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Abstract are unable to share data for commercial or legislative reasons
S]e.g, privacy legislation). There are now multiple techniques

It is now .Wel_l known that data-fusion can improve detec_tlom the Privacy-Preserving Data Mining (PPDM) literature for
and localisation of targets. However, traditional data fusion

: . . . erforming data mining on such distributed databases [1]-[4],
requires the sharing of detailed data from multiple sources. @_[10] We can apply such techniques to the problem at hand
some cases, the various sources may not be willing to shar ) '

S : . . e shall consider two problems here. First we consider a

such detailed information. For instance, current allies may be ! : o
- : : . problem where each party has estimates of a target’s position.
willing to share some level of information, but only if theﬁ_

. . . pey then wish to combine this information to provide a better
can do so without revealing their secrets. We show here that,,. ) . . L .
._estimate of the target’s location without revealing information

at least for localisation and tracking of targets, data-fusion . . .
can be performed without the need to actually combine tﬁ‘bom their sensors. The approach we use seeure dis-
P y tﬁbuted summation(SDS). The accuracy of estimates is as

data in question, so that no party learns the information g . . .
. ood as if we were not concerned with security and computed
another. Such an approach would allow co-operation betwegn

) . e estimates directly, but each parties’ input information is
parties that share mutual interests, and yet do not complete .
. Lo . not revealed to the other parties. SDSs can also be used
trust each other. The particular application on which w

. A . Weor weighted averages where different sensors have different

concentrate is localisation and tracking of a target usin . .
. : ccuracy, and we can do so without revealing the accuracy of
multiple sensors (radars or sonars, or other devices). We shgw . ) AR
e sensors. We extend this work to consider tracking in this

that multiple sensors can be used to refine a target’s pOS't'o?]vironment, and although we can use a standard tracking

estimate, or even optam a p_osmon estimate where no Sm@t orithm (the Kalman filter), we are required to adapt the
sensor has enough information to do so (e.g., each has o . . i

. ) , . ; S to allow for the fact that we perform it multiple times
range information), without sharing the details of the sensor,

: o : A over the track.
such as its position, or accuracy of its estimates. . :
The second problem we consider is one where any one

sensor doesn’t have enough information (in itself) to localise
a target. The example we consider here is where each sensor
It is now a standard data-fusion problem to use multiplerovides range measurements. In itself, such information is
sensors to improve the localisation and subsequent trackingdequate to localise a target, but in combination with data
of targets. However, there may be cases where such @mm other sensors, one can provide good position estimates.
operation is limited by the nature of the parties who wislihis type of approach appears particularly relevant in the con-
to co-operate. For instance, consider several parties who wiskt of ad-hoc networks where we may wish to localise some
to be able to detect illegal fishing, drug smuggling, or terrorisesource on the network from purely passive measurements of
activities. They may use military radar in some cases to aid signal strength at a number of points [5], [7], and each node
such detection. They certainly would not want details of thein the network could be controlled by a separate party.
military radar to be unnecessarily revealed, even to currentThe contributions of this paper are the application of PPDM
allies, given that their relationship may change in the futurea a new problem which has not been seen before (to our
Hence we have a problem: how can we do data fusion, withdutowledge); and a new PPDM algorithm for computing the
fusing the data? location of a target from range estimates without sharing de-
In fact there are many similar problems: for instance thiled information about the positions of sensors. We consider
has been recently noted that medical information may leacking in both cases, but the tracking problems are rather
held in multiple databases, stored by different parties wistandard once the PPDM algorithms are designed, with the

1. INTRODUCTION



exception that some care must be taken in the design of PPRNUitional operations in order to attempt to discover more
algorithms when they are to be performed iteratively (such agormation than intended. The honest-but-curious assumption
in tracking) and we show how to do so, including showinbas been widely used, and appears applicable here. Sensor
how to compute the covariance of the measurements usingperators will benefit from participating honestly in such a
PPDM approach. scheme without revealing their private information, and there
is no downside in participating honestly. Dishonest partners in
computation (partners who do not follow the algorithm) will

A. Problem 1 reduce their own benefits, without any obvious gain.

We first consider a simple problem wheré parties each It is noteworthy that while we assume that participants
use (potentially multiple) sensors to create an estimate of #eglow the algorithm correctly, we do allow collusion. Multiple
position of a single target. We denote the position of the targedtners are allowed to collude to attempt to learn more
by (z, y) (relative to some arbitrarily chosen, but agreed pointj)formation than they otherwise could. The protocols we
and the estimate from partyby (Z;, ;). We assume that the present can be made resistant to such collusion in the presence
position estimate has negligible bias and that the errors Gha@ majority of non-colluding participants. Additionally, there
position have covariance matri%;. Given constant variance IS Now a substantial literature on PPDRL]. see [1]-{4], [8]-

S; = S, we might improve our estimate of the position of thé10] and the references therein), and this literature considers
target by taking many variations on the type of assumptions considered here.

