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Abstract— We demonstrate the application of the
on-line version of the Abry-Veitch wavelet based
estimator of the Hurst parameter to ATM traffic
carried over an OC3 link at 155 Mbps. The esti-
mator has very low memory and computational re-
quirements and scales naturally to arbitrarily high
data rates, enabling its use in real-time applications
such as admission control, and avoiding the need to
store huge data sets for off-line analysis.

I. INTRODUCTION

Traffic measurements are vital to the provision-
ing of reliable, efficient Quality of Service (QoS)
over data networks. Such measurements are useful
for generating reference loads for testing equip-
ment, and are a necessary ingredient in any ap-
plication which tries to optimise network perfor-
mance, from network planning and dimensioning
tools to call admission control algorithms. Recent
measurements of data traffic, for instance [1], [2],
have discovered its fractal, self-similar, or long-
range dependent nature — the traffic shows bursti-
ness on many times scales: from milliseconds up
to hours, or days. This behaviour has been proven
to have important impacts on the performance
of systems, however, until recently it has been
prohibitively expensive to obtain measurements of
these characteristics, preventing their use in day-
to-day operations.

To gain a true understanding of the traffic car-
ried on a network, detailed continuous measure-
ments should be taken at many places in the net-
work —ideally at any point where congestion might
occur. Of course the volume of data generated
through ubiquitous monitoring can be vast (con-
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sider a few seconds worth of data running at Giga-
bit/s speeds...), and so in-situ processing is greatly
desirable to reduce the data to a managable and
easily interpreted form. Such processing should be
performed on-line and in real-time in order that
network measurements be continuously available,
and must be made with inexpensive equipment if it
is to be almost ubiquitous. If this can be achieved
then these results can be used in real-time applica-
tions such as Call Admission Control (CAC), rate
adaptation, or congestion control.

The NLANR, in co-ordination with MCI, as part
of the CORAL project [3], [4], [5], [6], [7], has de-
veloped a suite of OCXmon(itors), which allow
non-invasive measurement of optical links (OC3 -
155 Mbs, OC12 - 622 Mps) carrying ATM traffic.
We have adapted their work to allow the mea-
surement of the fractal characteristics of traffic in
real-time, as the data is collected.

The core of our work is based on the Abry-
Veitch estimator of the parameters of Long-Range
Dependence (LRD) which uses the wavelet trans-
form to measure the degree of self-similarity in
the traffic (details of which are summarized be-
low and can be found in [8], [9]). The wavelet
transform is a natural tool for such work because
of the intrinsic scaling properties of wavelets, and
the efficiency of the transform, which can even be
computed in real-time as data is collected. In ad-
dition, the statistical properties of this algorithm
(zero bias, 1/n efficiency, and robustness [10], [11])
are better than any currently known alternative.
The estimator has very low memory and compu-
tational requirements and scales naturally to arbi-
trarily high data rates. It is therefore perfect for
use in real-time applications such as CAC.

In [12] we showed that the estimator could be



applied to estimating H in real-time, simply, rapidly, rameter, H, describes the (asymptotic) self-similarity

and with very low memory requirements. The pa-
per applied the method to Ethernet traffic at 10
Mbps, but we noted that the method should scale
to arbitrary traffic rates with respect to both mem-
ory and processing requirements, so that it will re-
main applicable as data rates increase with time.
This paper graphically demonstrates this scaling
by applying the estimator to ATM (Asynchronous
Transfer Mode) traffic at 155 Mbps.

This paper is organised as follows. In Section II
we describe the Abry-Veitch joint estimator for the
parameters of long-range dependence, and in Sec-
tion IIT we describe the online implementation of
the estimator. Both have been described in detail
elsewhere [8], [12] so only a summary is included
here. Section IV describes the implementation is-
sues relating to the measurement of ATM traf-
fic, and an architecture which satisfies all of the
requirements for such a system. Section V then
describes the actual measurement in real-time of
the parameters of long-range dependence for arti-
ficially generated traffic.

