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Abstract

It is now well known that data-fusion can improve detection
and localisation of targets. However, traditional data fusion
requires the sharing of detailed data from multiple sources. In
some cases, the various sources may not be willing to share
such detailed information. For instance, current allies may be
willing to share some level of information, but only if they
can do so without revealing their secrets. We show here that,
at least for localisation and tracking of targets, data-fusion
can be performed without the need to actually combine the
data in question, so that no party learns the information of
another. Such an approach would allow co-operation between
parties that share mutual interests, and yet do not completely
trust each other. The particular application on which we
concentrate is localisation and tracking of a target using
multiple sensors (radars or sonars, or other devices). We show
that multiple sensors can be used to refine a target’s position
estimate, or even obtain a position estimate where no single
sensor has enough information to do so (e.g., each has only
range information), without sharing the details of the sensor,
such as its position, or accuracy of its estimates.

1. INTRODUCTION

It is now a standard data-fusion problem to use multiple
sensors to improve the localisation and subsequent tracking
of targets. However, there may be cases where such co-
operation is limited by the nature of the parties who wish
to co-operate. For instance, consider several parties who wish
to be able to detect illegal fishing, drug smuggling, or terrorist
activities. They may use military radar in some cases to aid in
such detection. They certainly would not want details of their
military radar to be unnecessarily revealed, even to current
allies, given that their relationship may change in the future.
Hence we have a problem: how can we do data fusion, without
fusing the data?

In fact there are many similar problems: for instance it
has been recently noted that medical information may be
held in multiple databases, stored by different parties who

are unable to share data for commercial or legislative reasons
(e.g., privacy legislation). There are now multiple techniques
in the Privacy-Preserving Data Mining (PPDM) literature for
performing data mining on such distributed databases [1]–[4],
[8]–[10]. We can apply such techniques to the problem at hand.

We shall consider two problems here. First we consider a
problem where each party has estimates of a target’s position.
They then wish to combine this information to provide a better
estimate of the target’s location without revealing information
about their sensors. The approach we use is asecure dis-
tributed summation(SDS). The accuracy of estimates is as
good as if we were not concerned with security and computed
the estimates directly, but each parties’ input information is
not revealed to the other parties. SDSs can also be used
for weighted averages where different sensors have different
accuracy, and we can do so without revealing the accuracy of
the sensors. We extend this work to consider tracking in this
environment, and although we can use a standard tracking
algorithm (the Kalman filter), we are required to adapt the
SDS to allow for the fact that we perform it multiple times
over the track.

The second problem we consider is one where any one
sensor doesn’t have enough information (in itself) to localise
a target. The example we consider here is where each sensor
provides range measurements. In itself, such information is
inadequate to localise a target, but in combination with data
from other sensors, one can provide good position estimates.
This type of approach appears particularly relevant in the con-
text of ad-hoc networks where we may wish to localise some
resource on the network from purely passive measurements of
signal strength at a number of points [5], [7], and each node
in the network could be controlled by a separate party.

The contributions of this paper are the application of PPDM
to a new problem which has not been seen before (to our
knowledge); and a new PPDM algorithm for computing the
location of a target from range estimates without sharing de-
tailed information about the positions of sensors. We consider
tracking in both cases, but the tracking problems are rather
standard once the PPDM algorithms are designed, with the



exception that some care must be taken in the design of PPDM
algorithms when they are to be performed iteratively (such as
in tracking) and we show how to do so, including showing
how to compute the covariance of the measurements using a
PPDM approach.

2. PROBLEMS AND ASSUMPTIONS

A. Problem 1

We first consider a simple problem whereN parties each
use (potentially multiple) sensors to create an estimate of the
position of a single target. We denote the position of the target
by (x, y) (relative to some arbitrarily chosen, but agreed point),
and the estimate from partyi by (x̂i, ŷi). We assume that the
position estimate has negligible bias and that the errors in
position have covariance matrixSi. Given constant variance
Si = S, we might improve our estimate of the position of the
target by taking

x̂ =
1
N

N∑

i=1

x̂i, (1)

ŷ =
1
N

N∑

i=1

ŷi. (2)

The natural approach to computing the sum would be for each
party in the measurement to pool values and then compute
the sum. This approach reveals at least some values to other
parties. An alternative would be to use a trusted third party to
pool the results, and hence keep them secret. However trusted
third parties are not easy to find.

We typically wish to extend the problem to the case where
Si varies between sensors, at which point we have to allow
weighted means to be computed. However, the parties in the
computation may not wish to reveal their value ofSi as
this reveals important information about their sensor. Another
extension of the problem occurs when we have multiple
measurements over time, and we wish to track the target.

