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Abstract—Good traffic modeling is a basicrequirementfor accurate ca-
pacity planning. The recentdiscovery of heavy-tails, and Long-RangeDe-
pendence(LRD) in traffic has heralded a new, and more elegantway to
model data traffic, particularly characteristics such as extreme burstiness
acrossmany time scales However, mostof the measuementsusedto popu-
late suchmodelshave beenfine grained packet traces. In reality we are far
from being able to obtain suchtracesfrom more than a small subsetof the
Inter net, and this is likely to remain true at leastin the immediate futur e.
The only source of ubiquitous data is SNMP, but SNMP has many limita-
tions which make it difficult to work with for traffic modeling Theselimi-
tations make it impossibleto usestandard LRD models.However, we shov
here that for broadbandaccessSNMP is capableof capturing the mostim-
portant featuresof the data traffic. We basethis analysison alargevolume
(more than two months) of SNMP data obtained from a large operating
broadband accessetwork. The model is approximate, but is nonetheless
quite useful for capacity planning. The resultsvalidate our intuition about
LRD in data traffic, while allowing the key parameters of the model to be
computedsolelyfrom SNMP traffic utilization data.

|. INTRODUCTION

Overrecentyearsthediscovery of self-similarityin datatraf-
fic (see[1], [2], [3]) hasstimulateda greatdeal of research
into performancenodelsfor self-similar andheavy-tailedtraf-
fic (for instancesee[4], [5]). However, the greatmajority of
this work relies on sophisticatedand detailedmodels,derived
from paclettraces.Unfortunatelyin practice paclettracedata
is rarely availablebecauseollectingsuchtracesrequiresdedi-
catedequipmenthatwould bevery expensie to deploy univer-
sally. Furthermorethe costof collecting,andstoringsuchlarge
volumesof datais itself prohibitive®.

However, goodtraffic modelsarerequiredfor ongoingtasks
suchascapacityplanning,in particularin accessietworkswhere
it is prohibitively expensveto “just addmorebandwidth”in or-
derto fix performanceproblems. Furthermore network oper
atorsalsoneedto be ableto determinewhethera link is over-
loadedor not. In fact,eventhis simpletask,whichwe shallrefer
to hereascapacitymanagements notaseasyasit mightatfirst
appear Thefractal natureof datatraffic makessuchestimation
inherentlymoredifficult.

The only type of traffic datathatis nearlyuniversallyavail-
ablefor taskssuchascapacityplanningis SNMP (SimpleNet-
work ManagemenProtocol)data. Flow level, or even paclet
tracedatais often availablein a limited way (at a few sample
points, or for limited time periods),and canthereforesupple-

L1t isin factpossibleto obtainmeasurementsf LRD andotherquantitieson-line,asdata
is collected[6], but this hasnot beenwidely usedyet

mentSNMP data,but cannotreplaceit. SNMP datais generally
limited to coarsesamplingperiods andsuffersfrom missingand
noisy dataasa resultof the protocoldesign.Hence ary traffic

modelmustbe ableto dealwith suchdataquality problems.

The noisy/unreliablenature of this datameanthat ary ap-
proachwe adoptwill be a crudeapproximation,and capacity
planningbasednthis datawill likewiseinvolve approximation.
However, the currentrapid gronvth anduncertaintyin the Inter-
net meanthat this is all thatis currentlyneeded.In the future
we canaim to improve the SNMP mechanismsisedto collect
traffic dataso thatwhenit becomedmportantto squeezehat
extra 5-10%out of our networkswe have the datato supportit,
but for the momentwe shallbe satisfiedwith amodelthatgives
usapproximateanswersysingthe availabledata.

This paperanalyzesa large volume (morethantwo months)
of SNMP dataobtainedfrom a large operatingbroadbandac-
cessnetwork. The datawe have is derived from cableaccess,
but thereis no reasorto believe thatcableusersgeneratdraffic
thatis intrinsically differentfrom DSL users. Cableand DSL
network useis growing dramatically andthey provide anorder
of magnitude(or more)increasen bandwidthto the consumer
than dial-up access. As a result, thesenetworks require sig-
nificantly more bandwidthin the metro andregional networks
wheretraffic is aggre@atedandbackhauledo the backbonenet-
work point of presenceThe metroandregional networks sup-
porting cableand DSL are too large to allow for grossover
dimensioningto be economicallyviable. Furthermorethe in-
vestmentlimatethatcontributedto Internetgrowth until latein
2000no longerexists, and network growth including capacity
upgradesrelikely to be capitalconstrainedor theforeseeable
future. This leadsto a needfor simpletraffic modelsthat can
be derived from available traffic measurementsn thesehigh-
speedaccesmetworks. However, traffic on thesenetworks is
dramaticallydifferentfrom traffic on dial-up accessetworks
andlittle work hasbeendoneso far to characterizenigh-speed
accesdraffic.

