
Real-Time Measurement of Long-Range Dependen
e in ATM

Networks

Matthew Roughan

1

, Darryl Veit
h

1

, Jennifer Yates

2

Martin Ahsberg

1

, Hans Elgelid

1

,

Mauri
e Castro

3

, Mi
hael Dwyer

1

and Patri
e Abry

4

,

1 - Department of Ele
tri
al Engineering, University of Melbourne, Vi
toria 3010, Australia.

E-mail: fm.roughan,d.veit
h,m.dwyerg�ee.mu.oz.au

2 - AT&T Resear
h Laboratories, 180 Park Avenue, P.O. Box 971, Florham Park, NJ 07932-0000, USA

E-mail: jyates�resear
h.att.
om

3 - SERC, RMIT University, Level 3, 110 Vi
toria St, Carlton, Vi
 3053, Australia

E-mail: mauri
e�ser
.rmit.edu.au

4 - CNRS UMR 5672, Laboratoire de Physique, 46, allee d'Italie, E
ole Normale Superieure de Lyon, 69364 Lyon, Fran
e.

E-mail: Patri
e.Abry�ens-lyon.fr

Abstra
t|We demonstrate the appli
ation of the

on-line version of the Abry-Veit
h wavelet based

estimator of the Hurst parameter to ATM traÆ



arried over an OC3 link at 155 Mbps. The esti-

mator has very low memory and 
omputational re-

quirements and s
ales naturally to arbitrarily high

data rates, enabling its use in real-time appli
ations

su
h as admission 
ontrol, and avoiding the need to

store huge data sets for o�-line analysis.

I. Introdu
tion

TraÆ
 measurements are vital to the provision-

ing of reliable, eÆ
ient Quality of Servi
e (QoS)

over data networks. Su
h measurements are useful

for generating referen
e loads for testing equip-

ment, and are a ne
essary ingredient in any ap-

pli
ation whi
h tries to optimise network perfor-

man
e, from network planning and dimensioning

tools to 
all admission 
ontrol algorithms. Re
ent

measurements of data traÆ
, for instan
e [1℄, [2℄,

have dis
overed its fra
tal, self-similar, or long-

range dependent nature { the traÆ
 shows bursti-

ness on many times s
ales: from millise
onds up

to hours, or days. This behaviour has been proven

to have important impa
ts on the performan
e

of systems, however, until re
ently it has been

prohibitively expensive to obtain measurements of

these 
hara
teristi
s, preventing their use in day-

to-day operations.

To gain a true understanding of the traÆ
 
ar-

ried on a network, detailed 
ontinuous measure-

ments should be taken at many pla
es in the net-

work { ideally at any point where 
ongestion might

o

ur. Of 
ourse the volume of data generated

through ubiquitous monitoring 
an be vast (
on-
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sider a few se
onds worth of data running at Giga-

bit/s speeds...), and so in-situ pro
essing is greatly

desirable to redu
e the data to a managable and

easily interpreted form. Su
h pro
essing should be

performed on-line and in real-time in order that

network measurements be 
ontinuously available,

and must be made with inexpensive equipment if it

is to be almost ubiquitous. If this 
an be a
hieved

then these results 
an be used in real-time appli
a-

tions su
h as Call Admission Control (CAC), rate

adaptation, or 
ongestion 
ontrol.

The NLANR, in 
o-ordination with MCI, as part

of the CORAL proje
t [3℄, [4℄, [5℄, [6℄, [7℄, has de-

veloped a suite of OCXmon(itors), whi
h allow

non-invasive measurement of opti
al links (OC3 -

155 Mbs, OC12 - 622 Mps) 
arrying ATM traÆ
.

We have adapted their work to allow the mea-

surement of the fra
tal 
hara
teristi
s of traÆ
 in

real-time, as the data is 
olle
ted.

The 
ore of our work is based on the Abry-

Veit
h estimator of the parameters of Long-Range

Dependen
e (LRD) whi
h uses the wavelet trans-

form to measure the degree of self-similarity in

the traÆ
 (details of whi
h are summarized be-

low and 
an be found in [8℄, [9℄). The wavelet

transform is a natural tool for su
h work be
ause

of the intrinsi
 s
aling properties of wavelets, and

the eÆ
ien
y of the transform, whi
h 
an even be


omputed in real-time as data is 
olle
ted. In ad-

dition, the statisti
al properties of this algorithm

(zero bias, 1/n eÆ
ien
y, and robustness [10℄, [11℄)

are better than any 
urrently known alternative.