B. Problem 2

In the second problem we allow theN parties to make only
range estimates. The combination of two such estimates is
enough to localise the target to two possible points, and
three or more such measurements are capable of deducing the
position uniquely (with some rare exceptions). It is noteworthy,
however, that when the measurements contain errors, the
measurements may be inconsistent, resulting in a problem
in estimating the target’s position precisely. We denote range
estimates from partyi by Di (which is an unbiased estimate
of the true rangedi), and the position of the sensor of partyi
by (Xi, Yi).

C. Assumptions

In any PPDM we must define the security model under con-
sideration. We will assume here the commonly used “honest-
but-curious” model. That is, we assume that the co-operating
parties are honest in the sense that they follow the algo-
rithms correctly, but they are curious and they will perform

additional operations in order to attempt to discover more
information than intended. The honest-but-curious assumption
has been widely used, and appears applicable here. Sensor
operators will benefit from participating honestly in such a
scheme without revealing their private information, and there
is no downside in participating honestly. Dishonest partners in
computation (partners who do not follow the algorithm) will
reduce their own benefits, without any obvious gain.

It is noteworthy that while we assume that participants
follow the algorithm correctly, we do allow collusion. Multiple
partners are allowed to collude to attempt to learn more
information than they otherwise could. The protocols we
present can be made resistant to such collusion in the presence
of a majority of non-colluding participants. Additionally, there
is now a substantial literature on PPDM (e.g.see [1]–[4], [8]–
[10] and the references therein), and this literature considers
many variations on the type of assumptions considered here.
It is therefore likely that the assumption of honest-but-curious
participants can be substantially weakened, though we leave
this as a topic for future research.

3. THE SOLUTION : PROBLEM 1

The problem amounts to a distributed summation (a summa-
tion over a distributed set of data points), for which approaches
are now well understood (see [4], [6] and the references
therein). There are at least three approaches to the problem
with varying degrees of efficiency and robustness to collusion.
We describe the simplest here for the purpose of exposition.
The problem is a special case of the problem of computing
V =

∑N
j=1 vj , where the individual valuesvj are kept by party

j, and considered to be secret. We can perform the distributed
summation as follows. Assume the valueV is known to lie in
the interval[0, n], wheren may be large. Start from a particular
party (we will denote this party 0), and list the other parties
in some order with labels1, 2, . . . , N − 1, then perform:

party 0: randomly generate R ∼ U(0, n)
party 0: compute s1 = v1 + R mod n
party 0: pass s1 to party 1
for i=1 to N-1

party i: compute si = si−1 + vi mod n
party i: pass si to party i + 1 mod N

endfor
party 0: compute V = sN−1 −R mod n
party 0: share V with other parties

Each partyi = 1, . . . , N − 1 has only the informationvi and
si−1, which can be written in full as

si = R +
i∑

j=1

vj mod n. (3)

Since this value is uniformly distributed across the interval
[0, n], party i learns nothing about the other valuesvj , j 6= i.
At the last step, party 1 hassN , and when it subtractsR away
it gets theV . Note that where we wish to allow computation of
quantities that may be negative, the condition thatV ∈ [0, n]
can be easily replaced byV ∈ [−n/2, n/2]. The algorithm



above requires only that we adjust the range of the initial sum
(i.e. in the second step party 1 takess1 = n/2 + v1 + R
mod n), and that in the last step party 1 reverses this addition
(i.e. vN = sN − n/2−R mod n ).

Given V any party can computeV − vi =
∑

j 6=i vi, and so
this approach only works forN > 2, and in reality, where one
could make meaningful guesses about some values, it is only
really secure for reasonable values ofN , and this is the case
we consider here. Other approaches can be applied to the case
N = 2, e.g., Yao’s two-party protocol [9], [10].

This incredibly simple process can, unfortunately, be cor-
rupted if parties collude. If partyl − 1 and partyl + 1 share
information, they can computevl by taking sl − sl−1 (sl is
received by partyl + 1, and sl−1 is sent by partyl − 1).
There are various approaches to avoid this issue, as well as
dealing with potentially unreliable partners in the summation,
for instance see [6] for more discussion.

Once we compute the sum, it is a simple matter to compute
the average of the location estimates, and distribute this value
to all parties.

