This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2974727, IEEE

Transactions on Dependable and Secure Computing

Verifiable Policy-Defined Networking using
Metagraphs

Dinesha Ranathunga, Member, IEEE, Matthew Roughan, Fellow, IEEE, and Hung Nguyen, Member, IEEE

Abstract—Reliable network-policy specification requires ab-
stractions that can naturally model policies together with rigorous
formal foundations to reason about these policies. Current spec-
ifications satisfy one of these requirements or the other, but not
both. A Metagraph is a generalized graph theoretic structure that
overcomes this limitation. They are a natural way of expressing
high-level end-to-end network policies. The rich formal foun-
dations provided by metagraph algebra help analyze important
network-policy properties such as reachability, redundancy and
consistency. These features make metagraphs a clear choice for
modeling and reasoning about policies in Formally-Verifiable
Policy-Defined Networking (FV-PDN): a network-programming
paradigm which has verifiability built-in. In this paper, we
demonstrate the use of metagraphs in policy specification by
modeling and analyzing real policies from a large university
network. We show their benefit in FV-PDN by developing a
prototype solution which automatically refines metagraph-based
high-level policies to device configurations and deploys them to
a SDN-based emulated network.

Index Terms—Network autoconfiguration, Provable network
security, Policy metagraph, Policy defined networking

I. INTRODUCTION

A graph is a central concept in the design of networks
and many information-processing systems such as decision-
support systems. It is also an important concept in designing
communication-network polices. In fact, network admins often
design policies by drawing graph diagrams on whiteboards.
However, simple graphs commonly associate individual infor-
mation elements and not sets of elements. Sets of elements
(i.e., Endpoint Groups (EPGs)) such as users and IP addresses
are often the basis for defining real network-policies [37].

A metagraph is a generalized graph theoretic structure that
overcomes the limitations of simple graphs. A metagraph is
a directed graph between a collection of sets of ‘atomic’
elements [6]. Each set is a node in the graph and each directed
edge represents the relationship between the sets. Figure 1(a)
shows an example where a set of users (U7) are related to sets
of network resources (R;, Rs, R3) by the edges e;, e and e
describing which user u; is allowed to access resource 7.

The mathematical operations defined on a metagraph go
beyond standard graph operators and help analyze properties
such as reachability and consistency. For example, an opera-
tion unique to metagraphs is a projection which is a simplified
metagraph that highlights particular aspects of the original [6].

In a complex metagraph with many edges, a projection
helps visualize the important aspects. For instance, consider
the projection over the subset of elements X = {uy, ug, 74} of
the metagraph in Figure 1(a) shown in Figure 1(b). It consists
of one edge describing reachability between this subset of
elements. No elements outside of X appear in the projection.

Of the many related works in Policy Defined Networking
(PDN) [4], [5], [49], [53], most (e.g., NetKAT [4] Firmato [5])

(a) Metagraph consisting of four sets and three edges.

U R,

(b) Projection of (a).

Fig. 1: A Metagraph example and its projection over the subset
of elements X = {u1, ua,r4}. The projected edge ¢’ represents
reachability between the subset of elements.

operate at the network level; i.e., they intertwine policy with
network implementation details. Their users hence, require to
specify minute details (e.g., device IP or MAC addresses) with
policy which often leads to error-prone policy specification.

We overcome the problem by using metagraphs to decouple
policy from the underlying physical infrastructure. This sepa-
ration of policy from network minutiae (a) helps express high-
level, end-to-end network policies without concerning about
the topology or other implementation-specific intricacies; and
(b) keeps the complexity of the resultant policies low, relative
to the base network-device configurations.

Of the many tools available for policy specification [5], [22],
[24], [49], most lack mathematical rigor and the ability to
prove policy properties. This lack of verifiability (a) hinders
the detection of policy inconsistencies such as conflicts, lead-
ing to vendor-dependent policy behavior; and (b) prevents pro-
viding assurance that a specified policy delivers the expected
outcome pre- and post-deployment. Our work fills these gaps.

Our solution uses metagraphs and PDN to enable high-level
policies (e.g., using concepts like user/resource groups), and
we model these policies using formal constructs to enable
a rigorous verification framework. The formalisms allow us
to reason about the policies - e.g., is the policy consistent?
Once the policies are provably safe, they can be mapped to
OpenFlow or traditional Cisco/Juniper/Huawei switches alike
using our system’s built in policy refinement capabilities.