The estimator has very low memory and 
ompu-

tational requirements and s
ales naturally to arbi-

trarily high data rates. It is therefore perfe
t for

use in real-time appli
ations su
h as CAC.

In [12℄ we showed that the estimator 
ould be



applied to estimatingH in real-time, simply, rapidly,

and with very low memory requirements. The pa-

per applied the method to Ethernet traÆ
 at 10

Mbps, but we noted that the method should s
ale

to arbitrary traÆ
 rates with respe
t to both mem-

ory and pro
essing requirements, so that it will re-

main appli
able as data rates in
rease with time.

This paper graphi
ally demonstrates this s
aling

by applying the estimator to ATM (Asyn
hronous

Transfer Mode) traÆ
 at 155 Mbps.

This paper is organised as follows. In Se
tion II

we des
ribe the Abry-Veit
h joint estimator for the

parameters of long-range dependen
e, and in Se
-

tion III we des
ribe the online implementation of

the estimator. Both have been des
ribed in detail

elsewhere [8℄, [12℄ so only a summary is in
luded

here. Se
tion IV des
ribes the implementation is-

sues relating to the measurement of ATM traf-

�
, and an ar
hite
ture whi
h satis�es all of the

requirements for su
h a system. Se
tion V then

des
ribes the a
tual measurement in real-time of

the parameters of long-range dependen
e for arti-

�
ially generated traÆ
.

II. The Abry-Veit
h (AV) estimator

In any data measurement situation a basi
 the-

oreti
al framework is required through whi
h to

view the data, to sele
t important parameters whi
h

des
ribe it, and to propose and evaluate estima-

tors of them. In our 
ase the time varying rate

x(t) of in
oming traÆ
 is the data of interest,

and we model it as a stationary sto
hasti
 pro-


ess. Basi
 features of this pro
ess are its mean

�

x

= E[x℄, varian
e �

2

x

= E[(x� �

x

)

2

℄, and 
orre-

lation fun
tion 


x

(k) = E[(x(t + k) � �

x

)(x(t) �

�

x

)℄. In this 
ontext the self-similar properties of

traÆ
 manifest themselves in a parti
ular form of




x

(k), namely a de
rease with lag k so slow that

the sum of all 
orrelations downstream from any

given time instant is always appre
iable, even if

individually the 
orrelations are small. The past

therefore exerts a long term in
uen
e on the fu-

ture, exaggerating the impa
t of traÆ
 variabil-

ity and rendering statisti
al estimation problem-

ati
. This phenomenon is known as Long Range

Dependen
e (LRD), and is 
ommonly de�ned as




x

(k) � 





jkj

�(1��)

, � 2 (0; 1), or equivalently as

the power-law divergen
e at the origin of its spe
-

trum: f

x

(�) � 


f

j�j

��

; j�j ! 0. The Hurst pa-

rameter,H, des
ribes the (asymptoti
) self-similarity

of the 
umulative traÆ
 pro
ess 
orresponding to

x(t) whi
h generates the LRD of x(t), itself de-

s
ribed by �. It is nonetheless 
ommon pra
ti
e

to speak of H in relation to LRD. The two are

related as H = (1 + �)=2.

In [8℄, [9℄ (see also [13℄, [11℄, [14℄, [12℄, [10℄)

a semi-parametri
 joint estimator of (�; 


f

) is de-

s
ribed based on the Dis
rete Wavelet Transform.

