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Abstract—Good traffic modeling is a basicrequirement for accurateca-
pacity planning. The recentdiscovery of heavy-tails, and Long-RangeDe-
pendence(LRD) in traffic has heralded a new, and more elegantway to
model data traffic, particularly characteristicssuch as extremeburstiness
acrossmany time scales.However, mostof the measurementsusedto popu-
late suchmodelshave beenfine grained packet traces. In reality weare far
fr om being able to obtain suchtracesfr om more than a small subsetof the
Internet, and this is lik ely to remain true at least in the immediate futur e.
The only source of ubiquitous data is SNMP, but SNMP hasmany limita-
tions which make it difficult to work with for traffic modeling. Theselimi-
tations make it impossibleto usestandard LRD models.However, weshow
here that for broadbandaccess,SNMP is capableof capturing the most im-
portant featuresof the data traffic. Webasethis analysison a largevolume
(more than two months) of SNMP data obtained fr om a large operating
broadband accessnetwork. The model is approximate, but is nonetheless
quite useful for capacity planning. The resultsvalidate our intuition about
LRD in data traffic, while allowing the key parametersof the model to be
computedsolelyfr om SNMP traffic utilization data.

I . INTRODUCTION

Over recentyearsthediscoveryof self-similarityin datatraf-
fic (see[1], [2], [3]) has stimulateda great deal of research
into performancemodelsfor self-similar, andheavy-tailedtraf-
fic (for instancesee[4], [5]). However, the greatmajority of
this work relieson sophisticated,anddetailedmodels,derived
from packet traces.Unfortunately, in practice,packet tracedata
is rarelyavailablebecausecollectingsuchtracesrequiresdedi-
catedequipmentthatwouldbeveryexpensiveto deploy univer-
sally. Furthermore,thecostof collecting,andstoringsuchlarge
volumesof datais itself prohibitive1.

However, goodtraffic modelsarerequiredfor ongoingtasks
suchascapacityplanning,in particularin accessnetworkswhere
it is prohibitively expensiveto “just addmorebandwidth”in or-
der to fix performanceproblems. Furthermore,network oper-
atorsalsoneedto be ableto determinewhethera link is over-
loadedor not. In fact,eventhissimpletask,whichweshallrefer
to hereascapacitymanagement,is notaseasyasit mightatfirst
appear. Thefractalnatureof datatraffic makessuchestimation
inherentlymoredifficult.

The only type of traffic datathat is nearlyuniversallyavail-
ablefor taskssuchascapacityplanningis SNMP(SimpleNet-
work ManagementProtocol)data. Flow level, or even packet
tracedatais often available in a limited way (at a few sample
points,or for limited time periods),andcan thereforesupple-�

It is in factpossibleto obtainmeasurementsof LRD andotherquantitieson-line,asdata
is collected[6], but this hasnot beenwidely usedyet

mentSNMPdata,but cannotreplaceit. SNMPdatais generally
limited to coarsesamplingperiods,andsuffersfrom missingand
noisydataasa resultof theprotocoldesign.Hence,any traffic
modelmustbeableto dealwith suchdataquality problems.

The noisy/unreliablenatureof this datameanthat any ap-
proachwe adoptwill be a crudeapproximation,andcapacity
planningbasedonthisdatawill likewiseinvolveapproximation.
However, thecurrentrapidgrowth anduncertaintyin theInter-
net meanthat this is all that is currentlyneeded.In the future
we canaim to improve the SNMP mechanismsusedto collect
traffic dataso that when it becomesimportantto squeezethat
extra 5-10%out of our networkswe have thedatato supportit,
but for themomentweshallbesatisfiedwith amodelthatgives
usapproximateanswers,usingtheavailabledata.

This paperanalyzesa largevolume(morethantwo months)
of SNMP dataobtainedfrom a large operatingbroadbandac-
cessnetwork. The datawe have is derived from cableaccess,
but thereis no reasonto believe thatcableusersgeneratetraffic
that is intrinsically different from DSL users. CableandDSL
network useis growing dramatically, andthey provideanorder
of magnitude(or more)increasein bandwidthto theconsumer
than dial-up access. As a result, thesenetworks requiresig-
nificantly morebandwidthin the metroandregional networks
wheretraffic is aggregatedandbackhauledto thebackbonenet-
work point of presence.Themetroandregionalnetworkssup-
porting cableand DSL are too large to allow for grossover-
dimensioningto be economicallyviable. Furthermore,the in-
vestmentclimatethatcontributedto Internetgrowth until latein
2000no longerexists, andnetwork growth including capacity
upgradesarelikely to becapitalconstrainedfor theforeseeable
future. This leadsto a needfor simpletraffic modelsthat can
be derived from available traffic measurementson thesehigh-
speedaccessnetworks. However, traffic on thesenetworks is
dramaticallydifferent from traffic on dial-up accessnetworks
andlittle work hasbeendoneso far to characterizehigh-speed
accesstraffic.

