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Abstrat|We demonstrate the appliation of the

on-line version of the Abry-Veith wavelet based

estimator of the Hurst parameter to ATM traÆ

arried over an OC3 link at 155 Mbps. The esti-

mator has very low memory and omputational re-

quirements and sales naturally to arbitrarily high

data rates, enabling its use in real-time appliations

suh as admission ontrol, and avoiding the need to

store huge data sets for o�-line analysis.

I. Introdution

TraÆ measurements are vital to the provision-

ing of reliable, eÆient Quality of Servie (QoS)

over data networks. Suh measurements are useful

for generating referene loads for testing equip-

ment, and are a neessary ingredient in any ap-

pliation whih tries to optimise network perfor-

mane, from network planning and dimensioning

tools to all admission ontrol algorithms. Reent

measurements of data traÆ, for instane [1℄, [2℄,

have disovered its fratal, self-similar, or long-

range dependent nature { the traÆ shows bursti-

ness on many times sales: from milliseonds up

to hours, or days. This behaviour has been proven

to have important impats on the performane

of systems, however, until reently it has been

prohibitively expensive to obtain measurements of

these harateristis, preventing their use in day-

to-day operations.

To gain a true understanding of the traÆ ar-

ried on a network, detailed ontinuous measure-

ments should be taken at many plaes in the net-

work { ideally at any point where ongestion might

our. Of ourse the volume of data generated

through ubiquitous monitoring an be vast (on-
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sider a few seonds worth of data running at Giga-

bit/s speeds...), and so in-situ proessing is greatly

desirable to redue the data to a managable and

easily interpreted form. Suh proessing should be

performed on-line and in real-time in order that

network measurements be ontinuously available,

and must be made with inexpensive equipment if it

is to be almost ubiquitous. If this an be ahieved

then these results an be used in real-time applia-

tions suh as Call Admission Control (CAC), rate

adaptation, or ongestion ontrol.

The NLANR, in o-ordination with MCI, as part

of the CORAL projet [3℄, [4℄, [5℄, [6℄, [7℄, has de-

veloped a suite of OCXmon(itors), whih allow

non-invasive measurement of optial links (OC3 -

155 Mbs, OC12 - 622 Mps) arrying ATM traÆ.

We have adapted their work to allow the mea-

surement of the fratal harateristis of traÆ in

real-time, as the data is olleted.

The ore of our work is based on the Abry-

Veith estimator of the parameters of Long-Range

Dependene (LRD) whih uses the wavelet trans-

form to measure the degree of self-similarity in

the traÆ (details of whih are summarized be-

low and an be found in [8℄, [9℄). The wavelet

transform is a natural tool for suh work beause

of the intrinsi saling properties of wavelets, and

the eÆieny of the transform, whih an even be

omputed in real-time as data is olleted. In ad-

dition, the statistial properties of this algorithm

(zero bias, 1/n eÆieny, and robustness [10℄, [11℄)

are better than any urrently known alternative.

The estimator has very low memory and ompu-

tational requirements and sales naturally to arbi-

trarily high data rates. It is therefore perfet for

use in real-time appliations suh as CAC.

In [12℄ we showed that the estimator ould be



applied to estimatingH in real-time, simply, rapidly,

and with very low memory requirements. The pa-

per applied the method to Ethernet traÆ at 10

Mbps, but we noted that the method should sale

to arbitrary traÆ rates with respet to both mem-

ory and proessing requirements, so that it will re-

main appliable as data rates inrease with time.

This paper graphially demonstrates this saling

by applying the estimator to ATM (Asynhronous

Transfer Mode) traÆ at 155 Mbps.

This paper is organised as follows. In Setion II

we desribe the Abry-Veith joint estimator for the

parameters of long-range dependene, and in Se-

tion III we desribe the online implementation of

the estimator. Both have been desribed in detail

elsewhere [8℄, [12℄ so only a summary is inluded

here. Setion IV desribes the implementation is-

sues relating to the measurement of ATM traf-

�, and an arhiteture whih satis�es all of the

requirements for suh a system. Setion V then

desribes the atual measurement in real-time of

the parameters of long-range dependene for arti-

�ially generated traÆ.