We examinethe SNMP cabletraffic data,andderive traffic
modelsfrom this datathatcanbe usedto performapproximate
capacitymanagemenrdndplanning(detailedcapacityplanning
requiresfiner grainedtime seriesthan SNMP gives us access
to). Thetraffic modelswe presentareconsistentith the more
detailedstudiesof paclettracesvhich discoreredandexplained
self-similarityandLong-RangeDependencé_RD) in datatraf-
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fic. However, we validatethe traffic modelsusingSNMP mea-
surementsandsuggesthat SNMP measuremertould be used
in operationainetworks to derive the salientparameter®f the
both individual userand aggreate cable traffic distributions.
The majorinsight gainedfrom this studyis the significantim-
pactthathigh-speedcceshiasonthedistribution of thecarried
traffic, ascomparedwith typical dial-uptraffic?

In the following sectionwe shall give a brief overview of
therelevantbackgroundo this paper including whatwe mean
by self-similarand LRD traffic, andthe featuresof SNMP data
which limit how it canbe used. Sectionlll describeghe data-
setsand analysisresultingfrom this study The mainresultis
thatasimplelog-normaldistributioncanbeusedo representhe
minute-to-minutevariationsin the traffic arounda (relatively)
slowly changingmeanrate (changingon the scaleof hours).
SectionlV concludeghe paperwith asummaryof thefindings.

Il. BACKGROUND

We bagin this paperwith therelevantbackgroundin particu-
lar on self-similartraffic modeling,andSNMP traffic data.

A. Sdf-similarity and heavy-tails

Self-similarity and Long-RangeDependencél] (LRD) pro-
vide a natural,quantitatve, andyet wonderfully elegantway of
describingand modelingdatatraffic. The simplestself-similar
model, FractionalBrownian Motion (FBM) hasonly threepa-
rametersandyet candescribesomesetsof traffic (includingits
burstinesspver scalegangingfrom millisecondsup to hours.

Self-similarityandlong-rangedependencarecloselyrelated
phenomenatypically estimatedusingthe Hurst parameter, H.
Self-similarity relatesto the factthatundersuitablescaling,the
statisticsof the traffic arethe sameat ary time scale. Long-
rangedependenceatesto correlationsn thedatawhich, though
decreasingver wider ranges hever becomeinsignificant. We
shall not dwell on the technicalaspectsof thesepropertiesin
thispaperasLRD cannotbemeasuredisingthe SNMPdatawe
have available (seebelow). Moreover, theresultsin this paper
indicatethatamoredetailed.RD modelis notneededo explain
themajorcharacteristicef thetraffic.

However, anunderstandingf theoriginsof LRD in datatraf-
fic is veryinformative here.We shallin factfind thatthe origins
of thetraffic characteristicsve seein cableaccesgraffic areone
andthesameastheoriginsof LRD in othertraffic sets.Thus,al-
thoughour measurementsuggestn alternatve modelbe used
for cableaccesagraffic, the findingsof this paperare consistent
with thosein theprior traffic modelingliterature.

Theoriginsof LRD lie in heary-taileddistributions. Suchdis-
tributions have large weightsin the tail, andmay exhibit prop-
ertiessuchasinfinite variance or infinite mean.An exampleis
the Paretodistribution whichis in a classof distributionswith a

2 Although we do not directly compareour measurementserewith dial-up traffic mea-
surementstheintrinsicmodemspeedimit of dial-uptraffic makesit impossiblefor dial-up
traffic to have the characteristicsve obsere here.

power-law tail. Thatis, the distribution functionstail lookslike
1— F(t) ~ Lt7. Of particularinterestherewill bethe case
wherel < v < 2, wherethe meanof the distribution is finite,
but thevariances infinite.

A.1 ON-OFFmodels

Onesuggestedanodelfor the origin of LRD is the superpo-
sition of ON/OFF sourceswith heary-tailed ON or OFF peri-
ods[7], [8], [9]. More formally, we canmodela singlesource
asarenaval processlternatingbetweertwo states:*ON” and
“OFF”, wherethe generatedraffic ratesare R and 0, respec-
tively. Moreover, the durationof at leastone of the ON and/or
OFF periodshasa heavy-tailed distribution with infinite vari-
ance for exampleapower-law distributionwith 1 < v < 2.

ON/OFFprocessewith heavy-tailed ON periodsareasymp-
totically LRD in themseles[10] with H = (3 — v)/2, where
the heavy-tailed distribution hasexponenty. However, a bet-
ter aggregyatemodelmay be obtainedby superposing number
of sources. The exact way in which the processesre super
poseddoesmatter principally throughtherenormalisatiorfl1].
Renormalisatioris usedsothatasthe numberof sourcess in-
creasedthe averagerateremainsconstant.For clarity, we sim-
plify the moregeneraldescriptionof [11]. The simplestrenor
malisationsare:

(i) reducetherateR of eachsource,
(ii) increasehelengthof OFF periodsor
(iii) reducethelengthof ON periods.