It is therefore likely that the assumption of honest-but-curious
1 participants can be substantially weakened, though we leave
@ this as a topic for future research.

2. PROBLEMS AND ASSUMPTIONS
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3. THE SOLUTION : PROBLEM 1
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The problem amounts to a distributed summation (a summa-

) tion over a distributed set of data points), for which approaches
The natural approach to computing the sum would be for eag(%e now well understood (see [4], [6] and the references

pharty in thi.measuremhent to Ipool Ivalues and thlen COMPWRrein). There are at least three approaches to the problem
the sum. This approach reveals at least some values to Ofjgf, \ arving degrees of efficiency and robustness to collusion.

parties. An alternative would be to use a trusted third party e describe the simplest here for the purpose of exposition.

pool the results, and hence keep them secret. However rusigd 1 plem is a special case of the problem of computing

third parties are not easy to find. V= Zjvzl v;, where the individual values; are kept by party

We typically wish to extend the problem to the case where 4 sonsidered to be secret. We can perform the distributed
S; varies between sensors, at which point we have to all

. . Zsummation as follows. Assume the valueis known to lie in
weighted means to be computed. However, the parties in {9 jytervall0, n], wheren may be large. Start from a particular
computation may not wish to reveal their value 8f as

hi s i i . hei hparty (we will denote this party 0), and list the other parties
this reveals important information about their sensor. AnoF some order with labels, 2, ..., N — 1, then perform:
extension of the problem occurs when we have multiple

K3

measurements over time, and we wish to track the target. party 0: randomly generate R~U(0,n)
party O: compute sy =wv1+ R modn

B. Problem 2 party O: pass s1 to party 1

In the second problem we allow th¥ parties to make only for i=1 to N-1

range estimates. The combination of two such estimates is Party I: compute Si = Si—1 +v; modn

enough to localise the target to two possible points, and Party I pass si o party  i+1 mod N

three or more such measurements are capable of deducing tRBdfor

position uniquely (with some rare exceptions). It is noteworthy,Party 0: compute  V =sy_; — R mod n

however, that when the measurements contain errors, tHerty O: share V- with other parties
measurements may be inconsistent, resulting in a problgmch partyi = 1,..., N — 1 has only the information; and
in estimating the target's position precisely. We denote range ,, which can be written in full as

estimates from party by D; (which is an unbiased estimate

of the true rangel;), and the position of the sensor of paity _ :
by (X;,Y;). s; =R+ Zvj mod n. 3)

j=1

C. Assumptions Since this value is uniformly distributed across the interval

In any PPDM we must define the security model under cof®, »], party i learns nothing about the other values j # i.
sideration. We will assume here the commonly used “honesgtt the last step, party 1 hasy, and when it subtract® away
but-curious” model. That is, we assume that the co-operatiiigjets thel/. Note that where we wish to allow computation of
parties are honest in the sense that they follow the algguantities that may be negative, the condition that [0, n]
rithms correctly, but they are curious and they will perforncan be easily replaced by € [-n/2,n/2]. The algorithm



above requires only that we adjust the range of the initial suwhere the state? = [z, y, 7, 9] represents the target’s position
(i.e. in the second step party 1 takes = n/2 +v; + R (z,y) and velocity(z,y), and
mod n), and that in the last step party 1 reverses this addition

[

T
0
1
0

(i.e.oy =sy —n/2—R mod n). (1) (1) :(; 100 0
Given V' any party can computé —v; = Z#i v;, and so F= 0 0 E H = [ 010 0 } , (8)
this approach only works fav > 2, and in reality, where one 0 0 1

could make meaningful guesses about some values, it is only

really secure for reasonable values/éf and this is the case and the process noise,, and measurement noisg have co-

we consider here. Other approaches can be applied to the aaséance matrice§) and R respectively. The standard Kalman