II. The Abry-Veith (AV) estimator

In any data measurement situation a basi the-

oretial framework is required through whih to

view the data, to selet important parameters whih

desribe it, and to propose and evaluate estima-

tors of them. In our ase the time varying rate

x(t) of inoming traÆ is the data of interest,

and we model it as a stationary stohasti pro-

ess. Basi features of this proess are its mean

�

x

= E[x℄, variane �

2

x

= E[(x� �

x

)

2

℄, and orre-

lation funtion 

x

(k) = E[(x(t + k) � �

x

)(x(t) �

�

x

)℄. In this ontext the self-similar properties of

traÆ manifest themselves in a partiular form of



x

(k), namely a derease with lag k so slow that

the sum of all orrelations downstream from any

given time instant is always appreiable, even if

individually the orrelations are small. The past

therefore exerts a long term inuene on the fu-

ture, exaggerating the impat of traÆ variabil-

ity and rendering statistial estimation problem-

ati. This phenomenon is known as Long Range

Dependene (LRD), and is ommonly de�ned as



x

(k) � 



jkj

�(1��)

, � 2 (0; 1), or equivalently as

the power-law divergene at the origin of its spe-

trum: f

x

(�) � 

f

j�j

��

; j�j ! 0. The Hurst pa-

rameter,H, desribes the (asymptoti) self-similarity

of the umulative traÆ proess orresponding to

x(t) whih generates the LRD of x(t), itself de-

sribed by �. It is nonetheless ommon pratie

to speak of H in relation to LRD. The two are

related as H = (1 + �)=2.

In [8℄, [9℄ (see also [13℄, [11℄, [14℄, [12℄, [10℄)

a semi-parametri joint estimator of (�; 

f

) is de-

sribed based on the Disrete Wavelet Transform.

Wavelet transforms in general an be understood

as a more exible form of a Fourier transform,

where x(t) is transformed, not into a frequeny do-

main, but into a time-sale wavelet domain. The

sinusoidal funtions of Fourier theory are replaed

by wavelet basis funtions  

a;t

(u) �  

0

(

u�t

a

)=

p

a,

a 2 IR

+

, t 2 IR generated by simple translations

and dilations of the the mother wavelet  

0

, a band

pass funtion with limited spread in both time

and frequeny. The wavelet transform an thus be

thought of as a method of simultaneously observ-

ing a time series at a full range of di�erent sales a,

whilst retaining the time dimension of the original

data. Multiresolution analysis theory shows that

no information is lost if we sample the ontinuous

wavelet oeÆients at a sparse set of points in the

time-sale plane known as the dyadi grid, de�ned

by (a; t) = (2

j

; 2

j

k), j; k 2 IN , leading to the Dis-

rete Wavelet Transform with disrete oeÆients

d

x

(j; k) known as details. Heneforth we will deal

exlusively with the details of the Disrete Wavelet

Transform. The otave j is simply the base 2 loga-

rithm of sale a = 2

j

, and k plays the role of time

(although a time whose rate varies with j). For

�nite data of length n, j will vary from j = 1, the

�nest sale in the data, up to some j

max

� log

2

(n).

The number of oeÆients available at otave j is

denoted by n

j

, and approximately halves with eah

inrease of j.

The estimator has exellent omputational prop-

erties due to the fast `pyramidal' �lter-bank algo-

rithm [15℄ for alulation of the disrete wavelet

transform, whih has a omplexity of only O(n).

The number of wavelet oeÆients d

x

(j; k) thus

generated is also of order n, and subsequent om-

putations required to form the estimate of H from

them have only this omplexity. The overall om-

plexity therefore remainsO(n), whih learly sales

satisfatorily.

The main feature of the wavelet approah whih



makes it so e�etive for the statistial analysis of

saling phenomenon suh as LRD is the fat that

the wavelet basis funtions themselves possess a

saling property, and therefore onstitute an opti-

mal `o-ordinate system' from whih to view suh

phenomena. The main pratial outome is that

the LRD in the time domain representation is re-

dued to residual short range orrelation in the

wavelet oeÆient plane fj; kg, thus removing en-

tirely the speial estimation diÆulties. Thus for

eah �xed j, the series d

x

(j; �) an be regarded as

a stationary proess with weak short-range depen-

dene, and these series an be regarded as almost

independent of eah other.

We an now outline the estimator as onsisting

of the following three stages:

1. Wavelet deomposition A disrete wavelet

transform of the data is performed, generating the

details d

x

(j; k) over the dyadi grid.