We demonstrate our system’s use in specifying and checking
policies by extracting and modeling real network policies
from a large university IT network. The network consists

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:22:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2974727, IEEE

Transactions on Dependable and Secure Computing

of over 30,000 users (students and staff), 43 logical zones
ranging in complexity from several IP addresses to over 450
noncontiguous subnets (over 200K IP addresses) and hundreds
of switches and routers. The network also encompasses five
campuses and nine remote sites and includes many intercon-
nections, for instance, to hospital networks and data center
networks. Our study covers a diverse policy set including
access-control, QoS, intrusion-detection and reporting policies.

Our case study finds policy inconsistencies (e.g., conflicts),
that current network-management tools left undetected. We
raised these findings with the university’s network operations
team, to verify and fix problems. In addition, we resolve
these inconsistencies automatically and deploy the validated
policies to a SDN-based emulated network using Mininet.
Automated, pathological-traffic based tests conducted in this
emulated network provide university network administrators
assurance of expected policy behavior prior to deployment.

The contributions of our paper are as follows: we first
demonstrate how metagraphs are a useful graphical tool
for specifying high-level network policies. Secondly, we use
metagraph algebras; a matrix algebra defined over metagraph
elements and edges, to check policy consistency. Using these
algebras, we detect conflicts and redundancies across multiple
policy domains such as QoS and intrusion detection. In doing
so, we show how these algebras enable a generalized frame-
work for detecting policy inconsistencies. Finally we apply our
framework to a large university network consisting of a rich
policy set to demonstrate how useful this tool metagraphs is
in describing and verifying network policies.

II. BACKGROUND AND RELATED WORK
“Everyone knows that debugging is twice as hard as
writing a program in the first place. So if you’re as
clever as you can be when you write it, how will you
ever debug it?”

Brian Kernighan [23]

Past network configuration studies have revealed policy
inconsistencies such as conflicts to be a common occurrence
[16], [27], [42], [54]. The introductory quote is part of the
reason. Current network-policy specifications have evolved by
adding features and complexity. But in making configuration
cleverer, they have made debugging more difficult.

Inability to debug policy conflicts, leads to unintended
consequences. For instance, in a network-security context,
such inconsistencies can create an illusion of security and
lead to network admins leaving unpatched systems behind
their firewalls, confident in the blanket of protection provided.
Consequences will only be revealed at runtime (e.g., users
unexpectedly lose connectivity or security holes are exploited).

Policy-based network management (PBNM) [7], [8], [48],
[51], [53] is a well-known approach that allows top-down
configuration where device configurations are derived from
high-level policies. Policies are intended to capture how a
user wants the network to behave. Through a number of policy
refinement steps, these policies are translated (automatically or
semi-automatically) to device configurations [7], [53]. There
have been more then two decades of research in PBNM with
diverse proposals on specification languages [1], [12], [28],

[34], [47], conflicts resolution [29], refinement [7], [48] and
intents for PBNM. A comprehensive resource for general ideas
and solutions for PBNM can be found in [51].

These ideas are recently reinvigorated with the advance of
the software defined networking paradigm that uses software
to instantaneously and automatically change device behaviors
depending on the current status of the network - providing
tightly integrated automation and fine-grained control. Re-
search in PDN within an SDN context addresses the questions
of policy languages [4], [15], [43], conflicts resolution and re-
finement [22], [24], [37], [46] and covers issues unique to large
scale SDN networks such as policy authoring [31], adaptive
policy attack mitigation [44] and hierarchical policies [14].

Lupu et al.’s classification of conflicts into modality conflicts
and application-specific conflicts [29] resonates close to our
work. Modality conflicts arise when two or more policies
which refer to the same subjects have opposite modalities
(e.g., access control actions). Application specific conflicts
refer to the consistency of the policy contents and external
criteria, e.g., the same manager cannot authorize payments
and sign the payment cheques. Lupu models these policies
using predicates and translates them into assertions in Prolog
to detect conflicts. In contrast, we detect modality conflicts
using a rigorous formal framework; we use metagraphs to
model network policies and leverage metagraph algebras to
precisely check properties such as consistency.

