Lossy Compression of Dynamic, Weighted Graphs

Wilko Henecka
School of Mathematical Sciences
University of Adelaide, Australia
wilko.henecka@adelaide.edu.au

Abstract—A graph is used to represent data in which the
relationships between the objects in the data are at least as
important as the objects themselves. Large graph datasets are
becoming more common as networks such as the Internet
grow, and our ability to measure these graphs improves. This
necessitates methods to compress these datasets. In this paper
we present a method aimed at lossy compression of large,
dynamic, weighted graphs.

Keywords-graph compression; dynamic, weighted graphs;
shrinkage;

I. INTRODUCTION

Graphs (or networks) are being used more and more to
represent large relational datasets: e.g., computer networks,
social networks, biological pathways, and so on. The size of
these graphs is increasing: sometimes because the networks
under study are growing (for instance the Internet); but also
because we can now collect larger datasets more easily (for
instance through online social networks).

As graphs grow, there is an increasing need to find means
to compress them, i.e., create representations that take small
amounts of memory. The obvious motivation is to be able
to store larger graphs, and keep such stores for longer.
However, compressed representations can also lead to more
efficient algorithms for working with the data [1].

Compressing graphs has been a topic of interest for at
least a decade [2]-[11]. Most of the work has focussed
on simple graphs, however, many graph datasets represent
weighted graphs, i.e., graphs which have a set of values
associated with each edge.

The weights might indicate a distance metric, a strength
of the relationship, or some other data. In this paper, we
consider weights that measure the strength of association
between two individuals through the proxy measurement of
the number of phone calls exchanged. It might be argued that
this data should not be compressed (for instance for billing),
but historical data is very useful for other tasks such as fraud
detection [1]. If the data is not compressed somehow, then
this limits the scope of detection possible.

Moreover, fraud detection would ideally involve exchange
of data between telephone companies (for issues and meth-
ods for performing such comparisons see [12]), but frequent
exchanges of very large data sets (phone record graphs in
the United States alone could have hundreds of millions

Matthew Roughan
School of Mathematical Sciences
University of Adelaide, Australia
matthew.roughan @ adelaide.edu.au

of nodes) creates a large overhead in such a process,
particularly if it has to be done via a means that provides
privacy [12].

Few works consider compression of weighted graphs. In
addition, many graphs evolve over time, but graph compres-
sion algorithms typically target a single static graph. Those
that do consider dynamic graphs often do so by providing
a static graph plus edits, but this approach does not work
well for weighted graphs, where the edits might involve the
weights of every single link.

Within the general field of compression there are two main
strands: lossless and lossy compression, and many graph-
compression algorithms have focussed on lossless compres-
sion. However, lossy compression offers the possibility of
much higher compression ratios in music, image and video
data, and it is to be hoped that it may do so here as well.

Of the works on graph compression, we know only of
one major stream of work aimed at lossy compression
of weighted, dynamic graphs. In this work the Top-k ap-
proximation algorithm is used. However, the authors only
consider the use of this approach in a single application:
fraud detection.

Here we consider the quality of this approximation algo-
rithm in the more general context of compression, and show
that it has several problems that can be corrected by our
Shrinkage approximation.

Noise reduction is another aim here. The call-record
graph is a measure of some underlying social relationships,
and there are many other examples of such data (e.g.,
the Enron email dataset [13]). The measure itself contains
noise though, for instance, miss-dialled calls. Ideally, an
approximation scheme would smooth out some of the noise,
and both Top-k and Shrinkage perform this task.

The net result is a lossy compression algorithm for
dynamic, weighted graphs with better performance than the
Top-k algorithm over a range of metrics.

II. BACKGROUND AND RELATED WORK

Graph compression has been a topic of interest for more
than a decade, starting perhaps with the need to provide
compressed representations of the WWW [4]. There have,
however, only been a relatively small number of subsequent
works.

We classify these by whether they operate on unweighted
or weighted, and static or dynamic graphs. We also cate-
gorise the methods by whether they are lossless or lossy.
An overview of our classification of related work is given
in Table I, and we describe more details below.

An unweighted static graph can be losslessly compressed
by applying LZW compression to a search tree of the graph
[3] or by reordering the edges in such a way that techniques
borrowed from full-text indexing achieve good compression
for the WWW hyperlink graph [4] and for social network
graphs [5].