2. Detail variane estimation At eah �xed o-

tave j the details are squared then averaged aross

`time' k to produe an (exellent) estimate of the

variane of the wavelet oeÆients, alled �

j

. It

has been shown that the �

j

follow a power-law in

j with exponent �.

3. LRD parameters estimationA plot, referred

to as the Logsale Diagram, is made of y

j

= log

2

(�

j

)

against j omplete with on�dene intervals, and

from it the range of otaves [j

1

; j

2

℄ where saling

ours is determined. The LRD parametersH and



f

are then extrated by performing a weighted lin-

ear regression over those sales.

Notes:

� Sine the expetations of the details are all iden-

tially zero [13℄, the average of the squares of the

details at a given j is an estimate of the variane

at that j.

� In forming y

j

small orretive terms g(j) are in

fat subtrated from log

2

(�

j

) to aount for the

fat that E [log℄ (�) 6= log(E [�℄).

� H is related to the slope of the plot, and 

f

to a

power of the interept.

� The weights are the known varianes of the y

j

and do not depend on the data.

� Con�dene intervals for H are derived from the

standard variane formulae for weighted linear re-

gression with mutually independent y

j

, and so again

are not funtions of the data.

An example of the Logsale Diagram and re-

gression �t using a simulated data set is given in

Figure 1. The 95% on�dene intervals for eah

y

j

, shown as vertial lines at eah otave j, are

seen to inrease with j.
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Fig. 1. An example of the Logsale Diagram for a LRD

proess with strong SRD. The vertial bars at eah

otave give 95% on�dene intervals for the y

j

. The

series is simulated FARIMA(0,d,2) with d = 0:25 (� =

0:50) and 	 = [�2;�1℄ implying 

f

= 6:38. Seleting

(j

1

; j

2

) = (4; 10) allows an aurate estimation despite

the strong SRD: �̂ = 0:53 � 0:07, ̂

f

= 6:0 with 95%

on�dene intervals 4:5 < ̂

f

< 7:8.

III. The on-line estimator

The AV estimator summarized above is gaining

aeptane as the method of hoie for measuring

LRD in traÆ [16℄, [17℄. Until reently, however, it

has been used as a bath estimator { that is, where

a data set is olleted and analyzed o�-line. It is

ideally suited to on-line use however, making it

usable within network elements suh as swithes

as well as network monitoring systems. By on-

line estimation we mean a data proessing method

whereby new fragments of data are proessed as

they arrive. In what follows we onentrate on

the estimation of H, although the seond LRD

parameter, 

f

, is also estimated by the method,

and is very important in appliations: for example,

the on�dene intervals of mean estimates for a

LRD proess are asymptotially proportional to

p



f

.

On-line estimation has two main requirements:

1. That an algorithm be devised suh that newly

aquired data elements an be proessed individ-

ually and merged with existing proessed data,

rather than requiring omplete re-omputation.



2. That the algorithm be eÆient enough to imple-

ment the above at the rate that new data arrives.

The �rst requirement is ritial for on-line estima-

tion, whereas the seond is an issue of the ne-

essary omputing power versus its ost. Beause

of the steadily inreasing bandwidth of networks

however, the method must be salable, so the se-

ond requirement is in fat prinipally an issue of

the time and memory omplexity of the algorithm.

The AV algorithm an be adapted to satisfy

both requirements. The �rst stage of the esti-

mator, the wavelet deomposition, is easily im-

plemented in an on-line fashion using a real-time

pyramidal �lter-bank (Figure 2). Indeed, suh

�lter-banks were devised with on-line appliations

in mind. The seond stage is trivial and an be

performed on-line as follows. Let the urrent stored

sum of squares at otave j alulated from the �rst

n

j

values be S

j

=

P

n

j

k=1

d

x

(j; k)

2

. Assume that the

arrival of the new data point x(n) results in a new

oeÆient d

x

(j; n

j

+ 1) at otave j from the �lter-

bank. The sum is then updated:

n

j

 n

j

+ 1;

S

j

 S

j

+ d

x

(j; n

j

)

2

:

When the variane estimate at otave j is required

for the �nal stage it an be alulated as �

j

=

S

j

=n

j

. The �nal stage of the estimation algorithm

need not be adapted to an on-line version, as there

is no need to ompute H every time a new data

point is aquired. It may be re-alulated only

as needed, typially at `human' time-sales several

orders of magnitude larger than the data olletion

rate. In any ase the omplexity of the �nal stage

is only O(log

2

(n)).