As the numberof sourcegyoesto infinity, eachmethodresults
in adifferentmodel,

(i) FractionaBrownianMotion with H = (3 — v)/2,
(i) M/G/oo sourcemodel,and
(iii) «a-stableprocess,

respectiely.

Thesdlifferentrenormalisationareof particularinteresthere
becauseahe standardassumptiorhasbeenthat in aggregated
traffic eitherthefirst or secondcasewill bethe suitablemodel.
For instance,for dial-up traffic, which is tightly constrained
by the bandwidthof the modemconnection datatransfersare
spreadover time. We caneasily seethesedatatransfersasan
On/Off processwith a low rate per source,and previous mea-
surementsf suchtraffic have supportedhe FBM typeof model.
Anotherrationalefor the FBM modelis thaton aheavily loaded
link the TCP congestiorcontrol causeshe availablebandwidth
to besharedapproximatelypetweersourcesn suchaway that
afile transferwill be extendedovertime.

Ourresultsshawv thatwith moderatelyaggreyatectraffic ona
high-speedccessetwork, thethird modelis moreappropriate.
Theresultsshav thatthe marginal distributionsof thetraffic are
quite inconsistentwith either of the first two models,but are
consistenwith the third. Bandwidthlimitations and TCP still
slow down the effective transferrate, “spreading”the connec-
tionsovertime, howeverthegreatermccesdandwidthin acable
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network reduceghe amountof spreadingothatthe majority of
datatransferdake lesstime thanthemeasuremenhtervals. We
discusgshe measuremernihtervalsmorein SectionlI-B.

A.2 a-stabledistributions

Therearea numberof reasonsvhy onecaresaboutLRD and
heary-tails. The mostcommonis performance Systemscarry-
ing LRD traffic will typically have worseperformancésee[4],
[5] for example). However, althoughthe main applicationof
thiswork is capacityplanning(for which performancés impor-
tant), we mustcopewith the existenceof LRD andheavy-tails
evenbeforewe plug parameterito a capacityplanningmodel,
becausehevery presencef LRD andheavy-tails makesmea-
suremenbf the modelparametersnuchmoredifficult.

Heavy-tailsandLRD disruptthestandardntuition abouthow
datawill be smoothedby averaging,eitherover time, or over
additionalsources.The standardntuition is basedon the Cen-
tral Limit Theorem(CLT), which saysthataswe summoreand
more data (suitably renormalised}he result tendsto a Gaus-
siandistribution whosemeantells usthe meanof our data. The
problemis thatthe CLT hastwo conditions thatthe databein-
dependentandhavefinite variance.

Most peopleassumehatif datais averagedover longerand
longertime intervals you will eventuallyreacha regimewhere
the datacorrelationshave droppedto the point wherethey are
insignificant,andthereforewe canapply the CLT. However if
the datais LRD we know thatwe will never reachthis regime,
andso the CLT doesnot apply. Alternatively, if the datahas
heavy-tails with infinite variancethenonceagainthe CLT does
notapply.

Thereis a GeneralizedCentralLimit Theorem(GCLT) that
dealswith thesecaseslin the caseof sumsof heary-taileddata,
the GCLT providesthefollowing result[12].

Theorem 1.1 (GeneralizedCentralLimit Theorem)Let X7,
X5, X3, ..., beanindependentidentically distributedseriesof
randomvariables. Thereexist constants:,, > 0, andb,, € IR
andanon-degenerateandomvariableZ, with

an(X1 + Xo+ -+ Xp) = bp > Z,
if andonlyif Z is a-stable,jin which casea,, = n~'/* for some
a€(0,2].

Thusthe a-stable distributions are the generalizatiorof the
Gaussiardistribution which allow for the sum of heavy-tailed
distributions.Notecarefullythatthenormalizingfactordepends
on a which givesthe “heaviness”of thetails. Whena = 2 the
stabledistribution is the Normal distribution, andthe theorem
correspondgo the CLT, whilst whena < 2 thetail is heavy,
andthe corvergencehappendamore slowly. Thereis a similar
theoremwhich canbe appliedin the LRD case but we shallbe
mainly concernedvith theversionabove.

The upshotof this resultis that the confidenceboundsfor
meanestimatesorverge moreslowly thanlight-tailed random
variables(whenthey corvemgeat all), corvergingasn '/ in-

steadof n—1/2. Furthermorethe tails of a-stabledistributions
areheavier thanthoseof Normal distributions,andso the con-
fidenceintervalsfor a-stabledistributionswill be widerin any
case.In simpleterms,aswe averagemore and moredata(say
by averagingthe rateovertime) we won’t seesuchsimplecon-
vergenceto the mean. The resultwill still appearbursty, even
overquitelongtime scales.
Throughoutthis paperwe shall usethe SO parameterization

of the a-stabledistribution definedby the following.