The SDN data-plane verification approach proposed in [22]
works offline and has been applied to operational networks and
multiple real-world bugs were uncovered. Our method offers
more flexibility; it can verify device configurations from SDN
and traditional networks alike. This flexibility allows to detect
device misconfiguration in, for instance, critical infrastructure
networks which typically employ legacy equipment which
cannot be easily upgraded due to high availability demands.

Related to the work on formal models for network config-
uration is the work on routing algebra, especially metarout-
ing [17], [18] that allows a high-level declarative language
to specify routing protocols so that implementations can be
generated automatically. Both metarouting and our metagraph
policy model address the generation of network device con-
figurations from high-level policies but in different domains.

Our work complements the existing efforts in PBNM and
SDN by providing a novel formal model that can be used to
make sure that (a) policy to be formally verified as error-free
prior to deployment; and (b) assurance that the expected policy
outcome pre- and post-deployment are consistent.

The rich formal foundations readily supported by meta-
graphs combined with their ability to describe high-level
policies make them a clear choice for modeling and reasoning
about policies in FV-PDN. The formal structure of a metagraph
can be defined as follows:

Definition 1 (Metagraph). A metagraph S=(X,E) is a
graphical construct specified by a generating set X and an
edge set F defined on a set of subsets of X. A generating
set is a set of variables X = {x1, 22, ,Tn} and an edge
e € E is a pair e=(Vo,W,) such that V, C X is the invertex
and W, C X is the outvertex.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:22:12 UTC from IEEE Xplore. Restrictions apply.

Transactions on Dependable and Secure Computing

TABLE I: Comparison table of the different network policy analysis approaches. In the supported features, slicing refers to
the ability to partition a network into independently programmable segments to ensure traffic isolation between them [19].
Ordering is the ability to compose policies sequentially, Inconsistencies refer to policy conflicts and redundancies (FDD-
Firewall Decision Diagram, DFD- Diverse Firewall Design, FPA- Firewall Policy Advisor).

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2974727, IEEE

Approach Underlying Analysis Supported ~ features
abstraction method
Verify Verify Verify Pre- Easy SDN Traditional
consistency reachability traffic deployment policy support networks
isolation verification visualization
FPA [2] tree heuristic conflict detection v X X X X X v
DFD [27] FDD heuristic policy composition v X X X X X 4
VeriFlow [24] graph heuristic policy verification v 4 v X v v X
Header Space [22] graph heuristic policy verification v v v X v X v
NetIDE [46] graph heuristic policy composition v X X X X v v
Frenetic [15] one big switch parallel composition v X v X X v X
operator
Pyretic [43] one big switch sequential and parallel v X v X X v X
composition operators
NetKAT [4] one big switch ~ KAT algebras, sequential and v 4 v X X 4 X
parallel composition operators
PGA [37] graph heuristic policy composition v v v X v v X
PDN metagraph metagraph algebras v v v v v v v

This definition is similar to that of a directed hypergraph,
but in addition metagraphs have several useful operators and
properties. One in particular is the notion of a metapath [6]
which describes connectivity between sets of elements in a
metagraph, but is somewhat different from a path in a graph.

Definition 2 (Metapath). A metapath from source B C X to
target C C X in a metagraph S=(X, E) is an edge set F’ s.t.
every ¢ € E' is on a path from an element in B to an element

in C. In addition |, Ve\U, Wer] € B and C C |, Wer.

Reachability between a source and a target metagraph node
is described by valid metapaths between the two [6] (e.g., the
metapath from {uy,us} to {ry4} in Figure 1(b) is {e1, ez, e3}).

Metagraphs have a property called dominance which allows
determination of redundant components (edges or elements)
[6]. A metapath is input-dominant if no proper subset of its
source connects to the target; edge-dominant if no proper sub-
set of its edges is also a metapath from the source to the target;
and dominant if it is both input- and edge-dominant [6]. Non-
dominant metapaths indicate redundancies in a metagraph and
hence, redundancies in the policies depicted by the metagraph.