Wavelet transforms in general 
an be understood

as a more 
exible form of a Fourier transform,

where x(t) is transformed, not into a frequen
y do-

main, but into a time-s
ale wavelet domain. The

sinusoidal fun
tions of Fourier theory are repla
ed

by wavelet basis fun
tions  

a;t

(u) �  

0

(

u�t

a

)=

p

a,

a 2 IR

+

, t 2 IR generated by simple translations

and dilations of the the mother wavelet  

0

, a band

pass fun
tion with limited spread in both time

and frequen
y. The wavelet transform 
an thus be

thought of as a method of simultaneously observ-

ing a time series at a full range of di�erent s
ales a,

whilst retaining the time dimension of the original

data. Multiresolution analysis theory shows that

no information is lost if we sample the 
ontinuous

wavelet 
oeÆ
ients at a sparse set of points in the

time-s
ale plane known as the dyadi
 grid, de�ned

by (a; t) = (2

j

; 2

j

k), j; k 2 IN , leading to the Dis-


rete Wavelet Transform with dis
rete 
oeÆ
ients

d

x

(j; k) known as details. Hen
eforth we will deal

ex
lusively with the details of the Dis
rete Wavelet

Transform. The o
tave j is simply the base 2 loga-

rithm of s
ale a = 2

j

, and k plays the role of time

(although a time whose rate varies with j). For

�nite data of length n, j will vary from j = 1, the

�nest s
ale in the data, up to some j

max

� log

2

(n).

The number of 
oeÆ
ients available at o
tave j is

denoted by n

j

, and approximately halves with ea
h

in
rease of j.

The estimator has ex
ellent 
omputational prop-

erties due to the fast `pyramidal' �lter-bank algo-

rithm [15℄ for 
al
ulation of the dis
rete wavelet

transform, whi
h has a 
omplexity of only O(n).

The number of wavelet 
oeÆ
ients d

x

(j; k) thus

generated is also of order n, and subsequent 
om-

putations required to form the estimate of H from

them have only this 
omplexity. The overall 
om-

plexity therefore remainsO(n), whi
h 
learly s
ales

satisfa
torily.

The main feature of the wavelet approa
h whi
h



makes it so e�e
tive for the statisti
al analysis of

s
aling phenomenon su
h as LRD is the fa
t that

the wavelet basis fun
tions themselves possess a

s
aling property, and therefore 
onstitute an opti-

mal `
o-ordinate system' from whi
h to view su
h

phenomena. The main pra
ti
al out
ome is that

the LRD in the time domain representation is re-

du
ed to residual short range 
orrelation in the

wavelet 
oeÆ
ient plane fj; kg, thus removing en-

tirely the spe
ial estimation diÆ
ulties. Thus for

ea
h �xed j, the series d

x

(j; �) 
an be regarded as

a stationary pro
ess with weak short-range depen-

den
e, and these series 
an be regarded as almost

independent of ea
h other.

We 
an now outline the estimator as 
onsisting

of the following three stages:

1. Wavelet de
omposition A dis
rete wavelet

transform of the data is performed, generating the

details d

x

(j; k) over the dyadi
 grid.

2. Detail varian
e estimation At ea
h �xed o
-

tave j the details are squared then averaged a
ross

`time' k to produ
e an (ex
ellent) estimate of the

varian
e of the wavelet 
oeÆ
ients, 
alled �

j

. It

has been shown that the �

j

follow a power-law in

j with exponent �.

3. LRD parameters estimationA plot, referred

to as the Logs
ale Diagram, is made of y

j

= log

2

(�

j

)

against j 
omplete with 
on�den
e intervals, and

from it the range of o
taves [j

1

; j

2

℄ where s
aling

o

urs is determined. The LRD parametersH and




f

are then extra
ted by performing a weighted lin-

ear regression over those s
ales.

Notes:

� Sin
e the expe
tations of the details are all iden-

ti
ally zero [13℄, the average of the squares of the

details at a given j is an estimate of the varian
e

at that j.

� In forming y

j

small 
orre
tive terms g(j) are in

fa
t subtra
ted from log

2

(�

j

) to a

ount for the

fa
t that E [log℄ (�) 6= log(E [�℄).

� H is related to the slope of the plot, and 


f

to a

power of the inter
ept.

� The weights are the known varian
es of the y

j

and do not depend on the data.

� Con�den
e intervals for H are derived from the

standard varian
e formulae for weighted linear re-

gression with mutually independent y

j

, and so again

are not fun
tions of the data.

An example of the Logs
ale Diagram and re-

gression �t using a simulated data set is given in

Figure 1. The 95% 
on�den
e intervals for ea
h

y

j

, shown as verti
al lines at ea
h o
tave j, are

seen to in
rease with j.
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Fig. 1. An example of the Logs
ale Diagram for a LRD

pro
ess with strong SRD. The verti
al bars at ea
h

o
tave give 95% 
on�den
e intervals for the y

j

. The

series is simulated FARIMA(0,d,2) with d = 0:25 (� =

0:50) and 	 = [�2;�1℄ implying 


f

= 6:38. Sele
ting

(j

1

; j

2

) = (4; 10) allows an a

urate estimation despite

the strong SRD: �̂ = 0:53 � 0:07, 
̂

f

= 6:0 with 95%


on�den
e intervals 4:5 < 
̂

f

< 7:8.

