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Abstract
There are considerable reasons to wish to understand the

relationship between the Internet’s control and data planes
in times for stress. For example, the much publicized Inter-
net worms—Code Red, Nimda and SQL Slammer—caused
BGP storms, but there has been comparatively little study of
whether the storms impacted network performance. In this
paper, we study these worm events and see whether the BGP
storms observed during the worms actually corresponded to
problems in the Internet’s data plane. By processing and an-
alyzing two datasets from RIPE, we have found that while
BGP update storms occurred in all three worms, the perfor-
mance of the data plane degraded during the Slammer worm
but did not during the Code Red and the Nimda. No di-
rect correlation should be drawn between the degradation of
the Internet data plane and the occurrence of a BGP update
storm—it may not be a sign of trouble but a sign of the Inter-
net control plane doing its job.

1 INTRODUCTION
It is self-evident that problems in the control plane of

the Internet will cause data plane performance problems.
Or is it? Clearly, control plane problems are capable of
causing data plane disruptions, but the relationship is not
straightforward—for instance, what constitutes a genuine
problem in the control plane?

In this paper, we focus on a particular phenomenon—BGP
update storms—and study whether or not the occurrence of
BGP update storms at the Internet control plane directly maps
to the degradation of Internet data plane performance. This
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study is along the line of researching the relationship of the
control plane and data plane, and we view our work in this
paper an important study toward this goal.

Note that the Internet health should always be judged by
the performance of its data plane, as this is what affects its
users. A “storm” of Internet routing updates should not be
used as a sign that the Internet is having a trouble. As long as
the data plane performance is well, it could actually represent
the Internet’s proactivity in adapting to large-scale network
disruptions to avoid damage to the data plane!

In order to study the data plane performance during such
BGP update storms, we study data collected during the spread
of three major Internet worms. Although at different level of
severity, these worms have all been known to cause signifi-
cant BGP update storms. They are:

• Code Red (v2):The Code Red worm, version 2, started
at around 10:00 UTC on July 19, 2001. More than
359,000 computers were infected in less than 14 hours.
The spread of the Code Red Worm is described in detail
in [1, 2].

• Nimda: Just before 12:00 UTC on September 18, 2001,
the Nimda Worm began to infect hosts, peaking at
around 19:00 UTC at 160,000 unique hosts [3, 4].

• SQL Slammer/Sapphire: The most severe of the three
worms considered here, the SQL Slammer worm began
at slightly before 05:30 UTC on Saturday, January 25
2003, infecting at least 75,000 hosts, with 90% of these
infected within 10 minutes [5, 6, 7, 8].

The rest of this paper is organized as follows. Section 2
is on related work. We describe the measurement data we
used for our study in Section 3. Section 4 contains some pre-
liminary results. We then introduce a refined methodology in
Section 5 to obtain our main results in Section 6. We discuss
our results in Section 7 and conclude the paper in Section 8.



2 RELATED WORK
In the case of each of these three worms, detailed anal-

ysis has been conducted, both of the worm itself (see cita-
tions above), and of the BGP update storm associated with
the worm [9, 10, 11, 12, 13, 14, 15]. A very large increase
in the average rate of BGP updates was observed to be corre-
lated with the presence of each worm.

In the case of the Slammer worm, there was even a study
of network performance during the worm [9]. This study
demonstrated that there were performance impacts caused by
the Slammer worm, and this is in part responsible for a gen-
eral belief that the performance impacts during the Code Red,
Nimda, and other worms must have been similar (in relation
to the BGP update storms observed at these events).

The impact on BGP by events such as electricity blackout
or misconfiguration has also been studied [16, 17].

Further, studies have been conducted related to the rela-
tionship between the Internet control plane and data plane.
Earlier research studied data delivery performance towarda
prefix while BGP convergence toward the prefix is happen-
ing [18, 19]. Recent work looked at the correlation between
BGP instability and path faults [20]. Lately, researchers
have also measured the performance of data streams toward
a multi-homed sink under routing changes introduced by a
BGP beacon [21], and found little correlation between the
data plane performance and the volume and duration of BGP
updates.