The compression ratio can be improved by allowing for
lossy compression. Navlakha et al. [6] replaced similar
vertices in a graph with a super vertex whilst collecting the
differences in the neighbourhoods of the affected vertices
in a set of edge corrections. An approximate representation
is achieved by allowing omission of some edge corrections,
such that a user-defined bounded error is guaranteed. Gilbert
and Levchenko [7] proposed several semantic compression
schemes as an exploration tool to distill some important
structures of a large graph. They differentiate between
importance and similarity compression schemes. Whereas
in the first, only ’important’ nodes are retained in the
compressed graph, in the latter, several ’similar’ nodes
are grouped into one super-node in the compressed graph.
Measures of ’importance’ can be (localised) node degree
or shortest-path weight, and for similarity they proposed
geographic or shared medium clustering, and redundant
vertex elimination.

Liu et al. [8] represent a dynamic weighted graph as
a three-dimensional tensor (Vertices x Vertices x Time).
Since large dynamic graphs are mostly sparse, they only
have to encode the sparse version of the tensor. They reduce
the encoding cost for the sparse tensor by reducing the
number of different values for the weights, thereby reducing
the entropy of the weights. You et al. [9] used graph-
rewriting rules to describe structural changes in a dynamic
graph. They then use these to generate description rules to
describe temporal patterns in the graph. Description rules
can be used to predict future graph behaviour.

Another representation of dynamic graphs is used in fraud
detection. Hill et al. [14] merge the historic values of the
weight of the edges with their current ones by computing a
weighted moving average. They further reduce the graph by
only keeping the Top-k edges of each vertex. The memory
requirements of the resulting graph thus only depend on the
number of vertices.

The approach on which our work is based is that of [1],
[14]. Though they did not present their work in the context of
compression, their Top-k approximation is indeed a type of
lossy compression. In the following we describe the natural
generalisation of their approach, along with its details, and
those of the Shrinkage alternative.

One final note concerns the difference between approx-

Table I: Categorisation of related work.

lossless lossy
static, unweighted [31-[5] [6], [7]
static, weighted [2] [10], [11]
dynamic, unweighted [9]
dynamic, weighted [11, [8], [14]

imation and compression. A complete lossy compression
scheme involves both approximation and encoding. The first
step involves reduction of the information that is required to
be stored, and the second stores that information efficiently.
Often the two are designed in concert to gain the best
compression. Here we only concentrate on the approxi-
mation step, and show that this alone provides substantial
compression of the data. If encoding were incorporated into
the algorithm, for instance using techniques to encode sparse
tensors [8], then we should see even better performance.

ITII. LossYy COMPRESSION AND GRAPH APPROXIMATION

The Top-k approximation can be seen as a specific case
of a general set of approximation algorithm, which revolve
around two key operations:

« the weighted sum oA @ BB of two weighted graphs A

and B, and

o a graph approximation operation.

The former is a generalisation of the graph union operation
to weighted graphs. If G = oA @ B then the nodes and
edges of the new graph G are the union of the nodes and
edges of the graphs A and B,

N(G) = N(A) UN(B),
E(G) = E(A) U E(B),

where N(X) and E(X) are the nodes and edges of graph
X. The weights of the edges of the new graph are

weg(e) = awale) + Bwp(e), for all e € E(G),
where we assume for convenience that
wx(e) =0, for all e ¢ E(X),

i.e., if an edge is not present, we treat it as if it has weight
0.

If the weights « and 3 are chosen such that o + 3 = 1,
then the resulting graph can be seen as a weighted average
of the two input graphs.

This is a useful operation on weighted graphs, and is
implicit in many graph measurement strategies which seek
to create a measured graph by averaging observations over
some time interval.

Here we apply it to the snapshot graphs for each day by
creating an “EWMA” graph G, using the daily graphs up to
the time ¢ as

Gy =0Gi—1©(1—0)g,)

for some 0 < 6§ < 1. Note that the measured graph is
therefore the graph equivalent of the EWMA (Exponentially
Weighted Moving Average) often used in time series. The
EWMA is a well-known estimator used in many domains
(for instance Finance) to provide a local, smoothed estimate
of dynamic values from noisy measurements.

In our application the motivation is similar. The underly-
ing relationship graph changes (slowly) over time — new
friends are made, and old ones forgotten — and so the
picture of this graph must adapt. The EWMA allows for this
adaptation because the weights of stale links decay away.