III. The on-line estimator

The AV estimator summarized above is gaining

a

eptan
e as the method of 
hoi
e for measuring

LRD in traÆ
 [16℄, [17℄. Until re
ently, however, it

has been used as a bat
h estimator { that is, where

a data set is 
olle
ted and analyzed o�-line. It is

ideally suited to on-line use however, making it

usable within network elements su
h as swit
hes

as well as network monitoring systems. By on-

line estimation we mean a data pro
essing method

whereby new fragments of data are pro
essed as

they arrive. In what follows we 
on
entrate on

the estimation of H, although the se
ond LRD

parameter, 


f

, is also estimated by the method,

and is very important in appli
ations: for example,

the 
on�den
e intervals of mean estimates for a

LRD pro
ess are asymptoti
ally proportional to

p




f

.

On-line estimation has two main requirements:

1. That an algorithm be devised su
h that newly

a
quired data elements 
an be pro
essed individ-

ually and merged with existing pro
essed data,

rather than requiring 
omplete re-
omputation.



2. That the algorithm be eÆ
ient enough to imple-

ment the above at the rate that new data arrives.

The �rst requirement is 
riti
al for on-line estima-

tion, whereas the se
ond is an issue of the ne
-

essary 
omputing power versus its 
ost. Be
ause

of the steadily in
reasing bandwidth of networks

however, the method must be s
alable, so the se
-

ond requirement is in fa
t prin
ipally an issue of

the time and memory 
omplexity of the algorithm.

The AV algorithm 
an be adapted to satisfy

both requirements. The �rst stage of the esti-

mator, the wavelet de
omposition, is easily im-

plemented in an on-line fashion using a real-time

pyramidal �lter-bank (Figure 2). Indeed, su
h

�lter-banks were devised with on-line appli
ations

in mind. The se
ond stage is trivial and 
an be

performed on-line as follows. Let the 
urrent stored

sum of squares at o
tave j 
al
ulated from the �rst

n

j

values be S

j

=

P

n

j

k=1

d

x

(j; k)

2

. Assume that the

arrival of the new data point x(n) results in a new


oeÆ
ient d

x

(j; n

j

+ 1) at o
tave j from the �lter-

bank. The sum is then updated:

n

j

 n

j

+ 1;

S

j

 S

j

+ d

x

(j; n

j

)

2

:

When the varian
e estimate at o
tave j is required

for the �nal stage it 
an be 
al
ulated as �

j

=

S

j

=n

j

. The �nal stage of the estimation algorithm

need not be adapted to an on-line version, as there

is no need to 
ompute H every time a new data

point is a
quired. It may be re-
al
ulated only

as needed, typi
ally at `human' time-s
ales several

orders of magnitude larger than the data 
olle
tion

rate. In any 
ase the 
omplexity of the �nal stage

is only O(log

2

(n)).

Some explanation is required to explain why the

�rst stage of the on-line estimator is s
alable. The

on-line �lter-bank, illustrated in Figure 2, 
onsists

of a number of �lters of �xed size K 
onne
ted in

series (typi
ally the size of these �lters is small,

say K = 6). Be
ause the output rate of ea
h �lter

is only half of its input rate, data of length n is

e�e
tively summarized and held in the �lter-bank

in the form of K log

2

(n) `half-pro
essed' values.

Cru
ially, these numbers are the only ones whi
h

must be stored in memory, not the full set of his-

tori
al input data x(t). Regarding the run-time


omplexity, on average ea
h new data point x(n)

results in 2(K+1) operations, a number indepen-

dent of n. If this pro
essor load were to great

then the �lter-bank 
an be naturally implemented

in Digital Signal Pro
essing (DSP) hardware, but

we have not found this to be ne
essary.

Se
tion V shows how a quite modest 
omputer

is 
apable of performing the AV estimation algo-

rithm, on-line and in real-time on ATM data sam-

pled at 155 Mbps.