We examinethe SNMP cabletraffic data,andderive traffic
modelsfrom this datathatcanbeusedto performapproximate
capacitymanagementandplanning(detailedcapacityplanning
requiresfiner grainedtime seriesthan SNMP givesus access
to). Thetraffic modelswe presentareconsistentwith themore
detailedstudiesof packettraceswhichdiscoveredandexplained
self-similarityandLong-RangeDependence(LRD) in datatraf-
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fic. However, we validatethetraffic modelsusingSNMPmea-
surements,andsuggestthatSNMPmeasurementcouldbeused
in operationalnetworks to derive the salientparametersof the
both individual userand aggregatecable traffic distributions.
The major insight gainedfrom this studyis the significantim-
pactthathigh-speedaccesshason thedistributionof thecarried
traffic, ascomparedwith typical dial-uptraffic2

In the following sectionwe shall give a brief overview of
the relevantbackgroundto this paper, includingwhatwe mean
by self-similarandLRD traffic, andthefeaturesof SNMPdata
which limit how it canbeused.SectionIII describesthe data-
setsandanalysisresultingfrom this study. The main result is
thatasimplelog-normaldistributioncanbeusedto representthe
minute-to-minutevariationsin the traffic arounda (relatively)
slowly changingmeanrate (changingon the scaleof hours).
SectionIV concludesthepaperwith asummaryof thefindings.

I I . BACKGROUND

We begin thispaperwith therelevantbackground,in particu-
lar on self-similartraffic modeling,andSNMPtraffic data.

A. Self-similarity and heavy-tails

Self-similarityandLong-RangeDependence[1] (LRD) pro-
vide a natural,quantitative,andyet wonderfullyelegantway of
describingandmodelingdatatraffic. The simplestself-similar
model,FractionalBrownian Motion (FBM) hasonly threepa-
rameters,andyetcandescribesomesetsof traffic (includingits
burstiness)overscalesrangingfrom millisecondsup to hours.

Self-similarityandlong-rangedependencearecloselyrelated
phenomena,typically estimatedusingtheHurst parameter, � .
Self-similarityrelatesto thefact thatundersuitablescaling,the
statisticsof the traffic are the sameat any time scale. Long-
rangedependenceratesto correlationsin thedatawhich,though
decreasingover wider ranges,never becomeinsignificant. We
shall not dwell on the technicalaspectsof thesepropertiesin
thispaper, asLRD cannotbemeasuredusingtheSNMPdatawe
have available(seebelow). Moreover, the resultsin this paper
indicatethatamoredetailedLRD modelisnotneededto explain
themajorcharacteristicsof thetraffic.

However, anunderstandingof theoriginsof LRD in datatraf-
fic is very informativehere.Weshallin factfind thattheorigins
of thetraffic characteristicsweseein cableaccesstraffic areone
andthesameastheoriginsof LRD in othertraffic sets.Thus,al-
thoughour measurementssuggestanalternativemodelbeused
for cableaccesstraffic, thefindingsof this paperareconsistent
with thosein theprior traffic modelingliterature.

Theoriginsof LRD lie in heavy-taileddistributions.Suchdis-
tributionshave largeweightsin the tail, andmay exhibit prop-
ertiessuchasinfinite variance,or infinite mean.An exampleis
theParetodistributionwhich is in aclassof distributionswith a�

Althoughwe do not directly compareour measurementsherewith dial-uptraffic mea-
surements,theintrinsicmodemspeedlimit of dial-uptraffic makesit impossiblefor dial-up
traffic to have thecharacteristicsweobservehere.

power-law tail. That is, thedistribution functionstail lookslike���	��

�������������
. Of particularinterestherewill be the case

where
���������

, wherethemeanof thedistribution is finite,
but thevarianceis infinite.

A.1 ON-OFFmodels

Onesuggestedmodel for the origin of LRD is the superpo-
sition of ON/OFFsourceswith heavy-tailed ON or OFF peri-
ods[7], [8], [9]. More formally, we canmodela singlesource
asa renewal processalternatingbetweentwo states:“ON” and
“OFF”, wherethe generatedtraffic ratesare  and0, respec-
tively. Moreover, the durationof at leastoneof the ON and/or
OFF periodshasa heavy-tailed distribution with infinite vari-
ance,for exampleapower-law distributionwith

�!�"�#�$�
.

ON/OFFprocesseswith heavy-tailedON periodsareasymp-
totically LRD in themselves[10] with �&% 
(')�*�+�-,.�

, where
the heavy-tailed distribution hasexponent

�
. However, a bet-

ter aggregatemodelmaybeobtainedby superposinga number
of sources. The exact way in which the processesare super-
poseddoesmatter, principally throughtherenormalisation[11].
Renormalisationis usedso thatasthenumberof sourcesis in-
creased,theaveragerateremainsconstant.For clarity, we sim-
plify themoregeneraldescriptionof [11]. Thesimplestrenor-
malisationsare:

(i) reducetherate  of eachsource,
(ii) increasethelengthof OFFperiodsor
(iii) reducethelengthof ON periods.