The second component of the approximation is the ap-
proximation operator, A(-). We define two such, described
below, but in general the algorithm for approximating the
dynamic graph can be specified as

Gy = A(Gét_l o1 9)gt).)

Notice that the approximation algorithm differs from 1, in
that it recursively approximates in terms of the cumulative
approximation Gy, not the graph G;. Thus it can be calcu-
lated without recourse to storing the entire data for more
than one day.

An approximation operator may perform two types of
action:

1) it may prune edges from the graph (we do not allow
pruning of nodes); and
2) it may perform an approximation of the edge weights.

In this work, we primarily consider the former action,
though we have considered the affect of quantisation of edge
weights in [12] in fraud detection, and this certainly would
enhance the compression ratio in the encoding step.

A. Top-k

The underlying idea of the Top-k approximation is to
generate a signature of a node’s behaviour. Looking at a
call-graph, in which nodes are phone numbers and directed
edges represent communication between the users of those
numbers, the majority of the call activity of each node is
only towards a small number of their respective neighbours.
Thus, a signature of the calling behaviour is the Community
of Interest (COI) signature [1]. This signature consists of the
Top-k numbers called by the target number and the Top-k
numbers that call the target number.

In addition, the algorithm prunes those edges whose
weights fall below some parameter ¢, in order that stale data
is removed from the approximation even for nodes that have
fewer than k edges.

The pruning function ensures that only the most relevant
nodes will appear in the COI signature. But since calling
behaviour is heavily skewed such that most of an individual’s
calls are made to only a few numbers, we can choose the
parameter 6 and k of the COI framework such that typically
95% of all communication behaviour is accounted for in

the Top-k edges. For a thorough discussion of the choice of
parameters, see [14].

Pruning reduces the size of the data we need to track to
at most k entries per subscriber, thus compressing the data.
The reduced representation makes COI comparisons more
efficient as well.

B. Shrinkage
The Top-k algorithm has two main advantages:

o it is easy and fast, and
« it performs well on the specific task of matching COls,
for instance in fraud detection.

However, it has several deficits as well:

« it has two parameters (k, €), which need to be optimised
on a particular set of networks,

it is oriented specifically at a single task, and does not
preserve other network characteristics (e.g., the degree
distribution).

We might also add to that list that it is a somewhat ad
hoc procedure, and it might be considered desirable to
have a more theoretically sound approach. Shrinkage fixes
these issues, while preserving the advantages of the Top-k
algorithm.

Shrinkage is used in statistics when the number of values
to estimate is large in comparison to the number of data. A
common instance is in estimation of autocovariance matri-
ces [15], and this is directly analogous to our estimations
problem. In both instances, a matrix with n2 elements must
be estimated from comparatively few samples, perhaps only
O(n).

The underlying idea of a Shrinkage estimator can be moti-
vated by the instance of taking measurements X ~ N(6,1),
and attempting to measure the parameters 6. The intuitive
estimator is 6 = X , but although this is a zero bias estimator,
it doesn’t always have the lowest mean squared error. There
is a potential bias-variance tradeoff, i.e., by allowing a small
bias in the estimates, we might reduce the variance, and
hence the overall errors.

Shrinkage is a simple approach to achieve this: one simply
shrinks (moves) the estimates towards some value. The
method seems counter-intuitive because we move away from
the natural estimator. Sometimes this confusion is called
Stein’s paradox, but the approach is well-established in
statistics [16], [17]. We shrink towards zero here because the
weighted adjacency matrix should be a (very) sparse matrix
— most of its entries should be zero. Hence our shrinkage
estimator would look like § = [X — A]™, for 0 < A < 1.

Applying shrinkage to the approximation operator we note
its affect is to modify the weights so that

we(e) = [wale) = AT,

where [] denotes the positive part. When a weight is set
to zero by the operation, the corresponding edge is pruned

from the graph. The value of the method depends on the
choice of A > 0 to suit the particular problem. We examine
suitable choices in the results below.

The method can also be seen as soft thresholding, such
as is conducted when denoising [18]. In this sense, it is
removing or reducing “noise” in the measured graph, to
more accurately obtain a picture of the underlying social
network. There is a tradeoff between fidelity to the original
and denoising: in our results there is no source of noise,
so we show clearly what the loss of fidelity would be for
a given reduction in noise (as indicated by the threshold
value).