II. THE ABRY-VEITCH (AV) ESTIMATOR

In any data measurement situation a basic the-
oretical framework is required through which to
view the data, to select important parameters which
describe it, and to propose and evaluate estima-
tors of them. In our case the time varying rate
x(t) of incoming traffic is the data of interest,
and we model it as a stationary stochastic pro-
cess. Basic features of this process are its mean
i = E|x], variance 02 = E[(z — p)?], and corre-
lation function 7, (k) = E[(z(t + k) — ps)(x(t) —
piz)]. In this context the self-similar properties of
traffic manifest themselves in a particular form of
vz(k), namely a decrease with lag &k so slow that
the sum of all correlations downstream from any
given time instant is always appreciable, even if
individually the correlations are small. The past
therefore exerts a long term influence on the fu-
ture, exaggerating the impact of traffic variabil-
ity and rendering statistical estimation problem-
atic. This phenomenon is known as Long Range
Dependence (LRD), and is commonly defined as
Yo(k) ~ ¢, k|~ o € (0,1), or equivalently as
the power-law divergence at the origin of its spec-
trum: fy(v) ~ ¢lv|~, |v| = 0. The Hurst pa-

of the cumulative traffic process corresponding to
x(t) which generates the LRD of z(t), itself de-
scribed by a. It is nonetheless common practice
to speak of H in relation to LRD. The two are
related as H = (1 + «) /2.

In [8], [9] (see also [13], [11], [14], [12], [10])
a semi-parametric joint estimator of (o, ¢f) is de-
scribed based on the Discrete Wavelet Transform.
Wavelet transforms in general can be understood
as a more flexible form of a Fourier transform,
where z(t) is transformed, not into a frequency do-
main, but into a time-scale wavelet domain. The
sinusoidal functions of Fourier theory are replaced
by wavelet basis functions 1, (u) = ¥o(%:t)/V/a,
a € IRT, t € IR generated by simple translations
and dilations of the the mother wavelet 1y, a band
pass function with limited spread in both time
and frequency. The wavelet transform can thus be
thought of as a method of simultaneously observ-
ing a time series at a full range of different scales a,
whilst retaining the time dimension of the original
data. Multiresolution analysis theory shows that
no information is lost if we sample the continuous
wavelet coefficients at a sparse set of points in the
time-scale plane known as the dyadic grid, defined
by (a,t) = (27,27k), j,k € IN, leading to the Dis-
crete Wavelet Transform with discrete coefficients
d.(j, k) known as details. Henceforth we will deal
exclusively with the details of the Discrete Wavelet
Transform. The octave j is simply the base 2 loga-
rithm of scale a = 27, and k plays the role of time
(although a time whose rate varies with j). For
finite data of length n, j will vary from 57 = 1, the
finest scale in the data, up to some jmax & logy(n).
The number of coefficients available at octave j is
denoted by n;, and approximately halves with each
increase of j.

The estimator has excellent computational prop-
erties due to the fast ‘pyramidal’ filter-bank algo-
rithm [15] for calculation of the discrete wavelet
transform, which has a complexity of only O(n).
The number of wavelet coefficients d,(j, k) thus
generated is also of order n, and subsequent com-
putations required to form the estimate of H from
them have only this complexity. The overall com-
plexity therefore remains O(n), which clearly scales
satisfactorily.

The main feature of the wavelet approach which



makes it so effective for the statistical analysis of
scaling phenomenon such as LRD is the fact that
the wavelet basis functions themselves possess a
scaling property, and therefore constitute an opti-
mal ‘co-ordinate system’ from which to view such
phenomena. The main practical outcome is that
the LRD in the time domain representation is re-
duced to residual short range correlation in the
wavelet coefficient plane {j, £}, thus removing en-
tirely the special estimation difficulties. Thus for
each fixed j, the series d,(j,-) can be regarded as
a stationary process with weak short-range depen-
dence, and these series can be regarded as almost
independent of each other.