Although the above approach hides some information —
the individual position estimates — the final result is that each
sensor learns a positional estimate, and so hiding the individual
data seems to make little sense. However, it is simple to adapt
this technique to the case where the sensors in question have
different characteristics,e.g., accuracy. It makes a lot more
sense for a sensor operator to wish to hide their sensor’s
characteristics from other operators. Consider the simple case
where each sensor’s estimate has covarianceSi = σ2

i I where
I is the identity matrix. We then compute a weighted mean

x̂ =
1∑N

i=1 wi

N∑

i=1

wix̂i, (4)

ŷ =
1∑N

i=1 wi

N∑

i=1

wiŷi, (5)

where the weightswi = 1/σ2
i . If an operator wants to

conceal the characteristics of his sensor, they would wish to
keep the weightswi secret. This is easily accomplished by
performing two SDSs (for each co-ordinate), one over the
weighted position, and the other over the weights themselves.

A. Tracking

Most sensor operators wish to go beyond simple localisation of
targets to track them. There are two approaches we could adopt
here: (i) pre-fusion tracking, and (ii) post-fusion tracking. In
approach (i) each operator tracks the targets, and them uses
SDSs to combine the track information (including inferred
velocities). In approach (ii) we combine location estimates,
and then track the target.

Let us perform a simple comparison of the two approaches.
We do so in the context of a simple Kalman filter,i.e., we use
a linear model for the target and measurements

st+1 = Fst + wt, (6)

zt = Hst + vt, (7)

where the statesT
n = [x, y, ẋ, ẏ] represents the target’s position

(x, y) and velocity(ẋ, ẏ), and

F =




1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1


 , H =

[
1 0 0 0
0 1 0 0

]
, (8)

and the process noisewt, and measurement noisevt have co-
variance matricesQ andR respectively. The standard Kalman
filter for obtaining and estimating the stateŝt at timet is given
by

ŝ−t+1 = F ŝt, (9)

P−t+1 = FPtF
T + Q, (10)

Kt+1 = P−t+1H
T (HP−t+1H

T + R)−1, (11)

ŝt+1 = ŝ−t+1 + Kt+1(zt+1 −Hŝ−t+1), (12)

Pt+1 = (I −Kt+1H)P−t+1. (13)

Note that we explicitly compute the covariance of the esti-
mates,Pt, at each time step. The covariance of each track
in the pre-tracking approach will be given byPt, and so the
final covariance (after combiningN such estimates) would
be Pt/N . The covariance of the post-track approach can be
derived by noting that the measurements would have noise
with covariance matrix reduced toR/N , and by using this
term in place ofR in (11) above.

Figure 1 showsPt(1, 1) for a simple case withQ = qI
for q = 0.001, R = rI for r = 0.01 and T = 0.1. The
figure shows that the pre-tracking approach outperforms the
post-track approach, which is intuitively obvious given we
are averaging the process and measurement noise in the pre-
tracking approach, but only the measurement noise in the post-
track approach.
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Fig. 1: An example variance estimate for thex co-ordinate forq = 0.001,
r = 0.01 andT = 0.1.

The work above follows by now standard and well known
tracking techniques. There are many standard extensions of
such, for instance, it is common to use extended Kalman filters
to deal with non-linearities in target motion, or measurements.



The above example is included for illustrative purposes, and
contains nothing new. However, there is one new issue that
arises in consideration of the privacy-preserving nature of
our approach. One must take additional care with PPDM
techniques when they are performed multiple times (as when
tracking). For instance, if the first party in the above computa-
tion used a different random variableR in each SDS, then the
second party could average over the series of measurements,
and hence form an estimate of the characteristics of the
first sensor’s measurements. Hence, in performing tracking, a
single random numberR needs to be used in successive SDSs.
On the other hand, given knowledge of a target’s position, one
can infer (over time) the value ofR, from predictions of target
position ŝ−t+1. OnceR is known to some degree of accuracy,
the security of the method is lost.

We can counter these particular attacks on the privacy of
the algorithm by using the same types of techniques used to
prevent collusion in SDSs. Collusion between partyl− 1 and
l+1 allows them to computevl by takingsl−sl−1. A simple
fix to this problem is provided in [4]: each partyi randomly
partitionsvi into M sharesvim such that

vi =
M∑

m=1

vim. (14)

Secure summation is then performedM times to calculate
the sum for each share individually, and the results added.
However, the summation order is permuted for each share so
that no party has the same neighbour twice. To computevi,
the neighbours ofi from every iteration would have to collude.
With M shares,2M colluding parties are therefore required
to violate security.

Randomly partitioning the measurements into shares before
averaging also avoids the issues involved with performing
tracking on a target. It avoids the problem that the final
estimate of position and each individual’s measurement of
position are directly related, and so we can use a different
randomisation each time the SDSs are performed, hence
removing the possibility of exploiting correlations over time
to infer more than we wish to reveal.