C. Complexity

Both, the Top-k and the Shrinkage approximation are
composed of simple operations which only affect the edges
with non-zero weights. Let z(G) be the number of non-
zero edges in graph G. Then the complexity to compute the
EMWA graph G; is z(Gi—1) + z(g:) multiplications and
min(z(Gy—1) + z(g¢)) additions.

The Top-k approximation consists of two parts: First
all elements below the e threshold are removed. This step
requires z(G;) comparisons. Then the top-k numbers are
selected which can be achieved by first sorting the elements
and then picking the top-k. The complexity of sorting is
O(2(Gy) log 2(Gy)).

In contrast, the Shrinkage approximation requires z(G4)
subtractions and z(G}) comparisons, as we have to test for
values smaller than zero.

Overall, Shrinkage has a slight advantage over Top-k, as
it omits the comparatively expensive sorting operation. The
complexity of both approaches depend only on the number
of edges with non-zero weights.

IV. METHODOLOGY

The aim of our approach is to test compression in the
setting of a dynamic, weighted graph that is a measure of
some underlying set of relationships. A classic instance of
such a graph is the telephone call-record graph. Telephone
calls (along with their duration) stand as proxies to measure
relationships.

There are many other such graphs (e.g., email graphs, on-
line social networks, ...) but call-record graphs are interesting
because

1) they have been collected for almost a hundred years;
and

2) they have particular applications [1] which have been
used in the past to provide metrics for approximation
“usefulness”, if not accuracy.

Working with call-record graphs is difficult however, as
the information contained in them is considered private,
and is strictly regulated in most jurisdictions. In order that
our results be reproducible, we instead work with simulated
call data. This has the added advantage that we know the

“ground-truth” social network, not just our measurements of
that network.

Call-record graphs have a number of well-known charac-
teristics: for instance, the graph is highly sparse with an
approximate power-law degree distribution. These should
be mirrored in any simulation dataset, so we use here
a technique designed to simulate the commonly observed
characteristics of the call graph.

In the following, we describe our experimental method-
ology, in particular we provide a brief description of the
synthetic generation of a call-record graph.

A. Experiment

The generic structure of our experiments in as follows:
Generate = Measure = Approximate.

The principle is that there is some underlying network,
which is measured through a proxy measurement (in our
case telephone calls), and which we approximate. This
approach has the advantage that we can generate multiple
underlying graphs to obtain accurate statistical measures of
success, and that we know the ground truth network, which
we would not if all we analysed were measurements from a
real network.

The detailed method of creation, and its justification are
explained in [12]. However, we provide a brief description
here to provide context for the results.

The underlying relationship graph S is generated by a
Barabasi-Albert preferential attachment graph. Each new
node is connected to m existing nodes with a probability
proportional to the number of links of the existing nodes.
This generates the highly-variable (approximately power-
law) degree distribution commonly observed in call records
[19] and other social networks. There are other methods that
also generate power-laws and problems with the assumption
that social networks grow following this model [20], how-
ever, it is one of the simplest approaches to generate such
an network. In future work, we plan to extend our analysis
to other types of underlying network.

Each edge is then assigned an IID (Independent, Identi-
cally Distributed) random number r;; ~ U(0,1) to which
its weight will be proportional. We generate these using
the uniform distribution according to Laplace’s principle of
indifference, which suggests this distribution in the absence
of any information to the contrary. Weights are then assigned
as v;; = %rij, where nd(S) denotes the average node
degree in graph .S. This choice is made in order that expected
average call rate per customer per day ¢, which is chosen to
match known call rates.

Once we have this network, we generate calls by dividing
time into d discrete time intervals, and creating a call in
each time interval with probability p;; = v;;/d. We create a
measured graph g¢; for each day by taking N(g:) = N(S),
creating an edge whenever there is at least one call, and then

grouping d intervals into days, and counting the number of
calls between each pair to create the weight. In principle the
resulting count weight w;; is an estimate of v;;.

We then construct a cumulative measured graph M, using
all of the call records up to the time ¢. This is not an
intended measurement: it lacks any locality (ability to adapt
to changes in the underlying social graph), and requires
storage of the complete set of data. However, it does provide
us with a baseline estimate to compare with other techniques.

We also construct the EWMA graph G, using 1. Here
we will use the 6 = 0.9 value drawn from [14]. As noted
earlier this allows for locality of the estimates, but note that
our underlying graph S is not dynamic, so we can see the
convergence properties of our estimates. In future work we
will analyse the locality characteristics of different methods.