As the numberof sourcesgoesto infinity, eachmethodresults
in a differentmodel,

(i) FractionalBrownianMotion with �/% 
('��0�1�2,3� ,
(ii) M/G/ 4 sourcemodel,and
(iii) 5 -stableprocess,

respectively.
Thesedifferentrenormalisationsareof particularinteresthere

becausethe standardassumptionhasbeenthat in aggregated
traffic eitherthefirst or secondcasewill be thesuitablemodel.
For instance,for dial-up traffic, which is tightly constrained
by the bandwidthof the modemconnection,datatransfersare
spreadover time. We caneasilyseethesedatatransfersasan
On/Off processwith a low rateper source,andprevious mea-
surementsof suchtraffic havesupportedtheFBM typeof model.
Anotherrationalefor theFBM modelis thatonaheavily loaded
link theTCPcongestioncontrolcausestheavailablebandwidth
to beshared(approximately)betweensourcesin suchawaythat
afile transferwill beextendedover time.

Our resultsshow thatwith moderatelyaggregatedtraffic ona
high-speedaccessnetwork, thethird modelis moreappropriate.
Theresultsshow thatthemarginaldistributionsof thetraffic are
quite inconsistentwith either of the first two models,but are
consistentwith the third. Bandwidthlimitations andTCP still
slow down the effective transferrate, “spreading”the connec-
tionsovertime,howeverthegreateraccessbandwidthin acable
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network reducestheamountof spreadingsothatthemajorityof
datatransferstake lesstimethanthemeasurementintervals.We
discussthemeasurementintervalsmorein SectionII-B.

A.2 5 -stabledistributions

Thereareanumberof reasonswhy onecaresaboutLRD and
heavy-tails. Themostcommonis performance.Systemscarry-
ing LRD traffic will typically have worseperformance(see[4],
[5] for example). However, althoughthe main applicationof
thiswork is capacityplanning(for whichperformanceis impor-
tant),we mustcopewith the existenceof LRD andheavy-tails
evenbeforeweplugparametersinto acapacityplanningmodel,
becausethevery presenceof LRD andheavy-tails makesmea-
surementof themodelparametersmuchmoredifficult.

Heavy-tailsandLRD disruptthestandardintuition abouthow
datawill be smoothedby averaging,eitherover time, or over
additionalsources.Thestandardintuition is basedon theCen-
tral Limit Theorem(CLT), which saysthataswesummoreand
more data(suitably renormalised)the result tendsto a Gaus-
siandistributionwhosemeantells usthemeanof our data.The
problemis that theCLT hastwo conditions,that thedatabein-
dependent,andhavefinite variance.

Most peopleassumethat if datais averagedover longerand
longertime intervalsyou will eventuallyreacha regimewhere
the datacorrelationshave droppedto the point wherethey are
insignificant,andthereforewe canapply the CLT. However if
thedatais LRD we know thatwe will never reachthis regime,
andso the CLT doesnot apply. Alternatively, if the datahas
heavy-tailswith infinite variance,thenonceagaintheCLT does
not apply.

Thereis a GeneralizedCentralLimit Theorem(GCLT) that
dealswith thesecases.In thecaseof sumsof heavy-taileddata,
theGCLT providesthefollowing result[12].

Theorem II.1 (GeneralizedCentralLimit Theorem)Let 6�7 ,6�8 , 6�9;:=<=<><?: beanindependent,identicallydistributedseriesof
randomvariables.Thereexist constants@BA*CED , and FGA"H	I  
anda non-degeneraterandomvariable J , with@KA 
 6 7ML 6 8�LON=N>NPL 6QA �R� FGAEST JU:
if andonly if J is 5 -stable,in whichcase@ A %$V � 72W-X for some5YH 
 DZ: �P[ .

Thusthe 5 -stable distributionsare the generalizationof the
Gaussiandistribution which allow for the sumof heavy-tailed
distributions.Notecarefullythatthenormalizingfactordepends
on 5 which givesthe“heaviness”of thetails. When 5	% � the
stabledistribution is the Normal distribution, andthe theorem
correspondsto the CLT, whilst when 5 �\�

the tail is heavy,
and the convergencehappensmoreslowly. Thereis a similar
theoremwhich canbeappliedin theLRD case,but we shallbe
mainly concernedwith theversionabove.

The upshotof this result is that the confidenceboundsfor
meanestimatesconvergemoreslowly thanlight-tailed random
variables(whenthey convergeat all), converging as V � 7�W�X in-

steadof V � 7�W-8 . Furthermore,the tails of 5 -stabledistributions
areheavier thanthoseof Normaldistributions,andso thecon-
fidenceintervals for 5 -stabledistributionswill bewider in any
case.In simpleterms,aswe averagemoreandmoredata(say
by averagingtherateover time) we won’t seesuchsimplecon-
vergenceto the mean. The resultwill still appearbursty, even
overquitelong timescales.