The obvious advantage of 
omputing estimates

on-line is that results are immediately available,

rather than after a lengthy 
y
le of 
olle
tion and

analysis. As mentioned earlier, this is essential for

real-time network management purposes, but also

o�ers important advantages for traÆ
 
olle
tion

and analysis in general. For example, apart from

redu
ing the analysis delay, this approa
h allows

the de
ision as to whether enough data has been


olle
ted to be made as it arrives. It is also ad-

vantageous to be able to dete
t unusual events as

they o

ur, enabling immediate modi�
ations to

the 
olle
tion/analysis e�ort.

The other 
entral advantage of on-line estima-

tion is the redu
tion in memory requirements, both

in terms of the algorithm itself and of the storage

of data sets. Bat
h analysis requires the 
olle
-

tion and analysis of very large data sets, and sam-

ples larger than any standard 
omputer's memory

spa
e are easy to 
olle
t. For example, a tradi-

tional Ethernet sampled every millise
ond over 1

week represents 604 million sample points, whi
h

stored as four byte integers requires approximately

2.4 GB of spa
e. Thus 
apture of this data may

be a problem, as the data 
annot all be stored

in memory and then saved to disk. Similarly for

analysis, the data 
annot be held in memory all at

the same time resulting in large delays due to disk

paging. In 
ontrast, as explained above, on-line

measurement does not have substantial memory

requirements. Thus a traÆ
 stream 
an be mon-

itored and measured 
ontinuously for weeks at a

time, without any delay in the estimation at the

end of the pro
ess, and without a large memory.

The number of available s
ales in
reases with

the length n of the data. Ideally the number of

available o
taves is simply j

max

= log

2

(n), however

edge e�e
ts limit the number in pra
ti
e. Note

that the on-line algorithm allows all of the s
ales

available in the data to be seen and used, rather

than de
iding a-priori whi
h s
ales will be exam-

ined.
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ture, the High Pass (HP) output: d

x

(j; �), and the Low Pass (LP)

output: a(j; �), o

ur at half the rate of the input a

x

(j � 1; �).

IV. Ar
hite
ture for measuring ATM

traffi


The seminal study of self-similarity in data traf-

�
 was 
ondu
ted on an Ethernet [1℄, whi
h is a

relatively easy medium to measure be
ause of its

broad
ast nature. Furthermore, at 10 Mbps there

are no problems 
olle
ting or storing the traÆ


data. Hen
e our initial study of real-time mea-

surement of the parameters of LRD was 
ondu
ted

on Ethernet data [12℄, [18℄.

ATM is a mu
h more demanding medium. We


onsider here, ATM over 155 Mbps OC3
 SONET

(Syn
hronous Opti
al NETwork) whi
h has emerged

as a 
ommon ATM implementation. The demands

of su
h a network are, in parti
ular, a mu
h higher

data rate and the fa
t that SONET is a point-to-

point te
hnology. We shall 
on
entrate on mea-

suring IP traÆ
 transmitted over ATM, as this is

the type of data to whi
h we have a

ess, though

the methods des
ribed here 
ould easily be applied

to other types of traÆ
.

In addition to requiring that our ATM monitor

measure IP traÆ
 transmitted over ATM at OC3

rates (nominally 155 Mbps), there are a number

of other requirements, namely that it

1. be passive; that is, have no e�e
t on

network performan
e;

2. be implemented using 
heap, 
ommod-

ity o�-the-shelf (COTS) 
omponents;

3. allow remote a

ess and 
ontrol;

4. allow a

urate time stamping of pa
k-

ets;

5. be able to measure either the aggregate

traÆ
 on a link, or only the traÆ
 on a

parti
ular Virtual Cir
uit (VC), Virtual

Path (VP) 
ombination, or only the traf-

�
 between spe
i�
 IP sour
e and desti-

nation addresses, or only the traÆ
 trans-

mitted to a spe
i�
 TCP (Transmission

Control Proto
ol) port.

The �rst requirement is di
tated by pra
ti
alities

{ no network operator would allow a

ess to their

network without a guarantee that traÆ
 would

not be disrupted. The se
ond requirement was

in part di
tated by budget, but was further mo-

tivated by the philosophy that network monitor-

ing should be almost ubiquitous, rather than a

tool for 
hasing problems. Ubiquity requires 
heap

and easily assembled monitors, and also 
reates

the need for remote a

ess and 
ontrol to aid in

their management. The next requirement is one

of a

urate measurement, parti
ularly important

for LRD measurement. The �nal requirement is

di
tated by many of the appli
ations of network

monitoring, for instan
e billing.