We also use the measured graphs to generate the two
approximations by applying the Top-k or Shrinkage approxi-
mations as described above. Note that we use the same value
of 6 in all methods to allow for consistent comparisons.

B. Metrics

In [14], the major metric for success was the performance
of the approximation in the specific task of forming COIs
that could be used in fraud detection. This is an important,
but very specific metric. Our goal here is to expand the
measurement of approximation success, and to do so we
introduce two simple metrics:

1) Weight error: we simple measure the errors in the
approximated weights, i.e., the error on a link is

€ij = {wij - wij|a

where we take w;; = 0 if (4,5) ¢ £ We used the
average of the summed error of each link over the
whole graph as the overall metric.

2) Degree distribution: the degree of a node in the
graph is simply the number of edges connecting to
that node. The degree-distribution records the number
(or proportion) of nodes with each degree. We use
this to provide a visually intuitive means to show the
difference between the two approximations.

There are many other metrics one could choose, but these
provide both a practical perspective (the values of the
weights are important for many applications), and the graph-
centric perspective (node degree is often used as a means to
characterise types of graphs).

In the results below we calculate metrics on 30 generated
networks.

V. RESULTS

We use the Top-k approximation with £ = 9 and € = 0.1
to match past work [1], [12], [14], where this was found
to be a useful setting in the COI application. The Top-k
approximation then reduces the number of edges in our

1,200,000

. edges /5
1,000,000} E
; 5,681,477
800,000
(%]
[
o
2
2 600,000} -/ TSI oo T oo oo o oososoos
o =
. i
c
400,000
200,000 — EWMA (/5) Top-k min |
- - Shrinkage Top-k max
% 20 40 60 80 100
days

Figure 1: Comparison of number of edges for different
compression techniques over 100 days.

1,200,000 : : :
+— Shrinkage
1,000,000 — Top-k max
— Top-k min
800,000} 1
0
(9]
o
©
U 600,000 R
o
5 0.048
c
400,000} -
200,000} E
804 005 006 007 008 009 010 011

shrinkage factor

Figure 2: Number of edges after Shrinkage approximation.

graphs from 5.68 Million to about 0.678 Million, a com-
pression ratio of 8.38:1. The Top-k implementation of [1]
stores the incoming and the outgoing call-graph separately.
However, as the underlying call-data is the same for both
graphs, some of the edges in both graphs have the same
weight, and others are different, because the Top-k pruning
is applied separately. Figure 1 shows a comparison of the
number of edges for the different compression techniques.
The *Top-k max’ line shows the maximum number of edges
to be stored for Top-k, that is, storing the incoming and
outgoing graph separately. In contrast, *Tok-k min’ shows
the number of different edges in the combined incoming and
outgoing graph.

In our first test we aim to find the value of A that
produces the same compression ratio. Figure 2 shows the
resulting number of edges of the Shrinkage approximation
as a function of A\. We can see two big jumps that can be
explained with the discrete nature of the weights. As the
average call rate per day is 5.2 which is spread over at least
30 links, the most common values for the measurements on
the links in the daily call graph g; are zero or one call. In the

.04 0.05 006 007 008 009 010 0.1
shrinkage factor

Figure 3: Weight error of Shrinkage approximation for

different shrinkage factors .

EWMA computation, one call results in a value of 0.1 to be
added to the historic call behaviour. Thus, a shrinkage factor
A = 0.1 prevents most new edges in the approximation graph
Gy. Similarly, if there is one call at one day followed by no
call the next day, then a shrinkage factor A > 0.0474 results
in the removal of the link, as following inequality holds:

(1=6)-1=X)-09-X<0.

The Shrinkage approximation achieves a similar compres-
sion as Top-9 for 0.0474 < A < 0.1.

Figure 3 shows the average weight error of the shrinkage
compression after 100 days for different shrinkage factors
A. Compared with Figure 2 it shows that although there
are two big drops in number of edges, the corresponding
errors change only slightly. Thus the best trade-off between
compression and weight error is just after a drop. Therefore
we will use A = 0.048 for all further comparisons.