Throughoutthis paperwe shall usethe S0 parameterization
of the 5 -stabledistributiondefinedby thefollowing.
Definition: A randomvariable6 is saidto be 5 -stablewith S0
parameterization] 
 5�:2^M: � :2_B`-D � if andonly if

6/%�a �cb J � ^�d-e3fhg X8Qi L _j:k5Ol% � :� J L _j: 5m% � :
where J 
 5n:�^ � is definedby its characteristicfunctiono$p q?rts 
vuxw J �x[ %�a q=rts b �zy w{y Xc| �}�~u ^�d�e.f g X8 
 sign

w+�x� i :�5�l% � :q=rtshb �zy w{y | � L u ^ 8g 
 sign
w��B� f y w{y � i : 5�% � :

where 5�H 
 DZ: �P[ is the characteristic exponent, ^�H p ��� : �?[ is
the skew parameter,

� C�D is the scaleparameter, and _ is the
locationparameter, andthe sign function indicatesthe sign of
theargument(andis zeroif theargumentis zero).

Thecharacteristicfunctionabovepreciselydefinesthedistri-
bution, but requiresnumericalmethodsto computedensitiesas
closedform expressionsfor thedensitiesdo not exist (exceptin
somespecialcases).See[13], [14] for moredetails.

B. Measurement and estimation

Eventhebestmethodsfor estimatingLRD parameters(such
asthe Abry-Veitchwaveletbasedmethods[15]) requiretraffic
dataon sub-secondintervals3. Althoughthatparticularmethod
may be adaptedto operateon-line, without storing hugevol-
umesof data[6], this still requiressometype of measurement
boxto beplacedinto thenetwork to collectandanalyzethedata.
Whilst thisispracticalin thesmallscale,it is impracticalin large
operationalnetworksto instrumentevery link in thisway.

Therearesomealternative methodsusedto make measure-
mentsof traffic. The chief amongsttheseare basedon flow
statistics(for instanceseeCiscoNetflow [16], or RTFM [17])
or SNMP[18], [19] measurements.Theformerarenot intended
for deriving time series,andthe latter inherentlyproducetime
serieson coarsetime scales(1 minute and greater). Neither
methodis thereforesuitablefor measuringLRD.

Thequestionthen,is cananything bedone,in practice,with
theavailablecoarsedata.This paperconcentrateson theuseof
SNMP databecausethis is mostwidely, andeasily collected.
We mustfirst understandexactly what we aregettingwith this
data.�

The Abry-Veitch estimatorwhich hascloseto the minimum varianceestimateof the
parameter� (andmany otheradvantagesin termsof robustness,andcomputationalcom-
plexity) still requiresthousandsof datapoints,if not10sor 100sof thousandsfor reasonable
estimates.Given thatnetwork datashows strongnon-stationarityover a periodof a day, a
hugenumberof measurementsarerequiredto get a Hurst parameterestimatebetterthan
0.5to 1, theallowedrange.
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SNMPoperatesthroughpolling – anetwork managementsta-
tion polls the network elements(suchasrouters). SNMP can
gathermuchmore than just traffic data(for instanceinforma-
tion aboutlink state),howeverwe shallonly concernourselves
with traffic data.Thetraffic dataatthenetwork elementis stored
in theform of counters
1. ifInOctets
2. ifOutOctets

whichstorethenumberof bytesinputandoutputto aninterface
on therouter, respectively. Notethat thesearetotal counts,and
arenot resetby polls, andso the traffic rateon the link is the
derivative of the countervalue. When the counterreachesits
maximumvalueit simplywrapsaround(withoutgiving any no-
tification) andstartsat zeroagain.However, this is not theonly
circumstancein whichacounterwill resetto zero.Thecounters
mayresetto zerounderothercircumstancesaswell, for instance
if therouteris rebooted.

Therearemany problemswith SNMPdata:
1. inaccuratetimestamps:Delaysin thenetwork, timestamps

from clocks which might not be synchronized,and delaysin
routersmay leadto inaccuratetimestamps,andhenceto a low
samplingrate.
2. missingpolls: Pollsarecarriedby UDP andmaytherefore

belost in thenetwork, at therouter, or at thepoller.
3. multiple counter wraps: In SNMP v1 the countersare

only 32bitsandmaythereforewrapmultipletimesin onepolling
interval.
4. implementation issues:Someimplementationsof SNMP

do not appearto behave in thestandardmanner, particularlyon
deviceslike cablemodemswherethis aspectof the modemis
oftennot consideredimportant.

The result of theseimpairmentsis a coarselysampleddata
set,with somenoise,andvariableamountsof missingdata. A
greatdealof careneedsto betakento evengetdataof thisqual-
ity, andit is easyto make mistakesin processingthedata.The
importantupshotof thesedatalimitationsis thatit is impossible
to makereasonableestimatesof parametersof LRD (suchasthe
Hurst parameter)with SNMP measurements.However, given
that SNMP link utilization datais widely available in IP net-
works, if it is possibleto useit to gainmeaningfulinsight into
the dynamicsof accessnetwork traffic, then the datahasthe
potentialto be a valuabletool for capacityplanningandman-
agement.

