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Abstract. It is now well known that data-fusion from multiple sensors can im-
prove detection and localisation of targets. Traditional data fusion requires the
sharing of detailed data from multiple sources. In some cases, the various sources
may not be willing to share such detailed information. For instance, current mili-
tary allies may be willing to share some level of information, but only if they can
do so without revealing their secrets. This situation appears relevant for modern
sensor networks, which may be comprised of networks from multiple partici-
pants. It has previously been shown that localisation of a single target can be
performed while preserving location privacy of the sensor nodes. Here we extend
this to the case of multiple targets. The novel aspect of the problem is related to
the ambiguity in target labels, and how we resolve this ambiguity.
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1 Introduction

It is now a standard data-fusion problem to use multiple sensors to improve the lo-
calisation and subsequent tracking of targets. However, there may be cases where such
co-operation is limited by the nature of the parties who wish to co-operate. For instance,
consider several parties who wish to be able to detect illegal fishing, drug smuggling,
or terrorist activities. In the modern context such issues apply to sensor networks, and
in particular we consider the case where nodes in the sensor network wish to main-
tain location privacy (i.e. they wish the location of the node to remain private). There
is now a substantial literature on Privacy-Preserving Data Mining (PPDM) and Secure
Distributed Computing (SDC) (for examples see [1–4, 9–11]) and these techniques are
applicable here.

We shall consider two problems. First we consider a problem where each party has
estimates of a set of targets’ positions. They then wish to combine this information to
provide a better estimate of the targets’ locations without revealing information about
their sensors. Previously this problem was solved for a single target in [6].

The second problem we consider is one where any one sensor doesn’t have enough
information (in itself) to localise the targets. The example we consider here is where
each sensor provides range measurements (such as might be gained from examining
time of arrival of signals, or signal power). In itself, such information is inadequate to
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localise a target, but in combination with data from other sensors, the measurements can
provide good position estimates. This type of approach appears particularly relevant in
the context of ad-hoc networks where we may wish to localise some resource on the
network from purely passive measurements of signal strength at a number of points [5,
8], and each node in the network could be controlled by a separate party. Again, this
problem was solved for a single target in [6].

Our approach allows extensions of the solutions of these problems to multiple tar-
gets, while maintaining the privacy of the participants. That is, the participating sen-
sors need not reveal their location, or sensor characteristics in order to participate. The
method is a simple, iterative improvement scheme that attempts to resolve the ambigu-
ity between the different sensors’ labellings of the targets, and its performance is good
(close to the ideal performance of co-operating sensors) for small numbers of targets
(< 6) after which we find that performance degrades, though this appears to be a more
fundamental problem, rather than a problem with the privacy preserving approach.

2 Problems and assumptions

2.1 Problem 0

We first consider a simple problem whereN sensors (nodes) each measure an estimate
of the position of a single target. We denote the position of the target by(x, y) (relative
to some arbitrarily chosen, but agreed point), and the estimate from partyi by (x̂i, ŷi).
We assume that the position estimate has negligible bias and that the errors in posi-
tion are independent between sensors, and have covariance matrixSi. Given constant
covarianceSi = S, we might improve our estimate of the position of the target by
taking

x̂ =
1
N

N∑

i=1

x̂i, (1)

ŷ =
1
N

N∑

i=1

ŷi. (2)

The natural approach to computing the sum would be for each party in the measurement
to pool values and then compute the sum. This approach reveals at least some values to
other parties. An alternative would be to use a trusted third party to pool the results, and
hence keep them secret. However trusted third parties are not easy to find.