In metagraph theory, the notion of cutsets and bridges allow
one to locate edges that are critical [6]. A cutset is a set of
edges which if removed, eliminates all metapaths between a
given source and a target. A singleton cutset is a bridge. In an
access-control policy context for instance, bridges and cutsets
indicate if there exists a critical policy or a policy set that
enable access between certain users and resources.

Table 1 summarizes several popular network-policy specifi-
cation and analysis approaches. We concentrate here on the re-
cent efforts in SDN and refer the traditional PBNM approaches
to [51]. SDN languages such as Pyretic [43] and NetKAT
[4] enable modular specification of network-wide policies.
NetKAT additionally supports formal foundations to reason
about these policies rigorously. However, the underlying “one
big switch” abstraction does not yield a natural policy repre-
sentation. This shortfall hinders ease of policy visualization,

particularly when policies become complex (which is typical
in a large distributed network). Being SDN specific, these
languages also cannot help manage traditional networks.

In contrast, our approach using metagraphs, delivers a
natural policy representation that users can easily visualize.
When policies become complex, a metagraph projection offers
a precise, simplified view of the important policy aspects.
Metagraph algebras also provide formalisms to detect poten-
tially conflicting sets of policies. The users only need to apply
domain specific knowledge (e.g., criteria for an access-control
policy conflict) to these subsets to detect actual conflicts.

Table 1 also shows how related works (e.g., PGA [37],
VeriFlow [24], Header Space Analysis [22]) also use graph
based abstractions for specifying and analyzing network poli-
cies. PGA for instance, employs graphs as building blocks
to specify access-control and service-chain policies [37]. The
approach defines a new type of policy composition to capture
the joint intent of two policies. However, the set of validations
in PGA are limited to the type of checks that are implemented
on the graph. For instance, in PGA is it difficult to determine
reachability between two sets of endpoint elements when those
elements are distributed across multiple EPGs.

A metagraph’s metapath operation trivializes this compu-
tation. Our use of a generalized policy-graph model also
encapsulates such previous models. For instance, like PGA,
our system can create modular, abstract policies and compose
them, but in addition, metagraph algebras allow to formally
reason about policies- e.g., is the policy consistent? can
endpoint group A communicate with group B using HTTP?

VeriFlow [24] and Header Space Analysis [22] uses graph-
based abstractions to model information about network topol-
ogy and forwarding policies. These systems allow to check
for network variants violations (e.g., no forwarding loops).
But, due to the naturally overlapping nature of policy EPGs,
a graph-based representation requires tracking EPG overlaps
to conduct such checks accurately. Metagraphs remove this
burden by handling EPG overlaps automatically.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:22:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2974727, IEEE

Transactions on Dependable and Secure Computing

Related works have also investigated the detection of con-
flicts in firewall access-control policies in traditional networks
(e.g., FPA [3] and DFD [27]). FPA represents access-control
rules using a single-rooted tree structure and defines algo-
rithms over this policy tree to identify intra- and inter-device
conflicts. The method yields a firewall configuration tool that
allows network admins to create and edit firewall policies
correctly. We go beyond simple firewall access-control policies
and detect conflicts in more complex anti-malware and URL-
filtering policies as well as QoS and reporting policies.

Despite the use of abstractions for programming network
policies, many related works [4], [5], [49] still tightly cou-
ple policy to network-minutiae such as device IP or MAC
addresses. The resulting policies are as complex as the base
network-device configurations. Our use of metagraphs allows
us to describe high-level policies decoupled from the underly-
ing physical infrastructure. The approach reduces the burden
on network admins in crafting and implementing policies.

In our past work, we have used metagraphs to model
IoT device Manufacturer Usage Description (MUD) policies
[20]. MUD is an IETF proposal which pushes IoT vendors
to develop formal specification of the intended purpose of
their IoT devices so that their network behavior can be
locked down and verified rigorously. In that work, we checked
MUD policies against an organization’s local security policy
for compliance using metagraphs. Understanding where in a
company’s network, an [oT device can safely be installed helps
to ensure the network is not exposed to cyber attacks. In
comparison, our work here uses metagraphs to model more
complex network policies from multiple domains (e.g., QoS,
intrusion detection) and check their underlying properties.

In order to demonstrate the advantages of metagraphs we
use them, in the next section, to model a real network’s policy.