We can now outline the estimator as consisting
of the following three stages:
1. Wavelet decomposition A discrete wavelet
transform of the data is performed, generating the
details d,(j, k) over the dyadic grid.
2. Detail variance estimation At each fixed oc-
tave j the details are squared then averaged across
‘time’ k to produce an (excellent) estimate of the
variance of the wavelet coefficients, called p;. It
has been shown that the p; follow a power-law in
j with exponent a.
3. LRD parameters estimation A plot, referred
to as the Logscale Diagram, is made of y; = log,(x;)
against j complete with confidence intervals, and
from it the range of octaves [ji, jo] where scaling
occurs is determined. The LRD parameters H and
cr are then extracted by performing a weighted lin-
ear regression over those scales.
Notes:
« Since the expectations of the details are all iden-
tically zero [13], the average of the squares of the
details at a given j is an estimate of the variance
at that j.
o In forming y; small corrective terms g(j) are in
fact subtracted from log,(;) to account for the
fact that F [log] (-) # log(E [-]).
o H is related to the slope of the plot, and ¢ to a
power of the intercept.
o The weights are the known variances of the y;
and do not depend on the data.
« Confidence intervals for H are derived from the
standard variance formulae for weighted linear re-

gression with mutually independent y;, and so again

are not functions of the data.
An example of the Logscale Diagram and re-
gression fit using a simulated data set is given in

Figure 1. The 95% confidence intervals for each
yj, shown as vertical lines at each octave j, are
seen to increase with j.
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Fig. 1. An example of the Logscale Diagram for a LRD
process with strong SRD. The vertical bars at each
octave give 95% confidence intervals for the y;. The
series is simulated FARIMA(0,d,2) with d = 0.25 (a =
0.50) and ¥ = [-2, —1] implying ¢; = 6.38. Selecting
(J1,J2) = (4,10) allows an accurate estimation despite
the strong SRD: & = 0.53 + 0.07, é¢; = 6.0 with 95%
confidence intervals 4.5 < ¢y < 7.8.

III. THE ON-LINE ESTIMATOR

The AV estimator summarized above is gaining
acceptance as the method of choice for measuring
LRD in traffic [16], [17]. Until recently, however, it
has been used as a batch estimator — that is, where
a data set is collected and analyzed off-line. It is
ideally suited to on-line use however, making it
usable within network elements such as switches
as well as network monitoring systems. By on-
line estimation we mean a data processing method
whereby new fragments of data are processed as
they arrive. In what follows we concentrate on
the estimation of H, although the second LRD
parameter, ¢, is also estimated by the method,
and is very important in applications: for example,
the confidence intervals of mean estimates for a
LRD process are asymptotically proportional to
\/@.

On-line estimation has two main requirements:
1. That an algorithm be devised such that newly
acquired data elements can be processed individ-
ually and merged with existing processed data,
rather than requiring complete re-computation.



2. That the algorithm be efficient enough to imple-
ment the above at the rate that new data arrives.
The first requirement is critical for on-line estima-
tion, whereas the second is an issue of the nec-
essary computing power versus its cost. Because
of the steadily increasing bandwidth of networks
however, the method must be scalable, so the sec-
ond requirement is in fact principally an issue of
the time and memory complexity of the algorithm.

The AV algorithm can be adapted to satisfy
both requirements. The first stage of the esti-
mator, the wavelet decomposition, is easily im-
plemented in an on-line fashion using a real-time
pyramidal filter-bank (Figure 2). Indeed, such
filter-banks were devised with on-line applications
in mind. The second stage is trivial and can be
performed on-line as follows. Let the current stored
sum of squares at octave j calculated from the first
n; values be S; = Y,°_, d,(j, k)?. Assume that the
arrival of the new data point z(n) results in a new
coefficient d,(j, n; + 1) at octave j from the filter-
bank. The sum is then updated:

n; < n;+1,
Si « Sj+dalj,m)”

When the variance estimate at octave j is required
for the final stage it can be calculated as p; =
S;/n;. The final stage of the estimation algorithm
need not be adapted to an on-line version, as there
is no need to compute H every time a new data
point is acquired. It may be re-calculated only
as needed, typically at ‘human’ time-scales several
orders of magnitude larger than the data collection
rate. In any case the complexity of the final stage
is only O(logy(n)).