The above problem was considered in [6], and the solution amounts to a Secure
Distributed Summation (SDS). It is simple (see [4, 7]) to perform such a sum without
leaking any information except the solution itself (even in the presence of collusion be-
tween some parties). Once we compute the sum, it is a simple matter to compute the av-
erage of the location estimates, and distribute this value to all parties. These approaches
only work for N > 2, and in reality, where one could make meaningful guesses about
some values it is only really secure for reasonable values ofN , but this is the case for a
sensor network.
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Although the above approach hides some information — the individual position
estimates — the final result is that each sensor learns a positional estimate, and so
hiding the individual data seems to make little sense. However, it is simple to adapt this
technique to the case where the sensors in question have different characteristics,e.g.,
accuracy. It makes a lot more sense for a sensor operator to wish to hide their sensor’s
characteristics from other operators. For instance, accuracy may depend on distance,
and so knowing accuracy may reveal the distance of the node from the target. This
is even more important in the multi-target environment where a sensor would reveal
multiple measurements at each time-step if no privacy-preserving measures were taken.

Consider the simple case where each sensor’s estimate has covarianceSi = σ2
i I

whereI is the identity matrix. We then compute a weighted mean

x̂ =
1∑N

i=1 wi

N∑

i=1

wix̂i, (3)

ŷ =
1∑N

i=1 wi

N∑

i=1

wiŷi, (4)

where the weightswi = 1/σ2
i . If an operator wants to conceal the characteristics of his

sensor, they would wish to keep the weightswi secret. This is easily accomplished by
performing two SDSs (for each co-ordinate), one over the weighted position, and the
other over the weights themselves.

2.2 Problem 1

As noted, Problem 0 was solved in [6]. However, it is unrealistic (in general) to assume
only a single target. In the case of distributed measurements of multiple targets there is
an ambiguity between measurements. For instance, consider Figure 1. In the figure, we
as outside observers can uniquely associate each measured position (the arrows) with a
unique target. However, the sensor nodes themselves cannot associate (unambiguously)
the position estimates with targets. We refer to this issue as a labelling problem.

One approach to solve the labelling would be to assume one possible arrangement
of measurements with respect to targets, and then compute the joint estimate of the
targets’ positions. Once the joint position estimate is obtained (and shared with each
node), then these nodes could estimate a likelihood function for the set of measurements
with respect to the target and their known measurement error distributions. The joint
likelihood of the measurements with respect to the labelling could then be computed
(again using a secure distributed summation) across the sensors. Given the likelihood
for each possible arrangement of nodes and targets, we could choose the maximum
likelihood arrangement, or if we wish to track these targets, we could use the likelihoods
in a multiple-hypothesis tracker.

The problem with this simple approach to multiple targets is the number of possible
hypotheses. If we haveM targets, each node could haveM ! possible labellings with
respect to the targets. GivenN sensor nodes there would therefore be(M !)N possible
hypotheses to test. Clearly this does not scale well.
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Fig. 1. Two target example: dots show sensor nodes, crosses are targets, and the arrows show the
four position estimates.

Note that this problem with ambiguity is not unique to privacy-preserving algo-
rithms. In general, the multi-target labelling problem between a group of sensors must
be solved for any distributed sensors. There are a number of approaches one could
adopt to solve such a problem (e.g., probabilitistic data association, or multi-hypothesis
tracking). In the following sections we will investigate a very simple approach that eas-
ily extends to become a privacy-preserving algorithm.

2.3 Problem 2

In problem 2 we allow theN sensor nodes to make only range estimates — a common
case, for instance where we can only measure power of a signal from a target, and not
the direction to a target. The combination of two such estimates is enough to localise a
single target to two possible points, and three or more such measurements are capable
of deducing the position uniquely (in a 2D plane) with some rare exceptions. It is note-
worthy, however, that when the measurements contain errors, the measurements may
be inconsistent, resulting in a problem in estimating the target’s position precisely. We
denote range estimates from partyi by Di (which is an unbiased estimate of the true
rangedi), and the position of the sensor of partyi by (Xi, Yi). Again this localization
problem for a single target has been solved [6], but the multiple target problem presents
the same new challenges mentioned above.

2.4 Assumptions

The main privacy aim here is to hide the location of the sensor nodes, but we also wish
to keep secret, information about the characteristics of these nodes.