3 DATA SETS
The two datasets used in this case study both come from

RIPE, http://www.ripe.net/. In particular, we use data
from their Test Traffic Measurement (TTM) program [22, 23],
to obtain data plane performance data for our study, and data
from the RIPE Routing Service [24] to obtain BGP update
storm information. Both datasets are publicly available. We
describe them in detail in Sections 3.1 and 3.2, and in Sec-
tion 3.3 summarize why they meet our need to study whether
or not the whole Internet is in trouble during a BGP update
storm.

3.1 Performance Measurements
The TTM performance measurements are gathered using
special-purpose boxes deployed in a number of different ISPs,
predominantly in Europe, but also extending to the USA, and
the antipodes (Australia and New Zealand). The measure-
ments have been collected for more than 6 years, and con-
sist primarily of active probe, one-way delay and loss mea-
surements consistent with the IETF’s IPPM (Internet Pro-
tocol Performance Metrics) Working Group standards, with
supplemental traceroute measurements (other measurements
such as delay variation are now available but were not during
the earlier worm events under study here). The measurement
boxes are noteworthy for utilizing GPS to accurately synchro-
nize the clocks to a degree not seen in many Internet perfor-
mance measurement deployments.

The TTM data used here consists of two periods: the first

from June 1st to September 30th 2001 (covering both the
Code Red and Nimda worms); and the second from Dec 1st
2002 to February 28th 2003 (covering the Slammer worm).
The packet probes used in the measurement were sent using
approximate Poisson sampling. At the time of the Code Red
and Nimda worms, the probe rate was 90 packets per hour on
each path, where the paths formed a clique between around
40 nodes (the number varies slightly over the several months
of measurements). At the time of the Slammer worm, the rate
was around 120 packets per minute between around 60 nodes.
Given the sampling rates, to obtain reasonably precise statis-
tics for the data (in particular the loss rate), we aggregateup
to one hour intervals, and consider the mean and variance of
the delays, and the mean packet loss rate over these intervals.

The monitors also conduct traceroutes at a rate of approx-
imately 10 per hour, and these are used by the boxes to de-
termine the frequency of route changes affecting the packet
probes (that is, we state that a route change occurs if two con-
secutive traceroutes return different results). Obviously, route
changes could occur with finer time granularity and remain
unseen by such a measurement process, but the measure re-
ported here provides a lower bound on the amount of rerout-
ing activity during the period of interest. For more details
see [22, 23].

3.2 Route Measurements
The second dataset used here was obtained from the RIPE
Routing Service [24]. This data is similar in nature to the
RouteViews data [25], but is obtained from a different set of
peers. We use this data here so that we can compare results
with earlier studies [11, 12, 9] of BGP updates during worm
events. The data has been aggregated to show the rate of up-
dates (total announcements and withdrawals) per minute over
all peers. We will typically focus on the rates averaged over
one hour periods so as to match the time resolution of the per-
formance measurements described above. We use data over
the same time intervals available in the TTM data.

3.3 Summary
The two datasets we use are the best publically available
datasets that meet our needs to study whether or not the over-
all Internet data plane is in trouble during a BGP update
storm. As we described in Section 3.1, the TTM data pro-
vides a good sample for studying whether the Internet data
plane is suffering at a given time. Note that we are not in-
terested in studying the possible correlation between the data
plane performance of these TTM test boxes and the BGP up-
dates regarding these boxes; instead, we use the performance
among TTM test boxes as a sample of the Internet data plane.
Furthermore, since our focus is whether the data plane per-
formance will be in trouble at allwhen a BGP update storm
occurs—rather than how troublesome the data plane perfor-
mance will be according to the BGP update storm level, we
pay more attention to the occurrence time of a BGP update
storm even than the scale of the storm (in this study, essen-
tially it does not matter whether a BGP update storm includes
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Figure 1. Three measurements during the peak infection
period of Code Red (v2). Note that the three curves are
scaled so that they may appear on the same graph.

or excludes those BGP updates caused by BGP session resets
between every pair of a RIPE collector and a BGP router).
That is why we carefully ensure that the two datasets are col-
lected by the same organization and that they are consistent
with each other, especially in timestamps. These data are
also consistent with the data used in previous analysis of the
worms in question [11, 12, 9].