4. SOLUTION : PROBLEM 2

The previous problem is not particularly challenging, as we
can easily see how to apply SDSs to the problem. The second
problem involves computing a location estimate for a target
using range estimates from multiple parties who do not wish
to reveal the location of their sensor, or its characteristics. This
problem requires development of a new PPDM algorithm.

First, let us consider how we would solve this problem
where we can share data. We will write out the solution to
the problem in detail, in order to see how we can modify the
approach to allow for the case where we don’t wish to share
data. The measurement data may contain errors, and so we
use Minimum Mean Squared Error (MMSE) estimation of the

location of the target. Define

X̄ =
1
N

N∑

i=1

Xi, (15)

Ȳ =
1
N

N∑

i=1

Yi, (16)

σ2
X =

1
N

N∑

i=1

(Xi − X̄)2, (17)

σ2
Y =

1
N

N∑

i=1

(Yi − Ȳ )2, (18)

cXY =
1
N

N∑

i=1

(Xi − X̄)(Yi − Ȳ ), (19)

V̄ =
1
N

N∑

i=1

D2
i −X2

i − Y 2
i , (20)

where Di is the distance to the target as measured by the
ith sensor, and we also define the column vectorsx =
(X1, . . . , XN )T , y = (Y1, . . . , YN )T , and1 = (1, 1, . . . , 1)T .
Then the problem of estimating the location of the target can
be thought of as the problem of solving theN equations

Di =
√

(Xi − x̂)2 + (Yi − ŷ)2, i = 1, . . . , N. (21)

If we square the equations, and rearrange we get

D2
i −X2

i − Y 2
i = −2(Xix̂ + Yiŷ) + x̂2 + ŷ2. (22)

If we then sum the equations overi, and divide byN we
obtain the equation

V̄ = −2x̂X̄ − 2ŷȲ + x̂2 + ŷ2. (23)

Subtracting (22) from (23) for eachi we obtain the equations

vi = 2(Xi − X̄)x̂ + 2(Yi − Ȳ )ŷ, (24)

wherevi = V̄ +X2
i +Y 2

i −D2
i . We can rewrite the equations

(24) as
v = Aβ, (25)

where v and A = 2[x − 1X̄,y − 1Ȳ ] are known, and
we wish to calculateβ = [x̂, ŷ]T . However, note that there
may be errors inv, and so we seek a MMSE solution by
pre-multiplying the equation by the Moore-Penrose pseudo-
inverse,A+ = (AT A)−1AT so that

β =
(

x̂
ŷ

)
= (AT A)−1AT v. (26)

In the case where data can be shared, this is a standard solution
to the problem of localising a node.

Now, consider the problem where we do not wish to share
data. In particular, we do not wish to reveal(Xi, Yi, Di). It
should by now be clear that we can use SDS to computeX̄,
Ȳ , σ2

X , σ2
Y , cXY , and V̄ . Note also that

AT A = 4N

(
σ2

X cXY

cXY σ2
Y

)
(27)



and hence we can compute

(AT A)−1 =
1

4N(σ2
Xσ2

Y − c2
XY )

(
σ2

Y −cXY

−cXY σ2
X

)
.

(28)
Hence, once the secure summation has been used to compute
(15-20), all parties know(AT A)−1, however the rows ofA
are partitioned across all parties, and so we cannot directly
compute(AT A)−1AT . Instead, consider the computation of

AT v = 2

( ∑N
i=1 vi(Xi − X̄)∑N
i=1 vi(Yi − Ȳ )

)
. (29)

Both terms ofAT v may be computed once again using a SDS.
At this point, all parties know(AT A)−1 and AT v, and it is
therefore a trivial computation to determineβ from (26).

As before, the solution has been obtained without sharing
the individual data (such as sensor location) that the parties
wish to remain secret. Note that the computational complexity
of the approach is not much more than the computational
complexity of the normal calculation, and the communications
costs are still onlyO(N), though they may be larger than those
for the standard computation by a constant factor. However,
note that if the operation is to be performed multiple times,
such as in tracking an object, the quantities (15-19) need only
be computed once at the start of the co-operative effort (for
stationary sensors), and the only part that need be computed
at each subsequent time interval is (29). This only requires
two SDSs, which take only twice the communications of
distributing theDi, and so the communications cost over a
series of estimates is double that of the standard computation.
Also note that the accuracy of the estimate is identical to that
of the non-distributed estimate.