Some explanation is required to explain why the

�rst stage of the on-line estimator is salable. The

on-line �lter-bank, illustrated in Figure 2, onsists

of a number of �lters of �xed size K onneted in

series (typially the size of these �lters is small,

say K = 6). Beause the output rate of eah �lter

is only half of its input rate, data of length n is

e�etively summarized and held in the �lter-bank

in the form of K log

2

(n) `half-proessed' values.

Cruially, these numbers are the only ones whih

must be stored in memory, not the full set of his-

torial input data x(t). Regarding the run-time

omplexity, on average eah new data point x(n)

results in 2(K+1) operations, a number indepen-

dent of n. If this proessor load were to great

then the �lter-bank an be naturally implemented

in Digital Signal Proessing (DSP) hardware, but

we have not found this to be neessary.

Setion V shows how a quite modest omputer

is apable of performing the AV estimation algo-

rithm, on-line and in real-time on ATM data sam-

pled at 155 Mbps.

The obvious advantage of omputing estimates

on-line is that results are immediately available,

rather than after a lengthy yle of olletion and

analysis. As mentioned earlier, this is essential for

real-time network management purposes, but also

o�ers important advantages for traÆ olletion

and analysis in general. For example, apart from

reduing the analysis delay, this approah allows

the deision as to whether enough data has been

olleted to be made as it arrives. It is also ad-

vantageous to be able to detet unusual events as

they our, enabling immediate modi�ations to

the olletion/analysis e�ort.

The other entral advantage of on-line estima-

tion is the redution in memory requirements, both

in terms of the algorithm itself and of the storage

of data sets. Bath analysis requires the olle-

tion and analysis of very large data sets, and sam-

ples larger than any standard omputer's memory

spae are easy to ollet. For example, a tradi-

tional Ethernet sampled every milliseond over 1

week represents 604 million sample points, whih

stored as four byte integers requires approximately

2.4 GB of spae. Thus apture of this data may

be a problem, as the data annot all be stored

in memory and then saved to disk. Similarly for

analysis, the data annot be held in memory all at

the same time resulting in large delays due to disk

paging. In ontrast, as explained above, on-line

measurement does not have substantial memory

requirements. Thus a traÆ stream an be mon-

itored and measured ontinuously for weeks at a

time, without any delay in the estimation at the

end of the proess, and without a large memory.

The number of available sales inreases with

the length n of the data. Ideally the number of

available otaves is simply j

max

= log

2

(n), however

edge e�ets limit the number in pratie. Note

that the on-line algorithm allows all of the sales

available in the data to be seen and used, rather

than deiding a-priori whih sales will be exam-

ined.
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x
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IV. Arhiteture for measuring ATM

traffi

The seminal study of self-similarity in data traf-

� was onduted on an Ethernet [1℄, whih is a

relatively easy medium to measure beause of its

broadast nature. Furthermore, at 10 Mbps there

are no problems olleting or storing the traÆ

data. Hene our initial study of real-time mea-

surement of the parameters of LRD was onduted

on Ethernet data [12℄, [18℄.

ATM is a muh more demanding medium. We

onsider here, ATM over 155 Mbps OC3 SONET

(Synhronous Optial NETwork) whih has emerged

as a ommon ATM implementation. The demands

of suh a network are, in partiular, a muh higher

data rate and the fat that SONET is a point-to-

point tehnology. We shall onentrate on mea-

suring IP traÆ transmitted over ATM, as this is

the type of data to whih we have aess, though

the methods desribed here ould easily be applied

to other types of traÆ.

In addition to requiring that our ATM monitor

measure IP traÆ transmitted over ATM at OC3

rates (nominally 155 Mbps), there are a number

of other requirements, namely that it

1. be passive; that is, have no e�et on

network performane;

2. be implemented using heap, ommod-

ity o�-the-shelf (COTS) omponents;

3. allow remote aess and ontrol;

4. allow aurate time stamping of pak-

ets;

5. be able to measure either the aggregate

traÆ on a link, or only the traÆ on a

partiular Virtual Ciruit (VC), Virtual

Path (VP) ombination, or only the traf-

� between spei� IP soure and desti-

nation addresses, or only the traÆ trans-

mitted to a spei� TCP (Transmission

Control Protool) port.