The list of requirements above strongly suggests

that the monitor be based around a PC ar
hite
-

ture, using a COTS ATM Network Interfa
e Card

(NIC). The FORE Systems PCA-200EPC ATM

NIC has been used for network monitoring by MCI

on the vBNS (very high performan
e Ba
kbone

Network Servi
e [19℄). In fa
t the CORAL group [3℄,

[4℄, [5℄, [6℄, spe
i�
ally the OC3MON proje
t [7℄,

has made the drivers for this NIC freely available.

Hen
e this was an ideal starting point (we have

re
ently learnt there is at least one other proje
t

based at the University of Waikato in New Zealand

whi
h has developed similar hardware [20℄). We

therefore based our monitor around the OC3MON,

though minor modi�
ations to their drivers were

required for our appli
ation.

The ar
hite
ture of our system is shown in Fig-

ure 3. As in the CORAL monitor, the SONET

opti
al link is tapped using an opti
al splitter,

whi
h in our 
ase splits 50% of the light o� to

our NIC. The NIC reads the ATM 
ells, and 
ol-



le
ts and time stamps the initial 
ell of ea
h IP

pa
ket, transmitted using AAL5 (ATM Adapta-

tion Layer 5), and dis
ards all of the other 
ells

of the pa
ket. The �rst 
ell 
ontains the TCP/IP

headers

1

and 
an therefore be used to sele
t traÆ


on IP sour
e/destination or TCP port (whi
h may

determine the appli
ation through the well known

TCP ports), while the 
ell VC/VP numbers 
ould

also be used for traÆ
 sele
tion. The OC3MON

proje
t has also investigated IP 
ows though we

have not applied this feature.

The time stamp pre
ision is 40 ns relative to

the 
lo
k on the NIC (approximately 1/70th of

the 
ell transmission time). The a
tual a

ura
y

of the timestamps may not be quite this good due

to pro
essing delays on the ATM 
ard, but these

ina

ura
ies are small 
ompared with the sampling

intervals of interest (see below). The 
ell 
apture

pro
ess then produ
es a \pa
ket 
ount" time se-

ries by 
ounting the number of IP headers re
eived

during ea
h time interval { referred to as the sam-

pling interval. A se
ond \bit rate" time series of

the is generated by examining the AAL5 Proto-


ol Data Units (PDUs) to obtain the length of the

PDUs. Obviously this is not the a
tual line trans-

mission rate, as the ATM 
ell overhead, and the

SONET overhead are not taken into a

ount { we

are more interested in the higher layer transmis-

sion rate in any 
ase. The pa
ket rate time series

is the input to the estimation routines used later,

though previous work [11℄ has shown that either

time series should produ
e equivalent results.

Switch

ATM
Switch

ATM

Splitter

NIC
ATM

Optical

200MHz Pentium PC

Cell Capture GUIProcessors
Data

Fig. 3. The ar
hite
ture of the ATM monitor.

The time series produ
ed by the 
apture pro
ess

is then transmitted to a data pro
essor whi
h takes

the times series and performs the estimation pro-


edure des
ribed above. In addition simple statis-

1

Assuming IPv4 with no options.

ti
s of the data, su
h as the mean bit and pa
ket

rates, are also 
olle
ted. These estimates are then

fed to a Graphi
al User Interfa
e (GUI) front end

whi
h displays the results. The GUI also allows


ontrol (starting, stopping, and 
hanging of pa-

rameters) of the data pro
essors and 
ell 
apture

pro
esses. More than one data re
eiver 
an run in

parallel allowing simultaneous monitoring of more

than one VP/VC on the same link, or simulta-

neous estimation on the same data stream using

di�erent s
ales/time intervals.

The 
ommuni
ation between 
ell 
apture, data

pro
essor, and front end is over TCP/IP so
kets,

allowing for distributed operation. For instan
e

the front end 
ould display results and 
ontrol the


apture and data pro
essor pro
esses from a re-

mote lo
ation. Note though, that if this is the


ase, 
are should be taken to make sure that the

traÆ
 from the monitor itself is not being 
arried

on the monitored link!