Some explanation is required to explain why the
first stage of the on-line estimator is scalable. The
on-line filter-bank, illustrated in Figure 2, consists
of a number of filters of fixed size K connected in
series (typically the size of these filters is small,
say K = 6). Because the output rate of each filter
is only half of its input rate, data of length n is
effectively summarized and held in the filter-bank
in the form of K log,(n) ‘half-processed’ values.
Crucially, these numbers are the only ones which
must be stored in memory, not the full set of his-
torical input data z(t). Regarding the run-time
complexity, on average each new data point z(n)
results in 2(K + 1) operations, a number indepen-
dent of n. If this processor load were to great

then the filter-bank can be naturally implemented
in Digital Signal Processing (DSP) hardware, but
we have not found this to be necessary.

Section V shows how a quite modest computer
is capable of performing the AV estimation algo-
rithm, on-line and in real-time on ATM data sam-
pled at 155 Mbps.

The obvious advantage of computing estimates
on-line is that results are immediately available,
rather than after a lengthy cycle of collection and
analysis. As mentioned earlier, this is essential for
real-time network management purposes, but also
offers important advantages for traffic collection
and analysis in general. For example, apart from
reducing the analysis delay, this approach allows
the decision as to whether enough data has been
collected to be made as it arrives. It is also ad-
vantageous to be able to detect unusual events as
they occur, enabling immediate modifications to
the collection/analysis effort.

The other central advantage of on-line estima-
tion is the reduction in memory requirements, both
in terms of the algorithm itself and of the storage
of data sets. Batch analysis requires the collec-
tion and analysis of very large data sets, and sam-
ples larger than any standard computer’s memory
space are easy to collect. For example, a tradi-
tional Ethernet sampled every millisecond over 1
week represents 604 million sample points, which
stored as four byte integers requires approximately
2.4 GB of space. Thus capture of this data may
be a problem, as the data cannot all be stored
in memory and then saved to disk. Similarly for
analysis, the data cannot be held in memory all at
the same time resulting in large delays due to disk
paging. In contrast, as explained above, on-line
measurement, does not have substantial memory
requirements. Thus a traffic stream can be mon-
itored and measured continuously for weeks at a
time, without any delay in the estimation at the
end of the process, and without a large memory.

The number of available scales increases with
the length n of the data. Ideally the number of
available octaves is Simply jmax = logsy(n), however
edge effects limit the number in practice. Note
that the on-line algorithm allows all of the scales
available in the data to be seen and used, rather
than deciding a-priori which scales will be exam-
ined.
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IV. ARCHITECTURE FOR MEASURING ATM
TRAFFIC

The seminal study of self-similarity in data traf-
fic was conducted on an Ethernet [1], which is a
relatively easy medium to measure because of its
broadcast nature. Furthermore, at 10 Mbps there
are no problems collecting or storing the traffic
data. Hence our initial study of real-time mea-
surement of the parameters of LRD was conducted
on Ethernet data [12], [18].

ATM is a much more demanding medium. We
consider here, ATM over 155 Mbps OC3c SONET

(Synchronous Optical NETwork) which has emerged

as a common ATM implementation. The demands
of such a network are, in particular, a much higher
data rate and the fact that SONET is a point-to-
point technology. We shall concentrate on mea-
suring IP traffic transmitted over ATM, as this is
the type of data to which we have access, though
the methods described here could easily be applied
to other types of traffic.