The �rst requirement is ditated by pratialities

{ no network operator would allow aess to their

network without a guarantee that traÆ would

not be disrupted. The seond requirement was

in part ditated by budget, but was further mo-

tivated by the philosophy that network monitor-

ing should be almost ubiquitous, rather than a

tool for hasing problems. Ubiquity requires heap

and easily assembled monitors, and also reates

the need for remote aess and ontrol to aid in

their management. The next requirement is one

of aurate measurement, partiularly important

for LRD measurement. The �nal requirement is

ditated by many of the appliations of network

monitoring, for instane billing.

The list of requirements above strongly suggests

that the monitor be based around a PC arhite-

ture, using a COTS ATM Network Interfae Card

(NIC). The FORE Systems PCA-200EPC ATM

NIC has been used for network monitoring by MCI

on the vBNS (very high performane Bakbone

Network Servie [19℄). In fat the CORAL group [3℄,

[4℄, [5℄, [6℄, spei�ally the OC3MON projet [7℄,

has made the drivers for this NIC freely available.

Hene this was an ideal starting point (we have

reently learnt there is at least one other projet

based at the University of Waikato in New Zealand

whih has developed similar hardware [20℄). We

therefore based our monitor around the OC3MON,

though minor modi�ations to their drivers were

required for our appliation.

The arhiteture of our system is shown in Fig-

ure 3. As in the CORAL monitor, the SONET

optial link is tapped using an optial splitter,

whih in our ase splits 50% of the light o� to

our NIC. The NIC reads the ATM ells, and ol-



lets and time stamps the initial ell of eah IP

paket, transmitted using AAL5 (ATM Adapta-

tion Layer 5), and disards all of the other ells

of the paket. The �rst ell ontains the TCP/IP

headers

1

and an therefore be used to selet traÆ

on IP soure/destination or TCP port (whih may

determine the appliation through the well known

TCP ports), while the ell VC/VP numbers ould

also be used for traÆ seletion. The OC3MON

projet has also investigated IP ows though we

have not applied this feature.

The time stamp preision is 40 ns relative to

the lok on the NIC (approximately 1/70th of

the ell transmission time). The atual auray

of the timestamps may not be quite this good due

to proessing delays on the ATM ard, but these

inauraies are small ompared with the sampling

intervals of interest (see below). The ell apture

proess then produes a \paket ount" time se-

ries by ounting the number of IP headers reeived

during eah time interval { referred to as the sam-

pling interval. A seond \bit rate" time series of

the is generated by examining the AAL5 Proto-

ol Data Units (PDUs) to obtain the length of the

PDUs. Obviously this is not the atual line trans-

mission rate, as the ATM ell overhead, and the

SONET overhead are not taken into aount { we

are more interested in the higher layer transmis-

sion rate in any ase. The paket rate time series

is the input to the estimation routines used later,

though previous work [11℄ has shown that either

time series should produe equivalent results.

Switch

ATM
Switch

ATM

Splitter

NIC
ATM

Optical

200MHz Pentium PC

Cell Capture GUIProcessors
Data

Fig. 3. The arhiteture of the ATM monitor.

The time series produed by the apture proess

is then transmitted to a data proessor whih takes

the times series and performs the estimation pro-

edure desribed above. In addition simple statis-

1

Assuming IPv4 with no options.

tis of the data, suh as the mean bit and paket

rates, are also olleted. These estimates are then

fed to a Graphial User Interfae (GUI) front end

whih displays the results. The GUI also allows

ontrol (starting, stopping, and hanging of pa-

rameters) of the data proessors and ell apture

proesses. More than one data reeiver an run in

parallel allowing simultaneous monitoring of more

than one VP/VC on the same link, or simulta-

neous estimation on the same data stream using

di�erent sales/time intervals.

The ommuniation between ell apture, data

proessor, and front end is over TCP/IP sokets,

allowing for distributed operation. For instane

the front end ould display results and ontrol the

apture and data proessor proesses from a re-

mote loation. Note though, that if this is the

ase, are should be taken to make sure that the

traÆ from the monitor itself is not being arried

on the monitored link!

The ell apture proess was written in C++,

the data proessors in C and the front end in

JAVA, further illustrating the exibility gained by

using the TCP/IP sokets for ommuniation be-

tween proesses. In prinipal the JAVA front end

ould even be run as an applet, though in the

ases we onsidered, the standard JAVA seurity

model would prevent some of the desired ations

of a monitor front end, suh as logging to a loal

disk.