Definition: A randomvariableX is saidto be a-stablewith SO

parameterizatio («, 3,7, d;0) if andonly if
_ v (Z-BtanZ2) +6, a#1,
a 'yZ +9, a=1,
whereZ («, 8) is definedby its characteristidunction
. _ | exp(=|ul|* [l—z,ﬁ’tanM signu)]), a#1,
E [exp(iuz)] = { exp (—|u| [1 +'Lﬂ (signu)In|ul]), a=1,

wherea € (0, 2] is the characteristic exponent, 8 € [—1,1] is
the skew parametery > 0 is the scaleparameterand/ is the
location parameterandthe sign function indicatesthe sign of
theargument(andis zeroif the arguments zero).
Thecharacteristidunctionabove preciselydefineshedistri-
bution, but requiresnumericalmethodso computedensitiesas
closedform expressiongor the densitiesdo not exist (exceptin
somespecialcases)Seeg[13], [14] for moredetails.

B. Measurement and estimation

Eventhe bestmethoddor estimatingLRD parameterg¢such
asthe Abry-Veitch waveletbasedmethoddq15]) requiretraffic
dataon sub-seconéhtervals’. Althoughthatparticularmethod
may be adaptedto operateon-line, without storing hugevol-
umesof data[6], this still requiressometype of measurement
boxto beplacednto thenetwork to collectandanalyzethedata.
Whilstthisis practicalin thesmallscale |t isimpracticalin large
operationahetworksto instrumentevery link in thisway.

Thereare somealternatve methodsusedto make measure-
mentsof traffic. The chief amongsttheseare basedon flow
statistics(for instanceseeCisco Netflow [16], or RTFM [17])
or SNMP[18], [19] measurements.heformerarenotintended
for deriving time series,andthe latter inherentlyproducetime
serieson coarsetime scales(1 minute and greater). Neither
methodis thereforesuitablefor measurindg-RD.

The questionthen,is cananything be done,in practice,with
the availablecoarsedata. This paperconcentratesn the useof
SNMP databecausehis is mostwidely, and easily collected.
We mustfirst understandxactly whatwe aregettingwith this
data.

3The Abry-Veitch estimatorwhich hascloseto the minimum varianceestimateof the
paramete (andmary otheradvantagesn termsof robustnessandcomputationatom-
plexity) still requireghousandsf datapoints,if not 10sor 100sof thousand$or reasonable
estimates Given thatnetwork datashawvs strongnon-stationarityover a periodof a day a
hugenumberof measurementarerequiredto geta Hurst parameteestimatebetterthan
0.5t0 1, theallowedrange.
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SNMPoperateshroughpolling—anetwork managemersta-
tion polls the network elementgsuchasrouters). SNMP can
gathermuch more thanjust traffic data(for instanceinforma-
tion aboutlink state),howeverwe shallonly concernoursehes
with traffic data. Thetraffic dataatthenetwork elemenis stored
in theform of counters

1. ifiInOctets

2. ifOutOctets
which storethe numberof bytesinputandoutputto aninterface
ontherouter, respectiely. Notethatthesearetotal counts,and
are not resetby polls, and so the traffic rate on the link is the
derivative of the countervalue. Whenthe counterreachests
maximumvalueit simply wrapsaround(without giving ary no-
tification) andstartsat zeroagain.However, thisis nottheonly
circumstancén whichacounterwill resetto zero. Thecounters
mayreseto zerounderothercircumstanceaswell, for instance
if therouteris rebooted.

Therearemary problemswith SNMP data:

1. inaccuratetimestamps: Delaysin thenetwork, timestamps
from clocks which might not be synchronizedand delaysin
routersmay leadto inaccuratgimestampsandhenceto a low
samplingrate.

2. missingpolls: Pollsarecarriedby UDP andmaytherefore
belostin thenetwork, attherouter, or atthe poller.

3. multiple counter wraps: In SNMP v1 the countersare
only 32bitsandmaythereforenrapmultipletimesin onepolling
interval.

4. implementation issues: Someimplementation®f SNMP
do notappeatto behaein the standardnanney particularlyon
deviceslike cablemodemswherethis aspectof the modemis
oftennot consideredmportant.

The result of theseimpairmentsis a coarselysampleddata
set,with somenoise,andvariableamountsof missingdata. A
greatdealof careneedgo betakento evengetdataof this qual-
ity, andit is easyto make mistalesin processinghedata. The
importantupshotof thesedatalimitationsis thatit is impossible
to make reasonablestimate®f parametersf LRD (suchasthe
Hurst parameterwith SNMP measurementsHowever, given
that SNMP link utilization datais widely availablein IP net-
works, if it is possibleto useit to gain meaningfulinsightinto
the dynamicsof accessetwork traffic, thenthe datahasthe
potentialto be a valuabletool for capacityplanningand man-
agement.

I1l. SNMP MEASUREMENTS AND ANALYSIS

This sectiondescribeghe SNMP utilization datausedin this
study AT&T Broadbandcollectedthe SNMP datafrom six
CableModem TerminationSystemgCMTS), and a sampleof
approximately20% of the individual CableModems(CM) on
theseCMTSs, during Januaryl8th to March 20th 2000. The
datawascollectedat approximatelyoneminuteintervals.