4 PRELIMINARY RESULTS
Figure 1 shows a comparison between the number of

BGP updates, the number of unique hosts actively sending
Code Red probes, and the delay in milliseconds of packets on
one TTM path. We see a number of important features in this
graph. Firstly, it is consistent with studies such as [11, 12],
which showed an increase in the number of BGP updates that
is highly correlated with the onset of the Code Red worm (the
data used here to measure the unique number of sources in-
fected with the Code Red worm was derived from the same
set used in [11, 12], namely those reported in [26, 27]). Sec-
ondly, we note that the performance on the particular path
observed in the TTM data was not significantly affected by
the worm.

The two facts by themselves are not very useful. Firstly,
one should note that the graphs displayed in Figure 1 are each
scaled, so that we may observe them on the same figure, but
that the scaling factors are arbitrary. How are we to know
whether this scaling is reducing the size of the changes in
performance to make them appear less significant, or perhaps,
the scaling is making the change in the BGP update process
appear more significant than it really is? Secondly, we display
performance measurements of only one path of thousands—
perhaps this just happens to be one good path, and we are
missing the problems. In the following section, we present a
methodology to avoid these issues, so we can make genuine
direct comparisons between each dataset.

5 METHODOLOGY
We wish to perform two tasks: scaling the variations in

each dataset so we may make genuine comparisons between
these datasets, and providing performance metrics which take
into account performance on all of the paths in the network.
The following methodology deals cleanly with both issues.

The most important idea to grasp is that of comparison of
data to a control set. In medical studies, a control set is used to
gauge whether a treatment has a significant impact relative to
patients who receive no treatment. Here, we are not applying
a treatment, but rather we are seeking to test if the impact of
the respective worms was significant. Hence, as our control
set, we use the data from periods not significantly impacted
by the worm (we choose the entire period excluding the day
of a worm and the week following that worm to ensure that
no persistent effects of the worm pollute the data; we have
verified that even if there are certain worm activities during
selected periods, their impact is inconsequential). In this way
we can assess how large the observed variations on the day
of a worm were with respect to typical variations in the BGP
update rate, or the performance along a particular path.

More formally, we perform this process by estimating the
mean, and standard deviation of the data (in the control set),
and using this to scale the data during the period of the worm.
Mathematically, let the delay measurements on pathj at time

i be given byX ( j)
i , and let the setS be the set of times con-

sidered to be impacted by the worms, which has|S| elements.
We use the standard estimators of the mean and variance of
the data

X̄ ( j) =
1
M

N

∑
i=1
i 6∈S

X ( j)
i , σ2

X( j) =
1

M−1

N

∑
i=1
i 6∈S

(

X ( j)
i − X̄ ( j)

)2
,

whereM = N−|S|, and then we compute the normalized data

X̃ ( j)
i =

X ( j)
i − X̄ ( j)

σX( j)
,

such that the new random variables will now have mean zero,
and unit variance (assuming the variance of the data is fi-
nite1). We perform similar operations on the other mea-
surements: delay variance, loss rate, and number of route
changes, and on the BGP data.

The second requirement is to compose the results into a
single metric to observe the overall impact of the worms on
performance. We do so by considering the averages, for in-
stance for the normalized delay measurements above, i.e.

Yi =
1
K

K

∑
j=1

X̃ ( j)
i ,

1Heavy-tailed distributions (with infinite variance) have often
been observed in Internet measurements, however the major im-
pact on these results will be through increased variation of the es-
timates above, and the introduction of noise into the results as a con-
sequence. A natural way to avoid this issue would be to perform all
measurements on the log of the data, but we view the raw data here
so as to present results consistent with previous studies.



where there areK paths, so that we have a time series{Yi}
N
i=1

which also has zero mean. Note that this is, in effect, a
weighted mean of the performance data on each path, which
gives less weight to paths that are more variable. This key
feature of our metric acknowledges that different paths have
different degrees of natural variation, and that a direct mean
over the data would heavily overweight longer paths (which
will generally experience longer delays, and more variability
because of the increased number of locations for delay varia-
tion), or paths with persistent problems.