Altogether the system osts signi�antly less than

5000 Australian dollars (� $3000 US). There are

a number of adjunts that ould be inluded for

ideal operation, for instane GPS (Global Posi-

tioning System) based time alibration an be used

to orret for lok drift and ensure that the time

stamps generated by the lok are aurate with

respet to UTC (Coordinated Universal Time),

but as our urrent measurements are only at a

single point this is not neessary.

V. Real-time measurement of ATM

traffi

The aim of this paper is not to prove the exis-

tene of LRD in ATM traÆ. Many papers have

demonstrated the existene of LRD in data traÆ

both for instane in Loal Area Networks (LANs) [1℄

and for Wide Area Networks (WANs) [2℄ and even

in spei�ally ATM networks [17℄. The data pre-



sented here is intended to show that the monitor

is apable of real-time measurement of ATM traf-

�. Note that the data redution gained through

the on-line monitor allows us to study network be-

haviour over truly long sales { months to years!

The tests presented here were onduted using

arti�ially generated traÆ. For this purpose we

built a spei� traÆ generator [21℄. The traÆ

generator an generate loads of up to 140 Mbps of

data traÆ (lose to the line rate), with LRD har-

ateristis. It uses the superposition of On/O�

soures model [22℄ to generate this traÆ. In this

ase we used 100 soures eah running as a sepa-

rate proess whih generated pseudo-�les (of ran-

dom size, padded with zeros) and transferred the

�les aross the link. The �le sizes were generated

using the Pareto distribution, as were the times

between �le transfers. The value of the shape

parameter in the Pareto distribution was 1.5 in

both ases, orresponding to a Hurst parameter of

0.75. The �les are broken into IP pakets whih

are transferred using the AAL5 aross the ATM

link. AAL5 takes the paket, adds a minimal tail,

and passes the paket to the segmentation and re-

assembly layer whih segments the pakets into

48 byte ells and attahes the 5 byte ell headers

whih are then transmitted over the optial link.

The results are shown in Figures 4 to 7. Fig-

ure 4 shows the paket rate, while Figure 5 shows

the bit rate; both are averaged over 1 seond in-

tervals. The x-axis shows the time relative to the

time of the measurement { hene the total dis-

played period is the �nal 5 minutes of the exper-

iment. The experiment was arried out over ap-

proximately 30 minutes, but in order to be able to

learly see the results we display only the �nal part

of this time series. Note that the �gures are very

similar. The transmitted �les tend to be large,

and so the pakets transmitted are almost all the

same size (the maximum PDU size 65,535 bytes),

and therefore the bit rate depends very losely on

the paket rate. Note also that the bit rate shown

is the data bit rate, that is, the number of data

bits transferred, inluding IP and TCP headers,

but exluding ATM and SONET overhead whih

add approximately 10% to the bit rate displayed.

We an see from the �gures that the traÆ is

highly variable, as desired. However, the true test

of self-similarity is to apply the estimator. Fig-

ure 6 shows the Hurst parameter estimates over

the same time interval. As the time interval dis-

played is near the end of the data set, the estimate

hanges only very slowly as eah new measurement

is relatively unimportant ompared to the large

body of preeeding data inorporated in the esti-

mates. We may immediately note that the Hurst

parameter estimate is not as aurate as its on-

�dene intervals indiate (the measured value is

around 0.8 while the theoretial value is 0.75).