III. PoLICY EXTRACTION

Network-device configurations can be long and complex;
e.g., one switch configuration in our case study has 5043 lines.
So, we built an automated Parser (Figure 2) with details below:

Switch Config: A layer-3 switch configuration text-file con-
taining Virtual Routing and Forwarding (VRF) instance de-
tails. A VRF instance is a logical zone used by administrators
to keep users separate on common infrastructure [10].
Firewall Config: An input firewall configuration text-file con-
taining interface configurations and VRF-Zone based (high-
level) policy rules. For instance, the case study network we
discuss in Section VI includes firewalls with Access Control
Lists (ACLs), Quality of Service (QoS) rules, Intrusion De-
tection and Prevention (IDP) rules and reporting rules.
Route-Table Data: The route-table details from a network
router provided as an input text file describing next-hop and
outgoing-interface details.

Interface and Route Processing: The processing of firewall-
interface configurations and route-table data to extract inter-
face names and IP addresses reachable from them. The step
allows construction of an IP address map for the VRF zones,
so high-level policy rules can be refined down to network level.

Route-Table

Firewall

Config Data

Switch |
Config

Y
Interface and Route Rule Processing
Processing
IP address Map Policy-data Files

Fig. 2: Network-device configuration parsing process.
Rule Processing: The processing of ACLs, QoS rules, IDP
rules and reporting rules configured on firewalls. This step
allows the construction of policy-data files.

Policy-data Files: The output files containing details of the
enforced policies. Each file describes particulars of a single
policy class (e.g., QoS) enabling metagraph modeling.

IP address map for VRF zones: The output IP address map
describing the allocation of subnets and hosts per VRF zone.
This map enables the PDN framework to automatically refine
VRF-Zone based policies to network level.

Our Parser currently accepts the following device configu-
rations as input: Juniper SRX 5800 firewalls, Palo Alto 5060
firewalls and Cisco Catalyst 6807 switches. It first processes
the firewall-interface configurations and identifies the VRF
zone each interface belongs to. Route-table data processing
then locates the hosts and subnets per VRF zone. Rule
processing then parses the ACLs, QoS rules, IDP rules and
reporting rules enabled on the devices. The Parser outputs the
policy-data files and an IP address map for the VRF zones.
We model this policy data using metagraphs as outlined next.

IV. PoLICY MODELING

Metagraphs can have attributes associated with their edges.
An example is a conditional metagraph [6] which includes
propositions — statements that may be true or false — assigned
to their edges as qualitative attributes [6]. The generating sets
of these metagraphs are partitioned into a variable set and a
proposition set. We define a conditional metagraph as follows.

Definition 3 (Conditional Metagraph). A conditional meta-
graph is a metagraph S=(X, U X,,, E) in which X, is a set
of propositions and X, is a set of variables, and:

1. at least one vertex is not null, i.e.,Ve' € E, VoUW #£ ¢

2. the invertex and outvertex of each edge must be disjoint,
e, X =X, UX, with X,NX, =¢

3. an outvertex containing propositions cannot contain other
elements, i.e., Vp € X,,Ve' € E, if p € Wer, then W = p.

Conditional metagraphs enable the specification of stateful
network-policies by allowing a policy (such as permit user
uy1 to access resource 1) to be activated conditionally (e.g.,
during business hours only). We describe below our approach
to modeling the different policy classes using conditional
metagraphs. The approach mainly relies on (a) identifying
applicable EPGs; and (b) defining suitable policy propositions.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:22:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2974727, IEEE

Transactions on Dependable and Secure Computing

{ application=FTP, action=alert,
malware signatures=(pa sigs, wildfire sigs)}

>
>

All

All Users Resources

>
>

{ application=HTTP, action=block,
malware_signatures=(wildfire sigs]}

{ application=HTTP, malware_signatures=(wildfire_sigs),
sig_present=True, action=block }

>

>

{ application=HTTP, malware_signatures=(wildfire_sigs),
sig_present=False, action=allow }