In addition to requiring that our ATM monitor
measure [P traffic transmitted over ATM at OC3
rates (nominally 155 Mbps), there are a number
of other requirements, namely that it

1. be passive; that is, have no effect on
network performance;

2. be implemented using cheap, commod-
ity off-the-shelf (COTS) components;

3. allow remote access and control;

4. allow accurate time stamping of pack-
ets;

5. be able to measure either the aggregate
traffic on a link, or only the traffic on a
particular Virtual Circuit (VC), Virtual
Path (VP) combination, or only the traf-
fic between specific IP source and desti-
nation addresses, or only the traffic trans-

~ (L)
~d(2,)
d(3,)

a(3)

The filter-bank. At each level in the recursive structure, the High Pass (HP) output: d.(j,-), and the Low Pass (LP)
1,-).

mitted to a specific TCP (Transmission

Control Protocol) port.
The first requirement is dictated by practicalities
— no network operator would allow access to their
network without a guarantee that traffic would
not be disrupted. The second requirement was
in part dictated by budget, but was further mo-
tivated by the philosophy that network monitor-
ing should be almost ubiquitous, rather than a
tool for chasing problems. Ubiquity requires cheap
and easily assembled monitors, and also creates
the need for remote access and control to aid in
their management. The next requirement is one
of accurate measurement, particularly important
for LRD measurement. The final requirement is
dictated by many of the applications of network
monitoring, for instance billing.

The list of requirements above strongly suggests
that the monitor be based around a PC architec-
ture, using a COTS ATM Network Interface Card
(NIC). The FORE Systems PCA-200EPC ATM
NIC has been used for network monitoring by MCI
on the vBNS (very high performance Backbone
Network Service [19]). In fact the CORAL group [3],
[4], [5], [6], specifically the OC3MON project [7],
has made the drivers for this NIC freely available.
Hence this was an ideal starting point (we have
recently learnt there is at least one other project
based at the University of Waikato in New Zealand
which has developed similar hardware [20]). We
therefore based our monitor around the OC3MON,
though minor modifications to their drivers were
required for our application.

The architecture of our system is shown in Fig-
ure 3. As in the CORAL monitor, the SONET
optical link is tapped using an optical splitter,
which in our case splits 50% of the light off to
our NIC. The NIC reads the ATM cells, and col-



lects and time stamps the initial cell of each TP
packet, transmitted using AAL5 (ATM Adapta-
tion Layer 5), and discards all of the other cells
of the packet. The first cell contains the TCP/IP
headers' and can therefore be used to select traffic
on IP source/destination or TCP port (which may
determine the application through the well known
TCP ports), while the cell VC/VP numbers could
also be used for traffic selection. The OC3MON
project has also investigated IP flows though we
have not applied this feature.

The time stamp precision is 40 ns relative to
the clock on the NIC (approximately 1/70th of
the cell transmission time). The actual accuracy
of the timestamps may not be quite this good due
to processing delays on the ATM card, but these
inaccuracies are small compared with the sampling
intervals of interest (see below). The cell capture
process then produces a “packet count” time se-
ries by counting the number of IP headers received
during each time interval — referred to as the sam-
pling interval. A second “bit rate” time series of
the is generated by examining the AAL5 Proto-
col Data Units (PDUs) to obtain the length of the
PDUs. Obviously this is not the actual line trans-
mission rate, as the ATM cell overhead, and the
SONET overhead are not taken into account — we
are more interested in the higher layer transmis-
sion rate in any case. The packet rate time series
is the input to the estimation routines used later,
though previous work [11] has shown that either
time series should produce equivalent results.

Optical
Splitter

| ATM
NIC

GUI

Data
| Cell Capture |g—| Processors
T

200MHz Pentium PC

ATM
Switch

Fig. 3. The architecture of the ATM monitor.