I I I . SNMP MEASUREMENTS AND ANALYSIS

This sectiondescribestheSNMPutilization datausedin this
study. AT&T Broadbandcollectedthe SNMP data from six
CableModemTerminationSystems(CMTS), anda sampleof
approximately20% of the individual CableModems(CM) on
theseCMTSs,during January18th to March 20th 2000. The
datawascollectedat approximatelyoneminuteintervals.

Themostnotablefeaturesof thistypeof cableaccessnetwork
are:

� high speedaccess(thesystemstudiedhereuseda 10 Mbps
sharedchannelin boththeupstreamanddownstreamdirections)� low level of aggregation(200-300homesperCMTS)� highvariability in demandamongcustomers� oftenasymmetrictraffic pattern(notalways)� ”alwayson” service
One characteristicof Internet traffic is that new applications,
suchaspeer-to-peerapplications,canappearovernightanddra-
matically changetraffic patterns.During the periodwhenour
datawascollected,thedominantconsumerInternetapplication
wasWeb access.Thus,our resultsapply moststronglyto this
type of traffic. We alsonote that while we studycabletraffic
here,thereis nofundamentaldifferencebetweencableandDSL
from a traffic perspective4

Figure1 showsasimplifiednetwork architecture,to illustrate
wherethemeasurementsaremade.TheCMTSsaggregatetraf-
fic from a numberof homespassedby the hybrid fiber coax
plant,andthetraffic is thensentto anaggregationrouter, which
takestraffic from several CMTSs. TableI shows the numbers
of housesconnectedto eachof the CMTSsusedin this study.
The CMTSsandcablemodemshave beenpolled at both Eth-
ernet,andRF interfaces.This redundancy providesa checkon
the dataintegrity, but we shall only report datafrom the one
interfaceof theCMTS andtheCM. Thetraffic dataat the(Eth-
ernetsideof the)CMTS givesthe aggregatetraffic from all of
the CMs connected(minussomesmall local traffic), while the
traffic datafrom eachCM givesthetraffic to thatsubscriberin-
dividually.

Eachof thehomespassedmight be usingthe cablenetwork
to provide cableTV, telephone,high-speeddata,or someother
service.TableI shows how many of thetotal numberof homes
connectedto the network were subscribersto the high-speed
dataservice. Eachsubscriberhasa CM, but only a sampleof
thesewerepolled by the SNMP poller to reducethe overhead
dueto polling. TableI shows how many CMs werepolled for
eachCMTS usedin thestudybelow.

A. CMTS data

Figures2 and3 show the downstreamandupstream5 traffic
ratesrespectively. Thedatagivesthetotalaggregatetraffic from
all of theCMsconnectedto thatCMTS.

Note that this data was from early 2000 before the emer-
genceof peer-to-peerapplications- thereforethetraffic is highly
asymmetric. Of the six CMTSs polled therewere significant
problemswith two data-sets(c, andd), namelylargeamountsof
missing,andobviously corrupteddata(seeabove for reasons),
leadingoneto suspecttheremainingdatais alsocorrupted.The
remainingfour CMTSs(setsa, b, e, andf) form the dataused
here.

The first taskis to examinethe datafor non-stationarity. A�
Theargumentthatcableaccessis sharedandDSL is not is spurious,sinceDSL traffic

is aggregatedat theaccessmultiplexer in any event.�
We usedownstreamto denotetraffic flowing out of thebackbone,to thecustomer, and

upstreamto denotetraffic flowing from thecustomerto thebackbone.
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cursoryglanceshows what appearsto be a daily cycle in the
data.We explorethis by plotting theaveragetraffic rateat each
time of day(by hours)over theentiredataset. Figure4 shows
time of dayaveragesfor thefour datasets.

OnanISPbackbone,traffic followsadailypatternfairly closely.
However, in thebroadbandtraffic we observe that thevariation
betweendaysis actuallylarger thanthe variationwithin a day
(asshown in Figure4). For instanceseeFigure5 which shows
the 1 hour averageof the traffic during the busy hour of each
day. This largevariationrequiresspecialcareto betakenin the
analysisof thedata.

We next examinethe marginal distribution of the traffic on
thesefour CMTSs. Themarginal distribution is theprobability
distributionof the1 minutetraffic ratesignoringthefactthatthe
datais a time series,andtreatingeachdatapoint asif it were
independentof theothers.