Themostnotablefeaturesf thistypeof cableaccessietwork
are:

« high speedaccesgthe systemstudiedhereuseda 10 Mbps
sharedcchannein boththeupstreamanddownstreandirections)

« low level of aggrayation(200-300homesperCMTS)

« highvariability in demandamongcustomers

« oftenasymmetridraffic pattern(notalways)

« "alwayson” service
One characteristioof Internettraffic is that new applications,
suchaspeerto-peerapplicationscanappeanvernightanddra-
matically changetraffic patterns. During the periodwhen our
datawascollected the dominantconsumeinternetapplication
wasWeb access.Thus, our resultsapply moststronglyto this
type of traffic. We also note that while we study cabletraffic
here thereis nofundamentatlifferencebetweercableandDSL
from atraffic perspectie’

Figurel shows asimplifiednetwork architectureto illustrate
wherethe measuremen@remade.The CMTSsaggrejatetraf-
fic from a numberof homespassedy the hybrid fiber coax
plant,andthetraffic is thensentto anaggreyationrouter, which
takestraffic from several CMTSs. Table| shows the numbers
of housesconnectedo eachof the CMTSsusedin this study
The CMTSsand cablemodemshave beenpolled at both Eth-
ernet,andRF interfaces.This redundang providesa checkon
the dataintegrity, but we shall only reportdatafrom the one
interfaceof the CMTS andthe CM. Thetraffic dataat the (Eth-
ernetside of the) CMTS givesthe aggreyatetraffic from all of
the CMs connectedminussomesmall local traffic), while the
traffic datafrom eachCM givesthetraffic to thatsubscribein-
dividually.

Eachof the homespassednight be usingthe cablenetwork
to provide cableTV, telephonehigh-speediata,or someother
service.Tablel shavs how mary of thetotal numberof homes
connectedo the network were subscribergo the high-speed
dataservice. Eachsubscribethasa CM, but only a sampleof
thesewere polled by the SNMP poller to reducethe overhead
dueto polling. Table!l shovs how mary CMs were polled for
eachCMTS usedin the studybelow.

A. CMTSdata

Figures2 and 3 shav the downstreamand upstream traffic
ratesrespectiely. Thedatagivesthetotal aggreyatetraffic from
all of the CMs connectedo thatCMTS.

Note that this datawas from early 2000 before the emer
genceof peerto-peerapplications thereforehetraffic is highly
asymmetric. Of the six CMTSs polled there were significant
problemawith two data-setgc, andd), namelylargeamountsof
missing,andobviously corrupteddata(seeabove for reasons),
leadingoneto suspectheremainingdatais alsocorrupted.The
remainingfour CMTSs(setsa, b, e, andf) form the dataused
here.

The first taskis to examinethe datafor non-stationarity A

4The amgumentthat cableaccesss sharecandDSL is not is spurious sinceDSL traffic
is aggrejatedat theaccessnultiplexer in ary event.

5We usedownstreanto denotetraffic flowing out of the backboneto the customerand
upstreanto denotetraffic flowing from the custometto thebackbone.
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cursoryglanceshowns what appeargo be a daily cycle in the
data.We explorethis by plotting the averagetraffic rateat each
time of day (by hours)over the entiredataset. Figure4 shows
time of dayaveragedor thefour datasets.

OnanlSPbackbonetraffic followsadaily patterrfairly closely

However, in the broadbandraffic we obsene thatthe variation
betweendaysis actuallylarger thanthe variationwithin a day
(asshown in Figure4). For instanceseeFigure5 which shavs
the 1 hour averageof the traffic during the busy hour of each
day Thislargevariationrequiresspecialcareto betakenin the
analysisof thedata.

We next examinethe maminal distribution of the traffic on
thesefour CMTSs. The maminal distribution is the probability
distribution of the 1 minutetraffic ratesignoringthefactthatthe
datais a time series,andtreatingeachdatapoint asif it were
independenof theothers.

However, sincethe datais non-stationarywe mustfirst re-
move the effect of the non-stationarityas it would otherwise
corruptary furtheranalysis.Thereareanumberof waysto nor-
malizethe datato remove non-stationaritybasedon the model
of thetraffic which oneadopts.For instancepnecouldusethe
models:

« additive mean: Thetraffic rate

X(t) = m(t) + T(1).
« multiplicati ve mean: Thetraffic rate
X(t) =m(t) x T(t).

wherem isthemeartraffic rate,andT(¢) is astationarystochas-
tic procesgepresentinghe variationin the traffic rates. In the

first casethe appropriatenvay to normalizethe traffic is to sub-

tractthemean,andin thesecondo divide by themean.For the

CMTS dataexaminedthe secondapproactproducedraffic rate

statisticswhosehistogramswere consistentlyof the samesim-

ple shapewith very similar parametergseelater), whereaghe

first approachproducedcomplex multi-modedistributionsthat

were differentfor eachcase. We concludedfrom this thatthe

secondmodelis appropriatehere. In practicewe don't know

the meanof the traffic, but we estimatethis eitherby blocking

thedatainto groups,or usinga moving average.We foundthat

usinga 1 hour block or moving window size for the moving

averagebothproduceconsistentesultssuggestinghatover pe-

riods of 1 hourthe datais reasonablystationary Significantly
longerblock sizesleadto inconsistentesults.