N =2, e.g, Yao’s two-party protocol [9], [10]. filter for obtaining and estimating the stateat timet is given
This incredibly simple process can, unfortunately, be coby

rupted if parties collude. If party— 1 and partyl + 1 share

information, they can compute, by takings; — s;—1 (s; is Sip1 = Fse, ©)

received by partyl + 1, and s;_; is sent by partyl — 1). PL, = FPF"+Q, (10)

There are various approaches to avoid this issue, as well as Kiw = P HY(HPL,HT +R)™, (11)

dealing with potentially unreliable partners in the summation, . e e

for instance see [6] for more discussion. See1 = S+ Kea(zea — HS ), (12)
Once we compute the sum, it is a simple matter to compute Py = (- K H)Py. (13)

the average of the location estimates, and distribute this valygie that we explicitly compute the covariance of the esti-

to all parties. , , _ mates, P, at each time step. The covariance of each track
Although the above approach hides some information 45 he pre-tracking approach will be given by, and so the

the individual position estimates — the final result is that eagl 5| covariance (after combiningy such estimates) would
sensor learns a positional estimate, and so hiding the individygal P,/N. The covariance of the post-track approach can be
data seems to make little sense. However, it is simple to adggti,eq by noting that the measurements would have noise

this technique to the case where the sensors in question hawe ,variance matrix reduced /N, and by using this
different characteristicse.g, accuracy. It makes a lot moreiarm in place ofR in (11) above. '

sense for a sensor operator to wish to hide their sensor’q;igure 1 showsP,(1, 1) for a simple case withQ = ¢I
characteristics from other operators. Consider the simple C35f 4 — 0.001, R — T’I for r — 0.01 andT = 0.1. The

), H H 2
where each sensor's estimate has covariafice o1 where o e shows that the pre-tracking approach outperforms the
I'is the identity matrix. We then compute a weighted mean, ot track approach, which is intuitively obvious given we

1 N are averaging the process and measurement noise in the pre-
T = = Z W T, (4) tracking approach, but only the measurement noise in the post-
i=1 Wi j=1 track approach.
1 N
g = Nizwigh ) x10°
Dim Wi i 1.2 —‘pre—track
where the weightsw; = 1/0?. If an operator wants to ~~ post-track|
conceal the characteristics of his sensor, they would wish to
keep the weightav; secret. This is easily accomplished by
performing two SDSs (for each co-ordinate), one over the 0.8
weighted position, and the other over the weights themselves. § ”””””””””””””””
8 0.6
A. Tracking g
Most sensor operators wish to go beyond simple localisation of ~ 0.4f
targets to track them. There are two approaches we could adog
here: (i) pre-fusion tracking, and (ii) post-fusion tracking. In 0.2f
approach (i) each operator tracks the targets, and them use
SDSs to combine the track information (including inferred 0 ‘ ‘ ‘ ‘
0 20 40 60 80 100

velocities). In approach (ii) we combine location estimates, ¢

and then track the ta_‘rget' . Fig. 1. An example variance estimate for theco-ordinate forg = 0.001,
Let us perform a simple comparison of the two approaches= 0.01 andT = 0.1.

We do so in the context of a simple Kalman filtee., we use

a linear model for the target and measurements The work above follows by now standard and well known
tracking techniques. There are many standard extensions of
st1 = Esp+wy, (6)  such, for instance, it is common to use extended Kalman filters

ze = Hsy+wy, (7) to deal with non-linearities in target motion, or measurements.



The above example is included for illustrative purposes, atatation of the target. Define
contains nothing new. However, there is one new issue that

N
arises in consideration of the privqc_y-preserving .nature of X = iZXi, (15)
our approach. One must take additional care with PPDM N~
techniques when they are performed multiple times (as when N
tracking). For instance, if the first party in the above computa- Vv = 1 Z Y;, (16)
tion used a different random variahlein each SDS, then the N i—1
second party could average over the series of measurements, 1 N
and hence form an estimate of the characteristics of the o = —Z(XZ-—X )2 (17)
first sensor's measurements. Hence, in performing tracking, a N i=1
single random numbeR needs to be used in successive SDSs. 1 XN -
On the other hand, given knowledge of a target’s position, one oy = N Z(Yi -Y)?, (18)
can infer (over time) the value d?, from predictions of target i=1
position s, ;. Once R is known to some degree of accuracy, 1 & _ _
the security of the method is lost. exy = 52 (Xi-X)Yi-Y), (19)
We can counter these particular attacks on the privacy of =1
the algorithm by using the same types of techniques used to - 1 9 9 9
prevent collusion in SDSs. Collusion between pdrty1l and Vo= N ;Di - XY (20)