However, sincethe datais non-stationary, we mustfirst re-
move the effect of the non-stationarityas it would otherwise
corruptany furtheranalysis.Thereareanumberof waysto nor-
malizethedatato remove non-stationarity, basedon themodel
of thetraffic which oneadopts.For instance,onecouldusethe
models:� additive mean: Thetraffic rate6 
v��� %$� 

��� L�� 
v��� <� multiplicati vemean: Thetraffic rate6 
v��� %$� 

���}� � 
v��� <
where� is themeantraffic rate,and� 
v��� isastationarystochas-
tic processrepresentingthevariationin the traffic rates. In the
first casetheappropriateway to normalizethe traffic is to sub-
tractthemean,andin thesecondto divide by themean.For the
CMTSdataexaminedthesecondapproachproducedtraffic rate
statisticswhosehistogramswereconsistentlyof thesamesim-
ple shape,with very similar parameters(seelater),whereasthe
first approachproducedcomplex multi-modedistributionsthat
weredifferent for eachcase. We concludedfrom this that the
secondmodel is appropriatehere. In practicewe don’t know
the meanof the traffic, but we estimatethis eitherby blocking
thedatainto groups,or usinga moving average.We foundthat
using a 1 hour block or moving window size for the moving
averagebothproduceconsistentresultssuggestingthatoverpe-
riods of 1 hour the datais reasonablystationary. Significantly
longerblock sizesleadto inconsistentresults.

The probability densitiesof the normalizedmarginal distri-
butionsof the traffic areshown in Figure6. The y-axis shows
probability, and the x-axis shows the normalizedrate– hence� % �

is wherethe meanrate over 1 minute is equal to the
1 hour mean, � % �

meansthe 1 minute rate is twice the 1
hour rate,andso on. The graphsalsoshow a simplemoment
basedlog-normalfit to thedataandaMaximumLikelihoodEs-
timate(MLE) based5 -stablefit to thedata[13], [14] (notethat
momentbasedfits arequite accurateandeasyto computefor

the log-normaldistribution, becausein the log domainthedata
is normally distributed,andso in this domainwe computethe
meanandvariance,but the equivalentfor an 5 -stableis not as
simpleor effective).

It appearsfrom thesegraphsthat the log-normaldistribution
providesa reasonablefirst orderfit to the data(particularlyon
the right handsideof themodeof thedistributionswhich is in
any casethemostimportantpartof thedistribution). However,
the 5 -stablefit is better. Table II gives the parametersof the5 -stablefit. Notice thereis a relatively small rangeto the pa-
rameterswith thevariationin 5 beingmostsignificant.

It is hardto visually assessthegoodnessof fit of thedistribu-
tionsusinga densitygraph,andsowe alsoprovide in Figure7
a setof pp-plotswhich illustrate the goodnessof fit. A good
fit in thesegraphswill lie alongthedotteddiagonalline, while
a poor fit would lie off the line. Onceagainwe can seethat
thelog-normalfit is notunreasonable,but thatthe 5 -stablefit is
better.

Oneconclusionthatwecandraw is thattheaggregateCMTS
traffic datacanbe closely (thoughnot perfectly) modeledus-
ing an 5 -stabledistribution, andthat in thecaseswe examined
this distribution is reasonablycloseto a log-normaldistribution
(althoughthatis not trueof the 5 -stabledistribution in general).
Wesuspectthatthe 5 -stabledistributionarisesfrom thesumof a
seriesof heavy-tailedrandomvariables.Weinvestigatethispos-
sibility further in the following sectionusingtraffic datafrom
individualCMs.

B. Cable Modem Data

Our dataincludesa subsetof the CMs associatedwith each
of theCMTSs,giving usaview of theindividualuser’sactivity.
Although datawascollectedfrom CMs associatedwith all of
the CMTSs, we focus on the datafrom CMs associatedwith
thefour CMTSsfor which we have gooddata(datasetsa, b, e
andf). In particulartheresultsdisplayedshow dataset(a), but
arerepresentativeof theresultsfor all four datasets(thoughthe
detailsdiffer). Thenumberof cablemodemspolledfor eachis
givenin TableI.

Therearea numberof thingsthatwe coulddo with the CM
data, including investigatingthe variation amongsubscribers.
However, in this paperwe focuson developingresultsthatcan
bedirectlyusedin traffic modelingandcapacityplanning.

First of all let us look at the marginal distributionsfor each
subscriber. Figure8 (a)showsthemarginaldistributionfor each
subscriber(for dataseta) – note that thesemarginalsare not
normalized. In all but two caseswe note that the bodiesof
themarginals(betweenaround200and6000bps)arethesame.
This partappearsto besometypeof backgroundtraffic loador
“chatter” sinceit occursalmostall thetime,andis thesamefor
mostof themodems.Figure8 (b) showstheaverageof theindi-
vidualmarginalsbothduringthebusyhourandoverall timesof
day. Notice that theselectionof time of dayhasno significant
effect on the form of themarginal distribution. This is another
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indicationthatthemarginal is a usefulindicatorof behavior.
Thevariationin themarginal distribution comesthroughthe

highly variabletails of thesedistributions.NoticethatFigure8
is a log-log plot, andthat the tail in plot (b) appearsto be lin-
ear, andsofollows a power-law. Hencewe have a heavy-tailed
marginal distribution for thesesources.This confirmsour ear-
lier suspicionthat the 5 -stabledistribution in the marginal of
theaggregatetraffic arisesfrom thesumof theheavy-tails in the
individualusertraffic.