The 
ell 
apture pro
ess was written in C++,

the data pro
essors in C and the front end in

JAVA, further illustrating the 
exibility gained by

using the TCP/IP so
kets for 
ommuni
ation be-

tween pro
esses. In prin
ipal the JAVA front end


ould even be run as an applet, though in the


ases we 
onsidered, the standard JAVA se
urity

model would prevent some of the desired a
tions

of a monitor front end, su
h as logging to a lo
al

disk.

Altogether the system 
osts signi�
antly less than

5000 Australian dollars (� $3000 US). There are

a number of adjun
ts that 
ould be in
luded for

ideal operation, for instan
e GPS (Global Posi-

tioning System) based time 
alibration 
an be used

to 
orre
t for 
lo
k drift and ensure that the time

stamps generated by the 
lo
k are a

urate with

respe
t to UTC (Coordinated Universal Time),

but as our 
urrent measurements are only at a

single point this is not ne
essary.

V. Real-time measurement of ATM

traffi


The aim of this paper is not to prove the exis-

ten
e of LRD in ATM traÆ
. Many papers have

demonstrated the existen
e of LRD in data traÆ


both for instan
e in Lo
al Area Networks (LANs) [1℄

and for Wide Area Networks (WANs) [2℄ and even

in spe
i�
ally ATM networks [17℄. The data pre-



sented here is intended to show that the monitor

is 
apable of real-time measurement of ATM traf-

�
. Note that the data redu
tion gained through

the on-line monitor allows us to study network be-

haviour over truly long s
ales { months to years!

The tests presented here were 
ondu
ted using

arti�
ially generated traÆ
. For this purpose we

built a spe
i�
 traÆ
 generator [21℄. The traÆ


generator 
an generate loads of up to 140 Mbps of

data traÆ
 (
lose to the line rate), with LRD 
har-

a
teristi
s. It uses the superposition of On/O�

sour
es model [22℄ to generate this traÆ
. In this


ase we used 100 sour
es ea
h running as a sepa-

rate pro
ess whi
h generated pseudo-�les (of ran-

dom size, padded with zeros) and transferred the

�les a
ross the link. The �le sizes were generated

using the Pareto distribution, as were the times

between �le transfers. The value of the shape

parameter in the Pareto distribution was 1.5 in

both 
ases, 
orresponding to a Hurst parameter of

0.75. The �les are broken into IP pa
kets whi
h

are transferred using the AAL5 a
ross the ATM

link. AAL5 takes the pa
ket, adds a minimal tail,

and passes the pa
ket to the segmentation and re-

assembly layer whi
h segments the pa
kets into

48 byte 
ells and atta
hes the 5 byte 
ell headers

whi
h are then transmitted over the opti
al link.

The results are shown in Figures 4 to 7. Fig-

ure 4 shows the pa
ket rate, while Figure 5 shows

the bit rate; both are averaged over 1 se
ond in-

tervals. The x-axis shows the time relative to the

time of the measurement { hen
e the total dis-

played period is the �nal 5 minutes of the exper-

iment. The experiment was 
arried out over ap-

proximately 30 minutes, but in order to be able to


learly see the results we display only the �nal part

of this time series. Note that the �gures are very

similar. The transmitted �les tend to be large,

and so the pa
kets transmitted are almost all the

same size (the maximum PDU size 65,535 bytes),

and therefore the bit rate depends very 
losely on

the pa
ket rate. Note also that the bit rate shown

is the data bit rate, that is, the number of data

bits transferred, in
luding IP and TCP headers,

but ex
luding ATM and SONET overhead whi
h

add approximately 10% to the bit rate displayed.

We 
an see from the �gures that the traÆ
 is

highly variable, as desired. However, the true test

of self-similarity is to apply the estimator. Fig-

ure 6 shows the Hurst parameter estimates over

the same time interval. As the time interval dis-

played is near the end of the data set, the estimate


hanges only very slowly as ea
h new measurement

is relatively unimportant 
ompared to the large

body of pre
eeding data in
orporated in the esti-

mates. We may immediately note that the Hurst

parameter estimate is not as a

urate as its 
on-

�den
e intervals indi
ate (the measured value is

around 0.8 while the theoreti
al value is 0.75).