The probability densitiesof the normalizedmarginal distri-
butions of thetraffic areshovn in Figure6. The y-axis shavs
probability, andthe x-axis shovs the normalizedrate— hence
z = 1 is wherethe meanrate over 1 minute is equalto the
1 hour mean,z = 2 meansthe 1 minuterateis twice the 1
hour rate,andso on. The graphsalsoshov a simple moment
basedog-normalfit to the dataanda MaximumLik elihoodEs-
timate (MLE) basedu-stablefit to thedata[13], [14] (notethat
momentbasedfits are quite accurateand easyto computefor

the log-normaldistribution, becauseén the log domainthe data
is normally distributed,andso in this domainwe computethe
meanandvariance but the equivalentfor an a-stableis not as
simpleor effective).

It appeardrom thesegraphsthatthe log-normaldistribution
providesa reasonabldirst orderfit to the data(particularlyon
theright handside of the modeof the distributionswhich is in
ary casethe mostimportantpartof the distribution). However,
the a-stablefit is better Tablell givesthe parameter®f the
a-stablefit. Noticethereis a relatively small rangeto the pa-
rameterswith thevariationin a beingmostsignificant.

It is hardto visually assesthe goodnes®f fit of thedistribu-
tionsusinga densitygraph,andsowe alsoprovide in Figure7
a setof pp-plotswhich illustrate the goodnesf fit. A good
fit in thesegraphswill lie alongthe dotteddiagonalline, while
a poor fit would lie off the line. Onceagainwe can seethat
thelog-normalfit is notunreasonabldut thatthe a-stablefit is
better

Oneconclusiorthatwe candraw is thattheaggrejateCMTS
traffic datacan be closely (thoughnot perfectly) modeledus-
ing an a-stabledistribution, andthatin the casesve examined
this distribution is reasonablyloseto a log-normaldistribution
(althoughthatis nottrue of the a-stabledistributionin general).
We suspecthatthea-stabledistribution arisedrom thesumof a
seriesof heavy-tailedrandomvariables We investigatehis pos-
sibility furtherin the following sectionusingtraffic datafrom
individual CMs.

B. Cable Modem Data

Our dataincludesa subsetof the CMs associatedvith each
of the CMTSs,giving usaview of theindividual users actiity.
Although datawas collectedfrom CMs associatedvith all of
the CMTSs, we focus on the datafrom CMs associatedvith
thefour CMTSsfor which we have gooddata(datasetsa, b, e
andf). In particularthe resultsdisplayedshav dataset(a), but
arerepresentatie of theresultsfor all four datasets(thoughthe
detailsdiffer). The numberof cablemodemspolledfor eachis
givenin Tablel.

Therearea numberof thingsthatwe could do with the CM
data, including investigatingthe variation amongsubscribers.
However, in this paperwe focuson developingresultsthatcan
bedirectly usedin traffic modelingandcapacityplanning.

First of all let uslook at the marginal distributionsfor each
subscriberFigure8 (a) shavsthemaginaldistributionfor each
subscriber(for dataseta) — note that thesemarginals are not
normalized. In all but two caseswe note that the bodiesof
themaginals(betweeraround200and6000bps)arethe same.
This partappeargo be sometype of backgroundraffic load or
“chatter” sinceit occursalmostall thetime, andis the samefor
mostof themodemsFigure8 (b) shavstheaverageof theindi-
vidualmaminalsbothduringthe busyhourandover all timesof
day. Noticethatthe selectionof time of day hasno significant
effect on the form of the maminal distribution. This is another

5
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indicationthatthe mamginalis a usefulindicatorof behaior.

Thevariationin the mauginal distribution comesthroughthe
highly variabletails of thesedistributions. Notice that Figure8
is a log-log plot, andthatthe tail in plot (b) appeardo belin-
ear andsofollows a powerlaw. Hencewe have a heavy-tailed
maminal distribution for thesesources.This confirmsour ear
lier suspicionthat the a-stabledistribution in the maminal of
theaggraeyatetraffic arisesrom the sumof theheavy-tailsin the
individual usertraffic.