A standardmodelof useractivity is anON/OFFmodel,with
fixed ON rate and ON/OFF times given by heavy-tailed ran-
domvariables.We now analyzethe CM datain the context of
this model. We will call a subscriberON if it sends/receives
someuserdataduring the one minute interval betweenpolls.
Note,however, thatin ourcurrentreal-world setting,weneedto
think carefullyaboutwhat is userdata.For example,doesuser
dataincludeperiodicpolls (or a ticker) from a mail/news/web
browser?Doesit includenetwork operationsdatasuchasNTP?
Certainlyit shouldexcludenetwork maintenancedatabetween
modemsandothernetwork elements,suchasour own SNMP
polling. It is not possibleto distinguishthesourceof thetraffic
with SNMP dataso we usea simpleratethresholdhere. As a
result,we areunableto detectcaseswhena usersendsa very
small amountof data. However, sincewe areprimarily inter-
estedin thelargevolumetraffic, missinglow ratetraffic will not
havea significanteffecton theoverallanalysis.

Thechoiceof thresholdusedto decideif a subscriberis ON
is obviously important. Figure 9 shows the effect on the ON
probability: overall (dashed)andfor thebusyperiod(solid), of
changingthethreshold.Clearly thecurvehasa kneeat just be-
low 5 kbps.Below this achangein thethresholdhasadramatic
effect on theON probability, but above this theON probability
is relatively insensitive to the valueof the threshold.We usea
thresholdof 6 kbpsbelow, but asnoted,theexactvaluehaslittle
effecton theresults.

Figure10 shows theprobabilityof beingON for eachof the
cablemodems,averagedover all time (solid), and during the
busyhour(dashed).We canseethat thevariationbetweencus-
tomersis larger thanthevariationbetweenbusyhourandnon-
busyhour. Theplot alsoshows theconditionalprobability that
a customeris ON in a givenhourgivenit is ON at leastonce.

We canalsostudytherelationshipbetweentheON probabil-
ity andthedatarates.Figure11showstheaverageON probabil-
ity by timeof dayoverthewholedataset,andtheaverageddata
rateof all of the sampledcablemodems.Clearly the two are
highly correlated.Thefactthatthedatarateappearsto havehad
a constantadded(above theON probability) is theresultof the
chatterbetweenmodemandCMTS. The correlationleadsone
to believe thattheON probability is thefundamentalparameter
determiningtheunderlyingrateof thetraffic.

Notice that Figure 11 doesnot agreewith Figure 4 (a). In
fact this is no surprise.Recall that our CM dataincludesonly
a subsetof the CMs associatedwith a CMTS. When dealing

with heavy-tailed distributions, thereis a high probability that
a randomsamplingwill missthesmallnumberof heavy-hitters
andthereforeseeaskewedversionof theresults,aswedohere.

Note that a morecomplicatedusermodelwould be to have
a notionof “active” and“inactive” subscribers,whereanactive
subscriberis one that is using a network applicationin some
way, but arenot necessarilydownloadingsomethingat that in-
stant. Therearehencea numberof statesfor a user(inactive,
active (but OFF), andactive andON). The appropriatemodel
for activity patternof a userwould dependheavily on demo-
graphicdata(is the customera business,an adult consumer, a
teenager?).However, themodelitself (averageON probability,
downloadsizedistributions)canbe separatedfrom the demo-
graphicsandcould be measuredthroughmechanismssuchas
Netflow at aggregationrouters(thoughthis might only bedone
on a sampledbasisbecauseof thedifficultiesin collectingflow
level measurements).This modelprovidesan explanationfor
the dottedcurve in Figure 10 which is the conditionalproba-
bility thata sourceis ON, giventhat it is ON sometime in the
hour. Clearlythisprobabilityis muchhigherthantheoverallON
probabilityleadingto theactivity basedmodelabove. While we
areinterestedin this model,we do not explore it further in this
paper.

C. Explanations

Wecanexplaintheabovemeasurementsin thefollowingway.
Asnotedabovethestandardmodelof useractivity is theON/OFF
model.Themeasurementsof individualcablemodemssupports
thisview, with onenotablevariationwhich is thattheON rateis
now sohighly variablethat it is moreimportantthanthecorre-
lationsover time. Theresultis, thatwhensuperposedthetraffic
appearsto havean 5 -stablemarginaldistribution (whichcanbe
approximatedto somedegreeby a log-normaldistribution).

AlthoughtheindividualON ratesof usershaveahighlevel of
variability, theaverageONprobabilityissmall(

� DZ< DK� ), andthe
numberof customerslargeenoughsothatwe canapproximate
thenumberof ON sourcesby aPoissonrandomvariable.When
we do this, only the averagenumberof ON customersmatters
(givenby theON probabilitytimesthenumberof customers).