The security model we use here is the commonly used “honest-but-curious” model.
That is, we assume that the co-operating parties are honest in the sense that they follow
the algorithms correctly, but they are curious and they will perform additional opera-
tions in order to attempt to discover more information than intended. The honest-but-
curious assumption has been widely used, and appears applicable here. Sensor operators
will benefit from participating honestly in such a scheme without revealing their private
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information, and there is no downside in participating honestly. Dishonest partners in
computation (partners who do not follow the algorithm) will reduce their own benefits,
without any obvious gain.

It is noteworthy that while we assume that participants follow the algorithm cor-
rectly, we do allow collusion. Multiple partners are allowed to collude to attempt to
learn more information than they otherwise could. The protocols we present can be
made resistant to such collusion in the presence of a majority of non-colluding partici-
pants. Additionally, there is now a substantial literature on PPDM (e.g.see [1–4,9–11]
and the references therein), and this literature considers many variations on the type
of assumptions considered here. It is therefore likely that the assumption of honest-
but-curious participants can be substantially weakened. This is an important topic for
future research, as the honest-but-curious assumption may well be too strong for some
applications.

3 Solutions: problem 1

The number of possible hypotheses we might have to test grows as(M !)N for M targets
andN sensors. However, a quick look by eye (say at Figure 1) suggests that it will be
common that many of the possible hypotheses are very unlikely, and it is our goal to
eliminate the vast majority of these.

The approach proposed here is a simple iterative approach. Each of theN sensors
first assigns a random set of labels{1, 2, . . . , M} to the targets. The joint position es-
timates of the targets are then calculated. Each node then calculates the likelihood of
its measurements with respect to the current labelling, and the joint position estimates.
Each sensor looks for a single swap of labels that improves this likelihood as much
as possible (from its perspective). They then iterate. At each step, a node only swaps
two labels if this increases the likelihood, and they compute how many sensor nodes
performed a swap using a SDS. When zero nodes perform a swap in one iteration, we
terminate the algorithm as it can make no further progress.

This approach is ideal for a privacy-preserving algorithm for a number of reasons.
Its simplicity makes the information required at each step obvious, and hence it is easy
to develop a privacy-preserving version of the algorithm. The computation of the joint
estimate of the positions of the targets is simply the solution to problem 0 (discussed
above) for a given set of labels. The computation reveals only the average of the mea-
surements (the position estimate itself), and so performing it multiple times reveals only
a series of position estimate for the targets. However, each position estimate is based on
a different set of labellings, and so in theory, there may be some information revealed
from the iterations, however, as we show below, generally it takes very few iterations to
perform the algorithm, and the number of possible labellings is exponentially large. It
therefore seems very unlikely that enough information could leak from these interme-
diate results to allow any useful inferences, especially as the number of sensor nodes
grows. Even if such inferences were possible, the exponential number of possibilities
would make the computational expense of such inferences high. The computation of
likelihoods is a local operation for each node, and so requires no additional information
transfers, and so creates no additional risks of leaking intermediate information.
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A minor addition to this algorithm is that we can also compute the average likeli-
hoods at each stage (using a SDS), and the algorithm can be terminated if this decreases
at any point, preventing the possibility of oscillation between solutions. However, note
that in the solutions below we did not have to apply this test, as the solutions always
converged in relatively few iterations.

In order to test this approach we make a number of simplifying assumptions:

– location estimate errors are Gaussian, with covarianceσI, whereσ is a constant
variance across all sensors.

– location estimates between targets are independent.

It is worth noting that these assumptions are not a prerequisite of the algorithm. All
that is required of the algorithm is that the sensor nodes know their own distribution of
measurement errors — these errors can be different for each sensor, and the sensors can
maintain the privacy of their measurements.

Given Gaussian errors, computation of the relative likelihoods for sensorj is easily
performed by computing

L{(x̂(j)
i , ŷ

(j)
i )|(x̂i(k), ŷi(k)} ∝ exp

(∑M
i=1(x̂

(j)
i − x̂i(k))2 + (ŷ(j)

i − ŷi(k))2

2σ2

)
,

where(x̂(j)
i , ŷ

(j)
i ) is the position estimate of sensor nodej for the targeti given the

current labelling, and(x̂i(k), ŷi(k)) is the joint estimate of the position of targeti after
k iterations of the algorithm. Note that we need not calculate the exponential function
here, as we are maximizingL, and the exponential function is monotonically increasing.