[+1 allows them to compute; by takings; —s;—1. A simple

fix to this problem is provided in [4]: each paryrandomly where D; is the distance to the target as measured by the
partitionsw; into M sharesy;,, such that ith sensor, and we also define the column vecters=

(X1,..., X0, y=(,...,Yy)T, and1 = (1,1,...,1)T.
M Then the problem of estimating the location of the target can
v; = Z Vim.- (14) be thought of as the problem of solving thé equations
m=1

Di=+(X; -2+ Yi—9)?2 i=1,....,N. (21)
Secure summation is then performé@d times to calculate |¢,ye square the equations, and rearrange we get
the sum for each share individually, and the results added.
However, the summation order is permuted for each share so D} — X7 — Y? = —2(X;3 + Y;§) + 2* + 9% (22)
that no party has the same neighbour twice. To compte
the neighbours of from every iteration would have to collude.
With M shares2M colluding parties are therefore requireaO
to violate security. V =—-2iX — 29V + &% + 4> (23)

Randomly partitioning the measurements into shares befqre . : :

averaging also avoids the issues involved with performir(%ljbtracung (22) from (23) for eachwe obtain the equations
tracking on a target. It avoids the problem that the final v =2(X; — X)2 4+ 2(Y; - V)3, (24)

estimate of position and each individual's measurement of _ ) ) ) ) )
position are directly related, and so we can use a differeffferevi =V + X7 +Y;” — D7. We can rewrite the equations

If we then sum the equations oveér and divide by N we
btain the equation

randomisation each time the SDSs are performed, heri¢d) as
removing the possibility of exploiting correlations over time v = Ap, (25)
to infer more than we wish to reveal. where v and A = 2[x — 1X,y — 1Y] are known, and
we wish to calculate3 = [#,9]”7. However, note that there
4. SOLUTION : PROBLEM 2 may be errors inv, and so we seek a MMSE solution by

pre-multiplying the equation by the Moore-Penrose pseudo-

The previous problem is not particularly challenging, as wBverse,A™ = (A7A)~1A" so that

can easily see how to apply SDSs to the problem. The second 5
y pply p _ ( ;: ) (AT A)1 ATy (26)

problem involves computing a location estimate for a target p=

using range estimates from multiple parties who do not wish h here d be shared. this | dard soluti
to reveal the location of their sensor, or its characteristics. T Rt he casc;lw eri | atal'cian es 3re » this Is a standard solution
problem requires development of a new PPDM algorithm. © the problem of localising a node. ,

. . . Now, consider the problem where we do not wish to share
First, let us consider how we would solve this problena

where we can share data. We will write out the solution G2t In particular, we do not wish to reve@t;, ¥;, D;). It
) S .. should by now be clear that we can use SDS to compiite
the problem in detail, in order to see how we can modify th; 02 o2 ¢ and V. Note also that
approach to allow for the case where we don’t wish to share X' Y “XY '
ta. The m rement data m ntain errors, an w 2
data. The measurement data may contain errors, and so we ATA:4N<O'X 0)2(1/) 27)

use Minimum Mean Squared Error (MMSE) estimation of the cxy Oy



and hence we can compute for large NV and negligible errors in sensor positions. Note that
we don't knowd;, but rather than usin@;, we may obtain a

2
(ATA)"L = 5 ; 5 Ty Y. more accurate estimate froth Given that Coyv) is diagonal
AN (0% 0y —cky) \ —Cxy Ox 28
T —
Hence, once the secure summation has been used to comﬁhtgov(V)A -
(15-20), all parties know( AT A)~1, however the rows ofd N (X, — X)202 (X; — X)(Y; — V)2
are partitioned across all parties, and so we cannot directly Z (X; — X)(Y; = YV)Ww? (Y, — X)%? :