The time series produced by the capture process
is then transmitted to a data processor which takes
the times series and performs the estimation pro-
cedure described above. In addition simple statis-

! Assuming IPv4 with no options.

tics of the data, such as the mean bit and packet
rates, are also collected. These estimates are then
fed to a Graphical User Interface (GUI) front end
which displays the results. The GUI also allows
control (starting, stopping, and changing of pa-
rameters) of the data processors and cell capture
processes. More than one data receiver can run in
parallel allowing simultaneous monitoring of more
than one VP/VC on the same link, or simulta-
neous estimation on the same data stream using
different scales/time intervals.

The communication between cell capture, data
processor, and front end is over TCP/IP sockets,
allowing for distributed operation. For instance
the front end could display results and control the
capture and data processor processes from a re-
mote location. Note though, that if this is the
case, care should be taken to make sure that the
traffic from the monitor itself is not being carried
on the monitored link!

The cell capture process was written in C++,
the data processors in C and the front end in
JAVA, further illustrating the flexibility gained by
using the TCP/IP sockets for communication be-
tween processes. In principal the JAVA front end
could even be run as an applet, though in the
cases we considered, the standard JAVA security
model would prevent some of the desired actions
of a monitor front end, such as logging to a local
disk.

Altogether the system costs significantly less than
5000 Australian dollars (~ $3000 US). There are
a number of adjuncts that could be included for
ideal operation, for instance GPS (Global Posi-
tioning System) based time calibration can be used
to correct for clock drift and ensure that the time
stamps generated by the clock are accurate with
respect to UTC (Coordinated Universal Time),
but as our current measurements are only at a
single point this is not necessary.

V. REAL-TIME MEASUREMENT OF ATM
TRAFFIC

The aim of this paper is not to prove the exis-
tence of LRD in ATM traffic. Many papers have
demonstrated the existence of LRD in data traffic
both for instance in Local Area Networks (LANSs) [1]
and for Wide Area Networks (WANSs) [2] and even
in specifically ATM networks [17]. The data pre-



sented here is intended to show that the monitor
is capable of real-time measurement of ATM traf-
fic. Note that the data reduction gained through
the on-line monitor allows us to study network be-
haviour over truly long scales — months to years!
The tests presented here were conducted using
artificially generated traffic. For this purpose we
built a specific traffic generator [21]. The traffic
generator can generate loads of up to 140 Mbps of
data traffic (close to the line rate), with LRD char-
acteristics. It uses the superposition of On/Off
sources model [22] to generate this traffic. In this
case we used 100 sources each running as a sepa-
rate process which generated pseudo-files (of ran-
dom size, padded with zeros) and transferred the
files across the link. The file sizes were generated
using the Pareto distribution, as were the times
between file transfers. The value of the shape
parameter in the Pareto distribution was 1.5 in
both cases, corresponding to a Hurst parameter of
0.75. The files are broken into IP packets which
are transferred using the AALDS across the ATM
link. AAL5 takes the packet, adds a minimal tail,
and passes the packet to the segmentation and re-
assembly layer which segments the packets into
48 byte cells and attaches the 5 byte cell headers
which are then transmitted over the optical link.
The results are shown in Figures 4 to 7. Fig-
ure 4 shows the packet rate, while Figure 5 shows
the bit rate; both are averaged over 1 second in-
tervals. The z-axis shows the time relative to the
time of the measurement — hence the total dis-
played period is the final 5 minutes of the exper-
iment. The experiment was carried out over ap-
proximately 30 minutes, but in order to be able to
clearly see the results we display only the final part
of this time series. Note that the figures are very
similar. The transmitted files tend to be large,
and so the packets transmitted are almost all the
same size (the maximum PDU size 65,535 bytes),
and therefore the bit rate depends very closely on
the packet rate. Note also that the bit rate shown
is the data bit rate, that is, the number of data
bits transferred, including IP and TCP headers,
but excluding ATM and SONET overhead which
add approximately 10% to the bit rate displayed.
We can see from the figures that the traffic is
highly variable, as desired. However, the true test
of self-similarity is to apply the estimator. Fig-

ure 6 shows the Hurst parameter estimates over
the same time interval. As the time interval dis-
played is near the end of the data set, the estimate
changes only very slowly as each new measurement
is relatively unimportant compared to the large
body of preceeding data incorporated in the esti-
mates. We may immediately note that the Hurst
parameter estimate is not as accurate as its con-
fidence intervals indicate (the measured value is
around 0.8 while the theoretical value is 0.75).