A standardnodelof useractity is an ON/OFFmodel,with
fixed ON rate and ON/OFF times given by heavy-tailed ran-
domvariables.We now analyzethe CM datain the context of
this model. We will call a subscriberON if it sends/recees
someuserdataduring the one minute interval betweenpolls.
Note,however, thatin our currentreal-world setting,we needto
think carefully aboutwhatis userdata. For example,doesuser
datainclude periodic polls (or a ticker) from a mail/nenvs/web
browser?Doesit includenetwork operationslatasuchasNTP?
Certainlyit shouldexclude network maintenancelatabetween
modemsand othernetwork elementssuchas our own SNMP
polling. It is not possibleto distinguishthe sourceof thetraffic
with SNMP dataso we usea simpleratethresholdhere. As a
result,we areunableto detectcasesvhena usersendsa very
small amountof data. However, sincewe are primarily inter-
estedn thelargevolumetraffic, missinglow ratetraffic will not
have a significanteffect on the overallanalysis.

The choiceof thresholdusedto decideif a subscribeiis ON
is obviously important. Figure 9 shavs the effect on the ON
probability: overall (dashedyandfor the busy period(solid), of
changingthe threshold.Clearly the curve hasa kneeat just be-
low 5 kbps.Belaw this a changen thethresholdhasa dramatic
effect on the ON probability, but above this the ON probability
is relatively insensitve to the valueof the threshold.We usea
thresholdof 6 kbpsbelow, but asnoted theexactvaluehaslittle
effectontheresults.

Figure 10 shaws the probability of being ON for eachof the
cable modems,averagedover all time (solid), and during the
busy hour (dashed) We canseethatthe variationbetweencus-
tomersis largerthanthe variationbetweenbusy hourandnon-
busy hour. The plot alsoshaws the conditionalprobability that
acustometis ON in agivenhourgivenit is ON atleastonce.

We canalsostudytherelationshipbetweerthe ON probabil-
ity andthedatarates.Figurell shovstheaverageON probabil-
ity by time of dayoverthewholedataset,andtheaverageddata
rate of all of the sampledcablemodems. Clearly the two are
highly correlated Thefactthatthe datarateappearso have had
a constantadded(above the ON probability)is theresultof the
chatterbetweenrmodemand CMTS. The correlationleadsone
to believe thatthe ON probabilityis the fundamentaparameter
determiningthe underlyingrateof thetraffic.

Notice that Figure 11 doesnot agreewith Figure4 (a). In
factthis is no surprise. Recallthatour CM dataincludesonly
a subsetof the CMs associatedvith a CMTS. When dealing

with heavy-tailed distributions, thereis a high probability that
arandomsamplingwill missthe smallnumberof heavy-hitters
andthereforeseea skawedversionof theresults aswe do here.

Note that a more complicatedusermodelwould be to have
anotionof “active” and“inactive” subscriberswhereanactive
subscriberis onethat is using a network applicationin some
way, but arenot necessarilydownloadingsomethingat thatin-
stant. Therearehencea numberof statesfor a user(inactive,
active (but OFF), and active and ON). The appropriatemodel
for actiity patternof a userwould dependheavily on demo-
graphicdata(is the customera businessan adult consumera
teenager?)However, the modelitself (averageON probability,
download size distributions) can be separatedrom the demo-
graphicsand could be measuredhroughmechanismsuchas
Netflow at aggreationrouters(thoughthis might only be done
on a sampledasisbecausef thedifficultiesin collectingflow
level measurements)This model provides an explanationfor
the dottedcurve in Figure 10 which is the conditional proba-
bility thata sourceis ON, giventhatit is ON sometime in the
hour. Clearlythisprobabilityis muchhigherthantheoverallON
probabilityleadingto the activity basednodelaborve. While we
areinterestedn this model,we do not exploreit furtherin this
paper

C. Explanations

We canexplaintheabore measuremenis thefollowing way.
As notedabovethestandardnodelof useractiity istheON/OFF
model. Themeasuremenisf individual cablemodemssupports
thisview, with onenotablevariationwhichis thatthe ON rateis
now so highly variablethatit is moreimportantthanthe corre-
lationsovertime. Theresultis, thatwhensuperposethetraffic
appeargo have ana-stablemarginal distribution (which canbe
approximatedo somedegreeby alog-normaldistribution).

Althoughtheindividual ON ratesof usershave ahighlevel of
variability, theaverageON probabilityis small(~ 0.05), andthe
numberof customerdarge enoughsothatwe canapproximate
thenumberof ON sourcedy a Poissorrandomvariable.When
we do this, only the averagenumberof ON customersmatters
(givenby the ON probabilitytimesthe numberof customers).

A simple simulationof this type of procesgPoissonsumof
heavry-taileddistributions)resultsin the mamginal shovn in Fig-
ure 12 which matcheswell with thatseenat the CMTSs. Note
thatthe resultsof the simulationdisplayedin Figure12 arenot
perfect. The simulationusesthe simple ON/OFFmodel,andso
doesnottakeinto account:

« thefactthatsourcesaarenothomogeneous,

« correlationdgn the data(for instancethe durationof the ON
andOFF periodsalsoappearso have a heary-tail here),
which may effect the results. Figure 13 shows a scatterplot
of thetime seriesfor dataset(a) versusa shiftedversionof it-
self. The plot shavs a clear correlationbetweenthe traffic in
consecutreintenals. If we wishto obtainamoreaccuratesim-
ulation modelwe mustinclude a modelfor thesecorrelations.
A nicewayto dosois to useageneralizatiof11] of thesimple
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normalizationschemalescribedn Sectionll-A.1 which allows

both heavy-tails and correlations however, the currentSNMP
measurementdo not supportsuchsophisticatecanalysiswith

ary ease. Fortunately thesecorrelationsseemto be a second
ordereffect.