compute(AT A)~t AT Instead, consider the computation of =1

T Y vi(Xi — X)
Alv=2 ZLJ_V wu(Y,—v) ) (29)  we have already obtained1” 4)~! from the process above,
N and so we can now derive an estimate of the covariance of the
Both terms ofA”v may be computed once again using a SDPOsition estimate, again using a secure distributed summation
At this point, all parties know AT A)~! and ATv, and it is for each component ofA”Cov(v)A, and we can use this
therefore a trivial computation to determigefrom (26). covariance estimate in tracking without needing to share the
As before, the solution has been obtained without sharigriance of the distance estimatbs.
the individual data (such as sensor location) that the partiedn the above approach there are three approximations: (i)
wish to remain secret. Note that the computational complexitiyat Co\v) will be approximately diagonal, (i) that Vér;) ~
of the approach is not much more than the computationadr(D?) and (iii) that we can usé; a distance estimate (based
complexity of the normal calculation, and the communicatioran the position estimatgz, 7)) in place ofd; in the calculation
costs are still onlyO (), though they may be larger than thosef covariance. We perform a simple simulation to test how
for the standard computation by a constant factor. Howevarell the approximation works. In the simulations we generate
note that if the operation is to be performed multiple timeghe target location andv sensor locations uniformly in the
such as in tracking an object, the quantities (15-19) need onigit square, and simulate distance measutgswith mean
be computed once at the start of the co-operative effort (fdy and variances? = 0.1. We then perform the algorithm,
stationary sensors), and the only part that need be compuded estimate the covariance as well as measuring the squared
at each subsequent time interval is (29). This only requiresrors. We average both over 100,000 simulations to obtain
two SDSs, which take only twice the communications afstimates of the average covariance of the estimates. The cross-
distributing the D;, and so the communications cost over diagonal terms are close to zero, and so we focus on the
series of estimates is double that of the standard computatidimgonal elements. Due to symmetry, we only need examine
Also note that the accuracy of the estimate is identical to thie variance of ther co-ordinate estimate. Figure 2 shows
of the non-distributed estimate. the variance given by the approximation above in comparison
The generalisation of the method to the case where ttee the empirical variance measured on the data. We can
different sensors have different measurement accuracy carsbe that the approximation converges to the measured value
performed as before. as N increases, and that the approximation is reasonable
The method is not strictly privacy preserving, as some inteier N larger than around 7. Given the input scenario, the
mediate information has leakeicg., (15-20). This information measurement variance = 0.1 is rather large (notice that
would appear to be of little interest given a sufficient numberou also needV > 7 before the variance of the estimates
(at least three) of non-colluding participants, as it does nbecomes reasonably small), and so we also test a case with

reveal information about any individual sensor. much smaller input variance = 0.001, and we find that the
_ approximation converges more quickly, as shown in Figure 3.
A. Tracking As noted above the quantities (15-19), and hence (28)

Once again, we may consider the problem of tracking reed only be computed once at the start of the co-operative
moving target. Post-fusion tracking is in principle easy —effort (for stationary sensors), and the only parts that need be
we simply perform Kalman filtering on the position estimatesomputed at each subsequent time interval are (29), and (32).
However, there is still the issue of estimating the measuremétgnce at each time step we can use these covariances as the
noise covariance. If each distance estimAteis an unbiased measurement noise terd®, (which we now make dependent
estimate of rangé;, with Gaussian errors of varianeg, then on time).
we can compute the covariance of thegiven in (26) by Pre-fusion tracking is much harder. We cannot track the
osition of the target from range information alone, and so
Cov(f) = ATCov(v)A™™. (30) gach individual segnsor cannotgcreate a pre-fusion position

Assuming that the errors from each sensor are independgRfmate. However, each operator could use successive range

then Coyv) will be approximately diagonal with the termsestimates to form an estimate of radial velocities (using an
along the diagonal? given by extended Kalman filter), and combine these (similarly to the
7

above) to form a Cartesian velocity estimates. We leave the
v? = Var(v;) ~ var(D?) = 202(0? 4+ 2d?),  (31) exact form of the tracking algorithm for future work.
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(b) The absolute value of the relative difference between the
approximation and empirical measurements.

Fig. 2: A comparison of the approximate, and empirical variance estimates for localisation Nissegsors forr; = 0.1.
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Fig. 3: A comparison of the approximate, and empirical variance estimates for localisationNissemsors forr; = 0.001.

5. CONCLUSION
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the privacy preserving data mining literature to solve a novel
problem in sensor fusion, namely that of localisation of 35
target using multiple sensors without revealing any particular
information about the sensors’ in question. In essence, weél

perform data fusion without data fusione. we never bring
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