The generalisation of the method to the case where the
different sensors have different measurement accuracy can be
performed as before.

The method is not strictly privacy preserving, as some inter-
mediate information has leaked,i.e., (15-20). This information
would appear to be of little interest given a sufficient number
(at least three) of non-colluding participants, as it does not
reveal information about any individual sensor.

A. Tracking

Once again, we may consider the problem of tracking a
moving target. Post-fusion tracking is in principle easy —
we simply perform Kalman filtering on the position estimates.
However, there is still the issue of estimating the measurement
noise covariance. If each distance estimateDi is an unbiased
estimate of rangedi, with Gaussian errors of varianceσ2

i , then
we can compute the covariance of theβ given in (26) by

Cov(β) = A+Cov(v)A+T . (30)

Assuming that the errors from each sensor are independent
then Cov(v) will be approximately diagonal with the terms
along the diagonalν2

i given by

ν2
i = Var(vi) ' var(D2

i ) = 2σ2
i (σ2

i + 2d2
i ), (31)

for largeN and negligible errors in sensor positions. Note that
we don’t knowdi, but rather than usingDi, we may obtain a
more accurate estimate fromβ. Given that Cov(v) is diagonal

AT Cov(v)A =
N∑

i=1

(
(Xi − X̄)2ν2

i (Xi − X̄)(Yi − Ȳ )ν2
i

(Xi − X̄)(Yi − Ȳ )ν2
i (Yi − X̄)2ν2

i

)
.

(32)

We have already obtained(AT A)−1 from the process above,
and so we can now derive an estimate of the covariance of the
position estimate, again using a secure distributed summation
for each component ofAT Cov(v)A, and we can use this
covariance estimate in tracking without needing to share the
variance of the distance estimatesDi.

In the above approach there are three approximations: (i)
that Cov(v) will be approximately diagonal, (ii) that Var(vi) '
var(D2

i ) and (iii) that we can usêdi a distance estimate (based
on the position estimate(x̂, ŷ)) in place ofdi in the calculation
of covariance. We perform a simple simulation to test how
well the approximation works. In the simulations we generate
the target location andN sensor locations uniformly in the
unit square, and simulate distance measuresDi with mean
di and varianceσ2 = 0.1. We then perform the algorithm,
and estimate the covariance as well as measuring the squared
errors. We average both over 100,000 simulations to obtain
estimates of the average covariance of the estimates. The cross-
diagonal terms are close to zero, and so we focus on the
diagonal elements. Due to symmetry, we only need examine
the variance of thex co-ordinate estimate. Figure 2 shows
the variance given by the approximation above in comparison
to the empirical variance measured on the data. We can
see that the approximation converges to the measured value
as N increases, and that the approximation is reasonable
for N larger than around 7. Given the input scenario, the
measurement varianceσ = 0.1 is rather large (notice that
you also needN ≥ 7 before the variance of the estimates
becomes reasonably small), and so we also test a case with
much smaller input varianceσ = 0.001, and we find that the
approximation converges more quickly, as shown in Figure 3.

As noted above the quantities (15-19), and hence (28)
need only be computed once at the start of the co-operative
effort (for stationary sensors), and the only parts that need be
computed at each subsequent time interval are (29), and (32).
Hence at each time step we can use these covariances as the
measurement noise termRt (which we now make dependent
on time).

Pre-fusion tracking is much harder. We cannot track the
position of the target from range information alone, and so
each individual sensor cannot create a pre-fusion position
estimate. However, each operator could use successive range
estimates to form an estimate of radial velocities (using an
extended Kalman filter), and combine these (similarly to the
above) to form a Cartesian velocity estimates. We leave the
exact form of the tracking algorithm for future work.
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(a) Variance of thex co-ordinate measurement given variance
of distance measurements of0.1.
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(b) The absolute value of the relative difference between the
approximation and empirical measurements.

Fig. 2: A comparison of the approximate, and empirical variance estimates for localisation usingN sensors forσi = 0.1.
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(a) Variance of thex co-ordinate measurement given variance
of distance measurements of0.001.
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(b) The absolute value of the relative difference between the
approximation and empirical measurements.

Fig. 3: A comparison of the approximate, and empirical variance estimates for localisation usingN sensors forσi = 0.001.

5. CONCLUSION

In this paper we make use of a number of techniques from
the privacy preserving data mining literature to solve a novel
problem in sensor fusion, namely that of localisation of a
target using multiple sensors without revealing any particular
information about the sensors’ in question. In essence, we
perform data fusion without data fusion,i.e., we never bring
the data together in one place, or reveal private information to
other parties.
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