Each node computes (locally) this likelihood for each possible swap of a pair of
targets, resulting inO(M2) computations, and then uses the new labels in a new joint
computation of the positions of the targets. Each node can alternatively declare that it
cannot improve its likelihood, and we use a SDS to find how many nodes are in this
situation. When all nodes are at this point, we terminate the algorithm, and say it has
converged.

We simulate this algorithm where we distribute theN sensor nodes, and theM
targets randomly in a unit square, and we varyM , N andσ.

Initial results for the above algorithm are shown in Figure 2 (a), which appears to
show a number of problems in the algorithm. The figure shows the Root Mean Squared
Error (RMSE) of estimates of the targets position for an ideal estimate (a simple av-
erage of all the measurements); independent measurements by each sensor node; and
an estimate using the above algorithm. The algorithm shows worse performance than
the independent estimates over a wide range of input noise (σ). Most worrying is the
non-zero value of the error forσ = 0. Investigation of the cause of this error found
that in some (relatively rare cases) the initial label led to a situation where the labelling
was “locked” in the sense that no change (of a single pair of labels) would improve
the likelihood. This is a fairly rare occurrence (for small numbers of targets) and so an
obvious solution is to re-initialize the algorithm a number of times. Figure 2 (b) shows
the effect of such random initializations forN = 4, M = 6 andσ = 0.0. We can
see that a relatively small number of re-initializations removes the error caused by this
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(a) Errors vsσ (N = 5, M = 3).
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(b) Errors depending on number of re-
initialization (N = 4, M = 6, σ = 0.0).

Fig. 2. RMSE for position estimates over 100 simulations.

initial locking (the number of re-initializations can be smaller for a few targets, but we
will use 5 throughout this paper).

Given 5 re-initializations we again simulate the performance of the algorithm, with
results shown in Figures 3 and 4. Figure 3 (a) shows the performance forN = 5, M = 3
over a range of values ofσ. We can see that the algorithm performs close to the ideal
value for moderate values ofσ, but starts to deviate from the ideal, for large values.
It should be noted that for the scenario simulated (with targets and sensors distributed
across the unit square), a value ofσ = 0.2 is very large — the 95th percentile confi-
dence intervals for a measurement will lie in a region approximately±0.4, a substantial
part of the possible field. Asσ increases, the number of labels that are incorrect (after
convergence) increases (shown in Figure 2 (b)). This is inevitable because some mea-
surements may lie closer to an incorrect target, and so the likelihood will be maximized
by an incorrect labelling. Asσ increases more measurements will fall into this category,
and so more labels will be incorrect.

The problem is greatly exacerbated as the number of targets increases. The more
densely packed the targets are, the more likely their measurements will overlap, and an
incorrect labeling will maximize the likelihood. Figure 3 (c) and (d) show much worse
performance for six targets. For larger numbers of targets, the algorithm is effective
only for small values ofσ. As noted, however, this seems to be a fundamental problem
with labelling the measurements when there is a significant probability that incorrect
labellings will look more natural than the correct labelling. In essence this seems to be
a problem in multi-target localisation, and although it is no doubt possible to improve on
the algorithm we present here, it is unlikely that fundamental improvements are possible
without further measurements (e.g., if one had other data such as radial velocities the
task might be easier).

Also of interest are the number of iterations required for these algorithms. The com-
putational and communications cost is directly proportional to the number of iterations,
and so we would like the value to be small. In fact it is, as is shown in Figure 4. The



8 Matthew Roughan and Jon Arnold

0 0.05 0.1 0.15 0.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

σ

R
M

S
E

 in
 p

os
iti

on

 

 

independent estimate
PP estimate
ideal estimate

(a) RMSE errors (N = 5, M = 3).
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(b) Average percentage of correct labels
(N = 5, M = 3).
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(c) RMSE errors (N = 5, M = 6).
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(N = 5, M = 6).