The di�erene between the theoretial and mea-

sured values of H does not arise beause of errors

in the measurement proess. It is in fat an arti-

fat of the generation proess. While the On/O�

model has simple theoretial properties, in pra-

tie generation of LRD proesses using On/O�

models is not as simple as one might expet. First,

there is a little known fundamental problem with

measuring the parameters of an On/O� proess

whih an lead to bias in estimates even for very

long series. It onerns the sampling of the longer

On and O� events whih leads to a trunation

in the sample orrelation struture of any sam-

ple path. The phenomena has been desribed in

[23℄, and the bias observed using other estima-

tors of the Hurst parameter has been noted else-

where [24℄. Unfortunately, these trunation ef-

fets intrinsially limit the range of sales over

whih the generated traÆ displays self-similarity

{ so that simply extending the length of the time

series, whih would seem to be an obvious solu-

tion, is of limited help. Furthermore there is the

pratial problem that in any real appliation the

length of the measurement interval will be lim-

ited by time onstraints due to non-stationarity in

the data [25℄. Seond, our implementation uses

separate user proesses on a multitasking oper-

ating system, and the resulting kernal ontrolled

sheduling prevents us ontrolling the behavior of

the traÆ on �ne time sales. This last point how-

ever is not so important from the point of view

of H measurement, as LRD proesses are only

asymptotially self-similar. Thus the saling be-

haviour begins only above some lower utto� sale,

and so the lowest sales are not used in the esti-

mation in any ase, as noted below.

Suh e�ets highlight the importane of exam-

ining Logsale Diagrams, and not simply taking a

blind estimate of a single parameters suh as H.



Fig. 4. An example of arti�ially generated traÆ { in thousands of pakets per seond over the last 5 minutes of traÆ

generation.

Fig. 5. An example of arti�ially generated traÆ { in Mbits per seond over the last 5 minutes of traÆ generation.

Figure 7 shows the Logsale Diagram of the data

in question. Note in Figure 7 the x-axis has been

modi�ed to display the time-sale rather than the

values of j. As desribed in Setion II the Logsale

Diagram shows the values y

j

whih are used in a

weighted regression to perform the estimate of H.

We an immediately see that the y

j

do not all fall

on a straight line, and so annot all be used in

the estimate. The Logsale Diagram at the �ner

time sales is quite non-linear. It beomes ap-

proximately linear above a time sale of around

1 seond, and it is in this region (shown by the

vertial lines) that we perform our estimate of the

Hurst parameter. Finally at time-sales around 1

minute there appears to be the beginnings of the

trunation e�et noted above. These higher sales

should be exluded to avoid the assoiated bias,

but this would leave us with a very narrow range

of sales to make our measurements.

We have reently developed a superior method

for generating traÆ whih has been doumented

in [21℄, however it is useful to desribe the be-



havior of the simpler On/O� generator here. We

have thereby demonstrated that an examination

of Logsale Diagrams, based on aurate measure-

ment, an learly display the surprisingly omplex

behaviour of On/O� generators.

VI. Conlusion

In summary, this paper demonstrates that heap,

salable, and ubiquitous monitoring of data traÆ

is possible, and an inlude measurements of the

fratal nature of the traÆ. Furthermore, suh

measurements an be suessfully performed in

real-time, enabling their use in real-time applia-

tions suh as CAC, ongestion ontrol, and net-

work monitoring.

Aknowledgments

The authors gratefully aknowledge the support

of Erisson Australia.

Referenes

[1℄ Will E. Leland, Murad S. Taqqu, Walter Willinger, and

Daniel V. Wilson, \On the self-similar nature of Ethernet

traÆ (extended version)," IEEE/ACM Transations on

Networking, vol. 2, no. 1, pp. 1{15, Feb 1994.

[2℄ V. Paxson and S. Floyd, \Wide-area traÆ: The failure of

poisson modeling," IEEE/ACM Transations on Network-

ing, vol. 3, no. 3, pp. 226{244, 1994, http://ee.lbl.gov/nrg-

papers.html.

[3℄ \Coral network traÆ analysis," online:

http://moat.nlanr.net/Coral/.

[4℄ J. Dugan, \Coral { exible, a�ordable, high per-

formane network statistis olletion," online:

http://www.aida.org/Tools/Coral/.

[5℄ G.J. Miller, K. Thompson, and R. Wilder, \Performane

measurement on the vBNS," in Proeedings of the In-

terop'98 Engineering Conferene, Las Vegas, NV, May

1998.

[6℄ Kevin Thompson, Gregory J. Miller, and Rik Wilder,

\Wide-area Internet traÆ patterns and harateris-

tis," IEEE Networks, 1997, Extended Version:

http://www.vbns.net/presentations/papers/index.html.

[7℄ J. Apisdorf, K. Cla�y, K. Thompson, and R. Wilder,

\OC3MON: Flexible, a�ordable, high performane statis-

tis olletion," in INET'97 Conferene, June 1997.

[8℄ Darryl Veith and Patrie Abry, \A wavelet based joint

estimator of the parameters of long-range dependene,"

IEEE Transations on Information Theory speial issue

on "Multisale Statistial Signal Analysis and its Applia-

tions", vol. 45, no. 3, April 1999.