The di�eren
e between the theoreti
al and mea-

sured values of H does not arise be
ause of errors

in the measurement pro
ess. It is in fa
t an arti-

fa
t of the generation pro
ess. While the On/O�

model has simple theoreti
al properties, in pra
-

ti
e generation of LRD pro
esses using On/O�

models is not as simple as one might expe
t. First,

there is a little known fundamental problem with

measuring the parameters of an On/O� pro
ess

whi
h 
an lead to bias in estimates even for very

long series. It 
on
erns the sampling of the longer

On and O� events whi
h leads to a trun
ation

in the sample 
orrelation stru
ture of any sam-

ple path. The phenomena has been des
ribed in

[23℄, and the bias observed using other estima-

tors of the Hurst parameter has been noted else-

where [24℄. Unfortunately, these trun
ation ef-

fe
ts intrinsi
ally limit the range of s
ales over

whi
h the generated traÆ
 displays self-similarity

{ so that simply extending the length of the time

series, whi
h would seem to be an obvious solu-

tion, is of limited help. Furthermore there is the

pra
ti
al problem that in any real appli
ation the

length of the measurement interval will be lim-

ited by time 
onstraints due to non-stationarity in

the data [25℄. Se
ond, our implementation uses

separate user pro
esses on a multitasking oper-

ating system, and the resulting kernal 
ontrolled

s
heduling prevents us 
ontrolling the behavior of

the traÆ
 on �ne time s
ales. This last point how-

ever is not so important from the point of view

of H measurement, as LRD pro
esses are only

asymptoti
ally self-similar. Thus the s
aling be-

haviour begins only above some lower 
utto� s
ale,

and so the lowest s
ales are not used in the esti-

mation in any 
ase, as noted below.

Su
h e�e
ts highlight the importan
e of exam-

ining Logs
ale Diagrams, and not simply taking a

blind estimate of a single parameters su
h as H.



Fig. 4. An example of arti�
ially generated traÆ
 { in thousands of pa
kets per se
ond over the last 5 minutes of traÆ


generation.

Fig. 5. An example of arti�
ially generated traÆ
 { in Mbits per se
ond over the last 5 minutes of traÆ
 generation.

Figure 7 shows the Logs
ale Diagram of the data

in question. Note in Figure 7 the x-axis has been

modi�ed to display the time-s
ale rather than the

values of j. As des
ribed in Se
tion II the Logs
ale

Diagram shows the values y

j

whi
h are used in a

weighted regression to perform the estimate of H.

We 
an immediately see that the y

j

do not all fall

on a straight line, and so 
annot all be used in

the estimate. The Logs
ale Diagram at the �ner

time s
ales is quite non-linear. It be
omes ap-

proximately linear above a time s
ale of around

1 se
ond, and it is in this region (shown by the

verti
al lines) that we perform our estimate of the

Hurst parameter. Finally at time-s
ales around 1

minute there appears to be the beginnings of the

trun
ation e�e
t noted above. These higher s
ales

should be ex
luded to avoid the asso
iated bias,

but this would leave us with a very narrow range

of s
ales to make our measurements.

We have re
ently developed a superior method

for generating traÆ
 whi
h has been do
umented

in [21℄, however it is useful to des
ribe the be-



havior of the simpler On/O� generator here. We

have thereby demonstrated that an examination

of Logs
ale Diagrams, based on a

urate measure-

ment, 
an 
learly display the surprisingly 
omplex

behaviour of On/O� generators.

VI. Con
lusion

In summary, this paper demonstrates that 
heap,

s
alable, and ubiquitous monitoring of data traÆ


is possible, and 
an in
lude measurements of the

fra
tal nature of the traÆ
. Furthermore, su
h

measurements 
an be su

essfully performed in

real-time, enabling their use in real-time appli
a-

tions su
h as CAC, 
ongestion 
ontrol, and net-

work monitoring.
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Fig. 6. An example output of Hurst parameter estimation. The three 
urves shown are, in order from the top, the upper 95%


on�den
e interval, the estimate, and the lower 95% 
on�den
e interval.

Fig. 7. The Logs
ale Diagram for the generated traÆ
 showing a �tted regression line, and the s
ales used in the regression

(shown as verti
al lines a
ross the entire y-range).