Note that while the{Yi}
N
i=1 have zero mean, they are not

guaranteed to be unit variance—the actual variance of these
random variables will be dependent on the degree of correla-
tion between measurements on different paths (which isa pri-
ori known to be non-zero, but its value is not known). Hence,
once again, we normalize these random variables to obtain a
time series{Ỹi}

N
i=1.

From this we can now fix a standard meaning to the vari-
ations in{Ỹi}

N
i=1. Under assumptions of Gaussian distribu-

tion and stationarity, we could predict the exact distribution
of {Ỹi}

N
i=1, and perform statistical hypothesis tests to deter-

mine if a particular measurement (say the delays during the
Code Red worm) should be seen as statistically significant
variation from the norm. However, the distributions involved
are not always Gaussian (we performed tests to demonstrate
this, but these are omitted for brevity), and appear to have ev-
idence of non-stationarity (though this is hard to test in the
possible presence of long-range dependence [28]), and hence
it is difficult to perform precise tests of significance. Instead,
we will simply use the 95th percentile confidence bounds
(±1.96 standard deviations) to provide a visual indication of
the magnitude of the variations with respect to Gaussian as-
sumptions.

6 RESULTS
Let us first consider the large-scale pictures shown in Fig-

ures 2 and 3. These pictures show the normalized perfor-
mance metrics (average and standard deviation of delays, loss
rate, and number of route changes), aggregated over all paths,
on a daily time scale (note that normalization is performed
separately on these two periods because of the large separa-
tion in time). The important fact to note in Figure 2 is that
on the day of the Code Red and Nimda worms (indicated by
the vertical dashed lines), there was no noticeable increase
in either the delay (both the mean and standard deviation) or
the loss rate2. This can be determined by observing that the
performance curves do not cross the horizontal dotted lines
representing±1.96 standard deviations. More importantly,
observing the time series over the large scale, the days of the
worms do not appear to be anything special. The number of
route changes does cross the±1.96 lines on both days, but it
also does so on other occasions, so we do not know whether

2The peak immediately before the day of Code Red is the result
of extremely poor performance measurements on a few paths, rela-
tively briefly, occurring well before any possible start of the worm.
We have verified that it was not related to the worm.

to attribute significance to the number of route changes on the
days of the worms.

In contrast, the performance data for the Slammer worm in
Figure 3 exhibits clear indications of significant increases in
the mean delay (on the day of the worm), and the standard
deviation of the delay (on subsequent days), and also in the
number of route changes occurring on the day. In these cases,
once again note that we do not draw significance only from
the fact that the performance curve crosses the±1.96 lines,
but also from the fact that the peaks stand out relative to per-
formance on other days.

These two figures give us a reasonable starting point, but
they are not adequate for telling the whole story. In lookingat
the data on large scales, we gain an understanding of its vari-
ations over long time scales, but we have obscured the fine
details, i.e. it is possible that variations shorter than a day
have been obscured. In Figures 4–6, we examine the data at a
one-hour time scale over a shorter time interval around each
worm. In these plots we restrict our attention to the mean
delays for brevity (the other performance metrics do not add
much more than can be seen in the large-scale plots). We also
directly compare the normalized mean delays to the normal-
ized BGP update rates (note that the absolute values in this
graph differ from those in Figures 2 and 3 because the vari-
ance of the time series on the hourly and daily time scales is
different).

Figures 4–6 clearly show the BGP update increases corre-
sponding to each worm, with the Slammer and Nimda worms
generating considerably more activity than the Code Red
worm. However, the performance data for the Code Red and
Nimda worms show no noticeable performance degradation,
but during the Slammer worm, there was a noticeable per-
formance impact that correlates closely to the BGP update
activity (consistent with the observed performance impacts
reported in [9]).