[9℄ Darryl Veith and Patrie Abry, \Estimation onjointe en

ondelettes des param�etres du ph�enom�ene de d�ependane

longue," in Pro. 16i�eme Colloque GRETSI, pp.1451{1454,

Grenoble, Frane, 1997.

[10℄ Matthew Roughan and Darryl Veith, \Measuring long-

range dependene under hanging traÆ onditions," in

IEEE INFOCOM'99, NY, NY, Marh 1999, IEEE Com-

puter Soiety Press, Los Alamitos, California.

[11℄ P. Abry and D. Veith, \Wavelet analysis of long-range

dependent traÆ," IEEE Trans. on Info. Theory, vol. 44,

no. 1, pp. 2{15, 1998.

[12℄ Matthew Roughan, Darryl Veith, and Patrie Abry, \On-

line estimation of parameters of long-range dependene,"

in IEEE GLOBECOM'98, Sydney, Australia, November

1998, pp. 3716{3721.

[13℄ P. Abry, P. Gon�alv�es, and P. Flandrin, Wavelets and

Statistis, vol. 105 of Leture Notes in Statistis, hapter

Wavelets, Spetrum estimation, 1=f proesses., pp. 15{30,

Springer-Verlag, New York, 1995.

[14℄ P. Abry, D. Veith, and P. Flandrin, \Long-range depen-

dene: revisiting aggregation with wavelets," Journal of

Time Series Analysis, vol. 19, no. 3, pp. 253{266, 1998.

[15℄ I. Daubehies, Ten Letures on Wavelets, SIAM, Philadel-

phia (PA), 1992.

[16℄ A.Feldmann, A.C.Gilbert, W.Willinger, and T.G.Kurtz,

\The hanging nature of network traÆ: Saling phenom-

ena," Computer Communiations Review, vol. 28, no. 2,

1998.

[17℄ Judith L. Jerkins and Jonathan L. Wang, \A measure-

ment analysis of ATM ell-level aggregate traÆ," in IEEE

GLOBECOM'97, 1997.

[18℄ Matthew Roughan, Darryl Veith, and Patrie Abry,

\Real-time estimation of the parameters of long-range de-

pendene (extended version)," in to appear in IEEE Trans-

ations on Networking, 2000.

[19℄ \Very high performane bakbone network servie,"

http://www.vbns.net/.

[20℄ \The university of waikato, atm group page," online:

http://atm.s.waikato.a.nz/atm/.

[21℄ On line generation of fratal and multi-fratal traÆ, \Dar-

ryl veith and jon-andars bakar and jens wall and jennifer

yates and matthew roughan," in PAM2000, Workshop on

Passive and Ative Networking, New Zealand, 2000.

[22℄ Bong K. Ryu and Steven B. Lowen, \Point proess ap-

proahes to the modelling and analysis of self-similar traf-

� - part i: Model onstrution," in IEEE INFOCOM'96:

The Conferene on Computer Communiations, San Fran-

iso, California, Marh 1996, vol. 3, pp. 1468{1475, IEEE

Computer Soiety Press, Los Alamitos, California.

[23℄ M.Roughan, J.Yates, and D.Veith, \The mystery of the

missing sales: Pitfalls in the use of fratal renewal pro-

esses to simulate LRD proesses," in Appliations of

Heavy Tailed Distributions in Eonomis, Engineering and

Statistis, Amerian University, Washington, DC, June

1999.

[24℄ Steven B. Lowen and Malvin C. Teih, \Estimation and

simulation of fratal stohasti point proesses," Fratals,

vol. 3, no. 1, pp. 183{210, 1995.

[25℄ Matthew Roughan and Darryl Veith, \A study of the

daily variation in the self-similarity of real data traÆ," in

Proeedings of the 16th International TeletraÆ Congress

- ITC 16, P. Key and D. Smith, Eds. 1999, vol. 3b, pp.

67{76, Elsevier, Amsterdam.



Fig. 6. An example output of Hurst parameter estimation. The three urves shown are, in order from the top, the upper 95%

on�dene interval, the estimate, and the lower 95% on�dene interval.

Fig. 7. The Logsale Diagram for the generated traÆ showing a �tted regression line, and the sales used in the regression

(shown as vertial lines aross the entire y-range).