The difference between the theoretical and mea-
sured values of H does not arise because of errors
in the measurement process. It is in fact an arti-
fact of the generation process. While the On/Off
model has simple theoretical properties, in prac-
tice generation of LRD processes using On/Off
models is not as simple as one might expect. First,
there is a little known fundamental problem with
measuring the parameters of an On/Off process
which can lead to bias in estimates even for very
long series. It concerns the sampling of the longer
On and Off events which leads to a truncation
in the sample correlation structure of any sam-
ple path. The phenomena has been described in
[23], and the bias observed using other estima-
tors of the Hurst parameter has been noted else-
where [24]. Unfortunately, these truncation ef-
fects intrinsically limit the range of scales over
which the generated traffic displays self-similarity
— so that simply extending the length of the time
series, which would seem to be an obvious solu-
tion, is of limited help. Furthermore there is the
practical problem that in any real application the
length of the measurement interval will be lim-
ited by time constraints due to non-stationarity in
the data [25]. Second, our implementation uses
separate user processes on a multitasking oper-
ating system, and the resulting kernal controlled
scheduling prevents us controlling the behavior of
the traffic on fine time scales. This last point how-
ever is not so important from the point of view
of H measurement, as LRD processes are only
asymptotically self-similar. Thus the scaling be-
haviour begins only above some lower cuttoff scale,
and so the lowest scales are not used in the esti-
mation in any case, as noted below.

Such effects highlight the importance of exam-
ining Logscale Diagrams, and not simply taking a
blind estimate of a single parameters such as H.
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Fig. 5. An example of artificially generated traffic — in Mbits per second over the last 5 minutes of traffic generation.

Figure 7 shows the Logscale Diagram of the data
in question. Note in Figure 7 the z-axis has been
modified to display the time-scale rather than the
values of j. As described in Section II the Logscale
Diagram shows the values y; which are used in a
weighted regression to perform the estimate of H.
We can immediately see that the y; do not all fall
on a straight line, and so cannot all be used in
the estimate. The Logscale Diagram at the finer
time scales is quite non-linear. It becomes ap-
proximately linear above a time scale of around

1 second, and it is in this region (shown by the
vertical lines) that we perform our estimate of the
Hurst parameter. Finally at time-scales around 1
minute there appears to be the beginnings of the
truncation effect noted above. These higher scales
should be excluded to avoid the associated bias,
but this would leave us with a very narrow range
of scales to make our measurements.

We have recently developed a superior method
for generating traffic which has been documented
n [21], however it is useful to describe the be-



havior of the simpler On/Off generator here. We
have thereby demonstrated that an examination
of Logscale Diagrams, based on accurate measure-
ment, can clearly display the surprisingly complex
behaviour of On/Off generators.

VI. CONCLUSION

In summary, this paper demonstrates that cheap,
scalable, and ubiquitous monitoring of data traffic
is possible, and can include measurements of the
fractal nature of the traffic. Furthermore, such
measurements can be successfully performed in
real-time, enabling their use in real-time applica-
tions such as CAC, congestion control, and net-
work monitoring.
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Fig. 6. An example output of Hurst parameter estimation. The three curves shown are, in order from the top, the upper 95%
confidence interval, the estimate, and the lower 95% confidence interval.

Log-Scale Plot: slope = 0.622, intercept = -5.548
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Fig. 7. The Logscale Diagram for the generated traffic showing a fitted regression line, and the scales used in the regression
(shown as vertical lines across the entire y-range).