7 DISCUSSION
The take-away result of all of the above is that the per-

formance of the data plane was not well correlated with the
BGP update storms observed. In one case, the Slammer
worm, the performance degraded in a way directly corre-
lated with the BGP updates, but it didnot become degraded
for either Code Red or Nimda worms, with the latter be-
ing particularly significant, because on the same normalized
scale, the Nimda worm had a similar magnitude to the Slam-
mer worm. Noticeably, according to the traceroute statistics,
the number of route changes affecting the paths of the TTM
measurements was clearly significant for the Slammer worm,
but only marginally significant for the Code Red and Nimda
worms, and perhaps this is an indication of the reason for
the performance problems only observed during the Slam-
mer worm. Also, since the Slammer worm was a lightweight,
single-UDP-packet attack, it generated far greater conges-
tion than the TCP-based Code Red and Nimda worms, which
could also have impacted the performance during the Slam-
mer worm.

As noted earlier, the TTM measurement infrastructure
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Figure 2. Three performance metrics derived from the RIPE TTM data for period 1 that includes the Code Red and
Nimda worms. The vertical dashed lines show the nominal onset time of the respective worms, and the horizontal dotted
lines show±1.96standard deviations—the 95th percent significance level.
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Figure 5. Results around the Nimda worm, with detailed
normalized performance directly compared to the nor-
malized BGP update rate. The vertical dotted lines show
the nominal onset time of the Nimda worm, and the hori-
zontal dotted lines show±1.96standard deviations.
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Figure 6. Results around the Slammer worm, with de-
tailed normalized performance directly compared to the
normalized BGP update rate. The vertical dotted lines
show the nominal onset time of the Slammer worm, and
the horizontal dotted lines show±1.96 standard devia-
tions.

grew between the two events, and thus this data source is not
perfect for our comparisons. But on the other hand, these
changes were not as profound as the difference in the per-
formance measurements; and further, the normalization pro-
cedure used here would remove any relative changes intro-
duced (for instance by including more long paths in the data
set). It is unlikely that many data collection sources could
have remained unchanged over the period of interest (given
the disruptions to the global IT economy), but we believe the
results used here to be valid within the provisos given.

It is not that BGP updates are unimportant. Clearly their
increased presence during these events is of great interest. In
at least one case, it was accompanied by simultaneous per-
formance problems. However, we cannot use it as a direct
measure of user experiences during the disruptions. A signif-
icant increase can be an indication of a severe problem, but
more often it may be just an indication that the system is us-
ing its built-in controls to correct a problem, before it hasan
impact on users.

8 CONCLUSIONS
Severe global problems, such as Internet worms, could im-

pose intense stress on both the control plane and the data
plane of the Internet. In particular, it may cause a sharp
increase in the number of BGP updates exchanged between
BGP routers, i.e. a BGP update storm.

Since BGP is the routing protocol of the core of the Inter-
net, understanding the implication of BGP update storms is
therefore critical. With the data plane performance as the ul-
timate goal of the Internet, probably the most important ques-
tion is thus whether or not a BGP update storm would affect
the performance of the data plane; and if so, how.



In this paper, we studied BGP update storms during
three well-known Internet worms—Code Red, Nimda, and
Slammer—and found that while BGP update storms occurred
in all three worms, the performance of the data plane de-
graded during the Slammer worm but did not during the
Code Red and Nimda worms. While it is certainly impor-
tant to pay attention to the occurrence of BGP update storms,
our results show that a BGP update storm does not necessarily
map to data plane disruption.

Future work includes further investigation on exactly what
factors from the control plane caused the data plane degrada-
tion during the Slammer worm, especially given that there is
no significant degradation during the other two worms. We
have also studied the impact on the data plane by artificially
introducing routing changes [21], which we call “mild stress,”
and it would be useful to compare the results from both severe
stress and mild stress.
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