Fig. 3. RMSE for position estimates over 100 simulations, given 5 re-initializations.
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number of iterations seems to be insensitive to the value ofσ (as shown in Figure 4 (a)).
On the other hand, Figure 4 (b) shows that the number of iterations does depend on the
number of sensorsN , approximately logarithmically (see dashed line). This represents
quite a win for the approach (the naive approach of testing all hypothesis is exponen-
tial in N , whereas this approach is logarithmic inN ). The number of iterations is also
dependent roughly linearly on the number of targets, but given that this algorithm can
only be applied to moderate numbers of targets, this is not a great concern. As a re-
sult, the communications costs of this algorithm is only a few times the cost of an ideal
algorithm where no ambiguity existed. Any real approach would have to pay some com-
munications cost to resolve the ambiguity of target labels, and so this approach seems
quite reasonable – certainly it is better than evaluating(M !)N hypotheses.
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Fig. 4. Average number of iteration over 100 simulations, given 5 re-initializations.

The figures above show illustrative results — we have simulated many other param-
eter values and the results above are representative.

4 Solutions: problem 2

The iterative solution generalizes to range measurements. The approach is the same, use
a random initial labelling, compute the positions (using the privacy-preserving method
described in [6]), and then try to iteratively improve the labels. The only complicat-
ing factor is that in order to compute the likelihood of a measurement (with respect to
a hypothetical position of a sensor node) the sensor nodes should perform a contour
integral along a circular arc through the 2D Gaussian distribution function. For simplic-
ity, we approximate this by taking a point estimate at the distance of the measurement
(assuming it lies along a line between sensor and node) from the hypothetical position
of the node. This approximation greatly reduces the computational complexity of the
algorithm.
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The first result to note is that for this case, the algorithm does not always converge
quickly. In most cases the algorithm converges quickly, but in 1.5% of (600) simulated
cases, we observe quite a large number of iterations of the algorithm (we terminate it at
100 iterations). The failure to converge quickly could be caused by the approximation
we use above, and so would perhaps be removed by replacing this with the correct like-
lihood. However, these cases could be simply avoided by re-initializing the algorithm
after a moderate number (say 20) of iterations, though they still increase the overall
average number of iterations required for the algorithm.

The second issue to consider is that we need more sensors for the range-only mea-
surements because each sensor contributes less information in its own right (we need
at least 3 to obtain a unique position estimate at all). As a result, there is more po-
tential for locking at the initial step, and so we must re-initialize the algorithm a little
more often. Figure 5 shows graphs of the performance with respect to the number of
re-initializations withM = 3 andN = 10. We can see that moderate values, i.e. around
20 produce good results (though the marginal improvement over 10 is small, and so we
might tradeoff performance versus communications costs if needed).
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Fig. 5. RMSE for position estimates with respect to the number of re-initializationsN = 10,
M = 3.

Figure 6 shows the performance of the algorithm with respect toσ (for N = 10
andM = 3). Note that there are only two curves here, as there is no possibility of
independent nodes coming up with their own position estimated based on range alone.
Clearly the results are not as good as those for problem 1. It will be interesting in the
future to test whether we can improve the performance by improving the approximation
for the likelihood function. However, at the least this demonstrates the possibility of
performing this type of multi-target localization without information sharing.
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Fig. 6. Performance of range-based estimation over 100 simulations (N = 10, M = 3), and20
re-initializations.

5 Conclusion

This paper has demonstrated that a privacy-preserving approach can be used for multiple-
target localization in sensor networks. The approach preserves location privacy of sen-
sor nodes, as well as the performance of the individual sensors.

This paper presents work in progress. There are many questions left unanswered.

– Is it possible to prevent leakage even of the intermediate information (the series of
position estimates);

– how can we weaken the honest-but-curious assumption;
– can the performance be improved for larger numbers of targets;
– how could we mesh this type of localization algorithm with tracking algorithms

such as multi-hypothesis tracking;
– how should we approach the problem when not all sensors can see the same set of

targets; and
– are there approaches which could further minimize the communications cost (this is

important in the context of sensor networks where nodes may have a limited power
budget)?
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