A simplesimulationof this typeof process(Poissonsumof
heavy-taileddistributions)resultsin themarginalshown in Fig-
ure12 which matcheswell with thatseenat theCMTSs. Note
that theresultsof thesimulationdisplayedin Figure12 arenot
perfect.ThesimulationusesthesimpleON/OFFmodel,andso
doesnot take into account:� thefactthatsourcesarenothomogeneous,� correlationsin thedata(for instancethedurationof theON
andOFFperiodsalsoappearsto havea heavy-tail here),
which may effect the results. Figure 13 shows a scatterplot
of the time seriesfor dataset(a) versusa shiftedversionof it-
self. The plot shows a clearcorrelationbetweenthe traffic in
consecutiveintervals.If wewish to obtainamoreaccuratesim-
ulation modelwe must includea model for thesecorrelations.
A niceway to dosois to useageneralization[11] of thesimple
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normalizationschemadescribedin SectionII-A.1 which allows
both heavy-tails andcorrelations,however, the currentSNMP
measurementsdo not supportsuchsophisticatedanalysiswith
any ease. Fortunately, thesecorrelationsseemto be a second
ordereffect.

Theothercomplicatingfactor, thenon-stationarityin thedata
canbe taken into accountby varying the ON probability. Fig-
ure 11 shows the clearcorrelationbetweenthis ON probabil-
ity and the averagerate. A simulationsuchas the oneabove
maythenbeusedto performcapacityplanningatacoarselevel,
thoughdetailedcapacityplanningrequiresestimatesof finetime
scalebehavior that arenot immediatelyavailablefrom SNMP
data.

IV. CONCLUSION

In this paper, we analyzea large amountof SNMP utiliza-
tion datafrom a setof cablemodemterminationsystemsand
associatedcablemodems.Despitethe limitations SNMP data,
we developa simplemodelfor theaggregatetraffic ata CMTS,
showing that theminute-to-minutevariationin theaveragerate
of canbe approximatedby a log-normaldistribution, undera
suitablerenormalisation.Our resultsshow that renormalizing
by dividing the aggregaterateby a onehour moving window
estimateof themeanrategivesquitegoodresults.In addition,
weshow thatthismodelcanbeexplainedby amoreaccurateap-
proximationto an 5 -stabledistribution. This modelcanin turn
bederivedfrom asuperpositionof asetof individualsubscribers
describedby a simplesubscribermodel,whereeachsubscriber
actsasanON/OFFsourcethattransmitsatahighly variablerate
whenON.

Themostappealingthingaboutthismodelis thatit is possible
to directly measureit from coarsegrained,but readilyavailable
SNMPutilization data.Moreover, themodelis consistentwith
the explanationsthat have beengiven for LRD in other traffic
studies.This link strengthensour conclusions,andat thesame
timeprovidesgreatinsightinto thedifferencebetweenhighand
low speedaccesstraffic.

Thesemodelscanalsointerestingbecauseof their potential
applicationto capacitymanagementandplanningin broadband
accessnetworks.For example,whenanalyzingacablenetwork,
it maybenaturalto askwhetherit is possibleto addanother100
usersto anexisting CMTS.By collectingandanalyzingSNMP
utilizationdata,onecanestimatetheparametersassociatedwith
the individual usertraffic distribution. One can thenestimate
the effect of addinganother100 subscribersby simulatingthe
superpositionof a systemwith additional subscribers. Note
that in practice,onewouldn’t needto measureindividual cable
modems.A morepracticalapproachwoulduseothersourcesof
informationsuchasa sampleof Netflow measurementsto ex-
aminethe distribution of the sizeof customers’flows, anduse
this to estimatetheparametersin thedistributionsusedhere.

We notethatonemight conceivably obtainevenbetterfits to
the datausing a distribution suchas the Weibull distribution.

However, the aim of this paperis not distribution fitting, but
providing simple,pragmaticmodels. Obtaininga perfectfit is
lessimportantthanhaving a modelwhosebasiscanbederived
from simpleassumptionsaboutthe underlyingtraffic, making
it possibleto easilyextendthe modelto caseswherethereare
no measurements.For instance,to answer“what if ” questions
suchaswhat if we build a new network from scratch,with �
subscribersperCMTS.
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Dataset homespassed subscribers CMspolled
a 1071 194 35
b 790 176 36
e 833 250 50
f 1051 309 60

TABLE I

NUMBER OF CABLE MODEMS POLLED AT EACH CMTS
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S0parameters
Dataset � 5 ^ � _

a 3159 1.50 1.00 0.27 0.78
b 3095 1.70 1.00 0.32 0.82
e 3166 1.48 0.87 0.24 0.82
f 3159 1.40 1.00 0.30 0.75

TABLE II

MLE OF THE PARAMETERS (USING THE S0 PARAMETERIZATION OF

NOLAN [13] , [14] ) OF THE � -STABLE DISTRIBUTION. � REFERS TO THE

NUMBER OF DATA POINTS USED IN EACH FIT.
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points

aggregation router

measurement

CMTS

CMTS

Fig. 1. Simplifiedarchitectureof thesystemin question.Our studyusesdatataken from theupstream(Ethernet)interfaceof theCMTS, the downstream(RF)
interfaceof theCMTS,andfrom theCMs locatedat residences.
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Fig. 4. Averagetraffic by time of dayoneachof thefour investigatedCMTSs.
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