Figure 4 shows the weight error as defined in Section
IV-B over a 100 day set of measurements. The solid blue
curve shows the error for the cumulative measured graph:
this isn’t realistic (there is no compression), but it forms
a baseline estimate of the best possible estimate obtainable
from the measured data. We can see that after an initially
rapid decrease, the curve slowly converges towards an ac-
curate estimate. We would expect this convergence to be in
line with the Central Limit Theorem, i.e., the error should
converge as 1/+/%.

The second curve, the dotted green curve, shows the
accuracy of the EWMA graph. The aim of this graph is
to estimate by averaging the underlying graph, but allow
some scope for locality. As such, we can see that although
its initial shape is similar to the measured graph, by about
day 30 it has converged to a stationary error rate. Choosing
different values of 6 would alter the exact level to which it
converged, and the time, but not the general shape of the
curve.

— Measured

0.30 EWMA
N -- Top-k
0251t -~ Shrinkage|]

0 20 20 60 80 100
days

Figure 4: Average weight error for the measured graph, the

top-k, and the shrinkage approximation.

The dashed red curve shows the accuracy of the Top-
k approximation. It has a similar shape to the EWMA
curve, but it converges to a higher error value, as a direct
consequence of the approximation. This is to be expected.

The surprising curve is that of the Shrinkage approxima-
tion (dot-dashed green), which also converges to a stationary
level very similar to the Top-k method, but the convergence
is much faster. There is almost no “burn in” period before
the estimates reach a reasonable level of approximation.

The fast convergence is a particularly useful property:
for instance, it makes the method easier to use in fraud
detection, as less history is needed before we can create
approximate COIs. It also means that we could (potentially)
adjust 0 to allow for faster adaptation to the underlying graph
than Top-k can accommodate.

The eventual level of the two approximation methods is
slightly different, but the difference is small in comparison
to our baselines methods, and this might reflect the difficulty
of choosing a value of)\ that exactly approximates the
compression achieved in the Top-k method.

The other facet of the methods that we aim to highlight
here is the generic distortion of the graph caused by the Top-
k approximation. Many social-relationship networks have
exhibited high-variability in their node degree distribution,
which means that some nodes will have degree orders of
magnitude higher than others. In this case, truncating the
degrees by the Top-k approximation cannot help but distort
the distribution.

Figure 5 shows the node degree distribution of the un-
derlying graph, the Top-k, and the Shrinkage approxima-
tion. We can see that the Top-k distribution is completely
changed, and that would be the case for almost any underly-
ing graph, even those without a true power-law distribution
of node degree.

On the other hand, the Shrinkage estimate does reduce
the average degree. It has to do so in order to provide any
compression benefit. However, it preserves the shape of the

distribution, and would do so for almost any node-degree
distribution in the same manner. This is the property that
fundamentally makes Shrinkage a better approximation for
the generic compression task.

10° ‘
« EWMA
N < « Top-k
10 e Shrinkage
%]
9103
o
c
<
o
5 2
S 10
10
100 L e
10° 10t 10? 10° 10*

node degree

Figure 5: Node degree distribution of the measured graph,
the Top-k, and the Shrinkage approximation.

VI. CONCLUSION

We propose a lossy compression technique for dynamic,
weighted graphs. The compression is achieved in a two-
stage process. First, the historic and the current behaviour
are merged by an exponentially weighted moving average,
thereby removing the need to store more than one version of
the graph. In the second stage we remove edges of the graph
by using a shrinkage technique. We compare our compres-
sion with the similar Top-k approximation technique of [1].
Their approach performs well on the specific task of COI
matching, but it does not preserve other characteristics of
the network well. Whereas the proposed Shrinkage approx-
imation preserves the trend of the node degree distribution,
achieves a similar level of approximation error quicker, and
has only two parameter which need to be optimized on the
particular set of networks instead of three parameter for the
Top-k approach.

In this work, we only considered approximation operators
that prune edges from the graph, though we have considered
the affect of quantisation of edge weights in [12] on fraud
detection, and this certainly would enhance the compression
ratio for graph data. We aim to test this for compression in
future work.

ACKNOWLEDGEMENTS

This work was supported by ARC grant DP0985063,
and by the ARC Centre of Excellence for Mathematical &
Statistical Frontiers.

REFERENCES

[1] C. Cortes, D. Pregibon, and C. Volinsky, “Communities of
interest,” in Advances in Intelligent Data Analysis. Springer,
2001, pp. 105-114.