Theothercomplicatingfactor, thenon-stationarityn thedata
canbetakeninto accountby varying the ON probability. Fig-
ure 11 shows the clear correlationbetweenthis ON probabil-
ity andthe averagerate. A simulationsuchasthe one above
maythenbeusedto performcapacityplanningata coarsdevel,
thoughdetailedcapacityplanningrequiresestimate®f finetime
scalebehaior that are not immediatelyavailable from SNMP
data.

IV. CONCLUSION

In this paper we analyzea large amountof SNMP utiliza-
tion datafrom a setof cablemodemterminationsystemsand
associatectablemodems.Despitethe limitations SNMP data,
we developa simplemodelfor the aggreyatetraffic ata CMTS,
shaving thatthe minute-to-minutevariationin the averagerate
of canbe approximatedoy a log-normaldistribution, undera
suitablerenormalisation.Our resultsshowv that renormalizing
by dividing the aggreyaterate by a one hour moving window
estimateof the meanrate givesquite goodresults.In addition,
we shaw thatthismodelcanbeexplainedby amoreaccurateap-
proximationto an a-stabledistribution. This modelcanin turn
bederivedfrom asuperpositiomf asetof individual subscribers
describedyy a simplesubscribemodel,whereeachsubscriber
actsasanON/OFFsourcehattransmitsatahighly variablerate
whenON.

Themostappealinghingaboutthismodelis thatit is possible
to directly measuret from coarsegrained but readily available
SNMP utilization data. Moreover, the modelis consistentvith
the explanationsthat have beengiven for LRD in othertraffic
studies.This link strengthensur conclusionsandatthe same
time providesgreatinsightinto the differencebetweerhigh and
low speedhccesdraffic.

Thesemodelscanalsointerestingbecausef their potential
applicationto capacitymanagemerandplanningin broadband
accessietworks. For example whenanalyzinga cablenetwork,
it maybenaturalto askwhetheiit is possibleto addanotherl00
usersto anexisting CMTS. By collectingandanalyzingSNMP
utilization data,onecanestimatehe parametergassociateavith
the individual usertraffic distribution. One canthen estimate
the effect of addinganotherl00 subscribersdy simulatingthe
superpositionof a systemwith additional subscribers. Note
thatin practice,onewouldn’t needto measureandividual cable
modems A morepracticalapproactwould useothersourcef
information suchasa sampleof Netflov measurements ex-
aminethe distribution of the size of customersflows, anduse
this to estimatethe parameterin the distributionsusedhere.

We notethatonemight concevably obtainevenbetterfits to
the datausing a distribution suchas the Weibull distribution.

However, the aim of this paperis not distribution fitting, but

providing simple, pragmaticmodels. Obtaininga perfectfit is

lessimportantthanhaving a modelwhosebasiscanbe derived

from simple assumptiongboutthe underlyingtraffic, making

it possibleto easily extendthe modelto caseswvherethereare
no measurementskor instance o answer‘what if” questions
suchaswhatif we build a new network from scratch,with N

subscriberperCMTS.
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Dataset | homespassed| subscribers CMs polled
a| 1071 194 35
b | 790 176 36
e | 833 250 50
f | 1051 309 60
TABLE |

NUMBER OF CABLE MODEMS POLLED AT EACH CMTS
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MLE OF THE PARAMETERS (USING THE SO PARAMETERIZATION OF
NoOLAN [13], [14]) OF THE a-STABLE DISTRIBUTION. N REFERS TO THE

SOparameters
Dataset| N a B8 5 0
a| 3159| 150| 1.00| 0.27 | 0.78
b| 3095| 1.70| 1.00 | 0.32| 0.82
e| 3166 | 1.48| 0.87 | 0.24 | 0.82
f | 3159| 1.40 | 1.00| 0.30| 0.75
TABLE Il

NUMBER OF DATA POINTSUSED IN EACH FIT.
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aggregation router

CMTS

Fig. 1. Simplified architectureof the systemin question.Our studyusesdatataken from the upstream(Ethernet)interface of the CMTS, the downstream(RF)
interfaceof the CMTS, andfrom the CMs locatedat residences.
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Fig. 2. DownstreamCMTS traffic. Thesolid line shavs oneminuteaveragerates(in Mbps)andthe paleline shavs atwo weekmoving averageof thedatarate.
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Fig. 4. Averagetraffic by time of dayon eachof thefour investigatedCMTSs.
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Fig. 9. Theeffectof changinghethresholdonthe ON probabilityfor dataset(a).
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