute accuracy, and hence a simple

method for modeling the level shift is quite sufficient. Once the

transition function is fitted it can be subtracted to obtain a pro-

cess with an approximately stationary mean. We do not attempt

to fix the variance as we have shown that this will have negligi-

ble effect on the results.

Finally Figure 6 shows the Logscale Diagrams for the original

data and the corrected data. We can see that the two Logscale

Diagrams are almost exactly the same except for a small discrep-

ancy at higher scales, which has little effect due to the weighted

regression. The figure also shows the log-scale response to the

transition function used to model the change in mean. The re-

sponse is significantly lower than that of the data sequence and

hence the transition has little effect on the estimates.

VI. MITIGATION

The effects of a mean level shift appear at the higher scales.

They could therefore be almost completely eliminated by choos-

ing an upper scale for the regression analysis (which underlies

the estimation of (H; c
f

) from the Logscale Diagram). By tak-

ing j
2

= 6 for example the bias is almost completely removed.

Even in the worst case of S = 0 and J = 4:0, the average re-

sults for ^

H after transformation are 0:509 � 0:0035 compared

to the average over the 30 stationary FGN’s which yield 0:497

� 0:0038, a bias of only 0:01.

If the properties of the jump were known, we could predict the

upper scale to be used in the regression. In practice we might

not know the exact nature of the jump, but the argument could

be used in an approximate sense in the selection of a mitigating

upper cutoff. Alternatively a procedure could be used to pick the

scales to be used in the regression using heuristic arguments.
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VII. CONCLUSION

Our main finding is that the AV estimator is very robust, al-

lowing accurate estimates to be made of the Hurst parameter,

despite non-stationarities in the mean and variance, specifically

level shifts. We illustrate this robustness, explain its origin, and

indicate when the residual bias due to the non-stationarities may

be appreciable and how it can be minimized.

As an essential precursor to the robustness study, a broad class

of non-stationary LRD processes were defined. They allow a

well defined separation of the mean and variance, which are al-

lowed to be time varying, from the time constant parameters,

including the LRD parameters, which remain well defined de-

spite the non-stationarity.

Non-stationarity and LRD can be confused, and therefore it is

particularly important to have robust estimators that do not need

the full details of the traffic before valid estimation can take

place. Although the focus here was on level shifts, this repre-

sents in some sense a worst case, and we expect that the robust-

ness found will hold for a very wide range of non-stationarities.

This has already been shown in the case of the mean (additive

trend) in [4]. Thus, the AV estimator allows the Hurst parameter

to be measured, and in particular the question of the presence or

absence of LRD decided, without any need to tackle in advance

or simultaneously the difficult stationary issue. This is an enor-

mous practical advantage. Once it is known that LRD is or is not

present, then analysis of any non-stationarities can be tackled in

a far more informed way.

An Ethernet data set was studied where a clear level shift non-

stationarities was found. The non-stationary LRD model was

used to explain the time variation of the data, and the robustness

of the wavelet based estimator was used to measure its Hurst

parameter, confirming previous work in [4] which had observed

the robustness for this same data set without a full explanation.
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