[2] J. Willcock and A. Lumsdaine, “Accelerating sparse matrix
computations via data compression,” in Proceedings of the
20th Annual International Conference on Supercomputing,
ser. ICS '06. New York, NY, USA: ACM, 2006, pp. 307—
316.

[3] S. Chen and J. Reif, “Efficient lossless compression of trees
and graphs,” in Proceedings of the IEE Data Compression
Conference (DCC ’96), Mar 1996, pp. 428-437.

[4] P. Boldi and S. Vigna, “The Webgraph Framework I: Com-
pression Techniques,” in Proceedings of the 13th Interna-
tional Conference on World Wide Web, ser. WWW °04. New
York, NY, USA: ACM, 2004, pp. 595-602.

[5] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher,
A. Panconesi, and P. Raghavan, “On compressing social
networks,” in Proceedings of the 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining,
ser. KDD "09. New York, NY, USA: ACM, 2009, pp. 219-
228.

[6] S. Navlakha, R. Rastogi, and N. Shrivastava, “Graph sum-
marization with bounded error,” in Proceedings of the 2008
ACM SIGMOD International Conference on Management of
Data, ser. SIGMOD ’08. New York, NY, USA: ACM, 2008,
pp- 419-432.

[7]1 A. C. Gilbert and K. Levchenko, “Compressing network
graphs,” in Proceedings of the LinkKDD workshop at the 10th
ACM Conference on KDD, August 2004.

[8] W. Liu, A. Kan, J. Chan, J. Bailey, C. Leckie, J. Pei,
and R. Kotagiri, “On compressing weighted time-evolving
graphs,” in Proceedings of the 21st ACM International Con-
ference on Information and Knowledge Management, ser.
CIKM ’12. New York, NY, USA: ACM, 2012, pp. 2319-
2322.

[9] C.H. You, L. Holder, and D. Cook, “Graph-based data mining
in dynamic networks: Empirical comparison of compression-
based and frequency-based subgraph mining,” in /IEEE Inter-
national Conference on Data Mining Workshops ICDMW 08,
Dec 2008, pp. 929-938.

[10] F. Zhou, S. Mahler, and H. Toivonen, “Simplification of net-
works by edge pruning,” in Bisociative Knowledge Discovery,
ser. LNCS, M. Berthold, Ed. Springer, 2012, vol. 7250, pp.
179-198.

[11] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka, “Com-
pression of weighted graphs,” in Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD "11. New York, NY, USA:
ACM, 2011, pp. 965-973.

[12] W. Henecka and M. Roughan, “Privacy preserving fraud
detection across multiple phone record databases,” [EEE
Transactions on Dependable and Secure Computing, vol. PP,
no. 99, pp. 1-1, 2014.

(13]

(14]

[15]

(16]

[17]

(18]

[19]

[20]

W. W. Cohen, “Enron email dataset,” 2009, https://
www.cs.cmu.edu/~./enron/.

S. B. Hill, D. K. Agarwal, R. Bell, and C. Volinsky, “Building
an effective representation for dynamic networks,” Journal of

Computational and Graphical Statistics, vol. 15, no. 3, pp.
584-608, 2006.

C. C. Kwan, “An introduction to shrinkage estima-
tion of the covariance matrix: A pedagogic illustra-
tion,” Spreadsheets in Education (eJSIiE), vol. 4, no. 3,
2011, epublications.bond.edu.au/cgi/viewcontent.cgi?article=
1099&context=ejsie.

B. Efron and C. Morris, “Stein’s paradox in statistics,”
Scientific American, vol. 236, no. 5, pp. 119-127, 1977.

P. Hoff, “Shrinkage estimators,” 2013,
www.stat.washington.edu/people/pdhoft/courses/581/
LectureNotes/shrinkage.pdf.

D. L. Donoho, “De-noising by soft-thresholding,” IEEE
Transactions on Information Theory, vol. 41, no. 3, pp. 613—
627, 1995.

A. A. Nanavati, S. Gurumurthy, G. Das, D. Chakraborty,
K. Dasgupta, S. Mukherjea, and A. Joshi, “On the structural
properties of massive telecom call graphs: Findings and
implications,” in Proceedings of CIKM ’06. ACM, 2006,
pp. 435-444.

M. Roughan and W. Willinger, “Internet topology research
redux,” in Recent Advances in Networking, Vol. 1. ACM
SIGCOMM, Aug. 2013.