All
Resources

>
*

{ application=HTTP, action=allow }
+ Students >

{ application=HTTP, action=block,
malware_signatures=(wildfire_sigs)}

All Users

{ application=HTTP, action=allow }

Fig. 3: Metagraph modeling of an anti-malware policy. An anti-malware profile (top-left) specifying malware signature lists and
response actions for FTP and HTTP traffic is associated with an access-control policy (top-right). The intermediate metagraph

model (bottom-right) incorporates the applicable edges from

this profile to the access-control policy (i.e., FTP rule is not

applicable to this access control policy and is hence dropped). The resultant anti-malware policy model on the bottom-left

describes how malware-infected HTTP traffic is blocked while

A. Access-control policies

Access-control policies are commonly represented using the
five-tuple: source/destination address, protocol, source/destina-
tion ports [11], [21], [35]. We construct metagraph models
for the VRF-Zone based access-control policies leveraging
this idea. A representative example from our case study is
shown in Figure 4. Here, the source/destination addresses are
represented by the EPGs- Staff and DMZ. Protocol, ports and
time are propositions of the conditional metagraph.

B. Anti-malware/spyware policies

A core component of a company’s Intrusion-detection policy
is malware and spyware detection. Malware is malicious
software that is designed to disrupt operations of computer
systems or gain control of computers without consent [50].
Malware detection attempts to identify malicious-software
signatures embedded in traffic permitted through a network.
Many vendor databases (e.g., Palo Alto [35], Wildfire [36])
maintain up-to-date lists of known malware signatures. Ven-
dors also support multiple actions that can be taken in response
to a successful malware signature match (e.g., block or alert).

Unlike more generic malware, spyware captures and relays
information about systems or users without consent [50].
Hence, an anti-spyware policy aims to detect malicious traffic
leaving a network from infected clients (e.g., beaconing out to
external command-and-control (C2) servers).

Administrators often create anti-malware profiles associat-
ing distinct traffic types with malware signature lists (e.g.,
from a vendor database) and response actions. Likewise, net-
work admins also often create anti-spyware profiles based on
spyware-severity levels (e.g., critical) and associate appropriate

{ protocol = TCP, source_ports = (0,65535),
dest_ports = 1433, time >= 09:00,

time <= 17:00, action = allow}
Staff

Fig. 4: An access-control policy metagraph which permits MS-
SQL from STAFF zone to the DMZ during business hours.

DMZ

uninfected traffic is permitted.

response actions (e.g., block) [11], [21], [35]. An anti-malware
(anti-spyware) policy can then be associated with an access-
control policy to enable malware (spyware) detection.

We model anti-malware (anti-spyware) policies using two
steps; first we create metagraph model for the anti-malware
(anti-spyware) profile, then we model the profile association to
the access-control policies. The top-left metagraph in Figure 3
shows an example anti-malware profile in our case study.
An anti-malware (anti-spyware) profile is not restricted to
a particular set of users or resources. So, the invertex and
outvertex of a profile’s conditional metagraph have EPGs All-
Users and All-Resources. The propositions of the example
model in Figure 3 describes that alerts are enabled upon FTP-
based malware (spyware) signature detection (checked against
Palo Alto and Wildfire signatures) and that traffic is blocked
upon HTTP-based malware detection.

The top-right metagraph model in Figure 3 is the access
control policy that associates this anti-malware profile to detect
malware-infected HTTP flows. The bottom-right metagraph is
the intermediate model that integrates these two policies; it
only includes the profile edges applicable to the access-control
policy context. This policy integration is done automatically by
our system. The end result is given by the bottom-left model
of Figure 3, the model propositions reflect the original intent;
HTTP traffic without a match against the malware signatures
list: wildfire_sigs, is permitted while those with a match are
blocked. In addition, no FTP traffic is allowed by this access
control policy, so that part of the security policy is redundant.
This behavior extended to other user groups (e.g., Staff), who
were also allowed to access the Internet via HTTP. The anti-
malware policy did not apply to access control policies which
explicitly disabled user access to the Internet using HTTP.

C. URL-filtering policies

URL-filtering is another powerful feature network admins
use to monitor and control how users access the Web. For
instance, to stop students accessing illicit sites through the
university network. However, research academics may some-
times require access to web pages that might be seen as illicit

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:22:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2974727, IEEE

Transactions on Dependable and Secure Computing

in another context, e.g., cyber-security experts may need to
examine hackers’ websites. Thus, exceptions are needed.
The feature utilizes one or more URL-filtering databases
containing millions of websites with each site classified in to
one of many categories (e.g., Palo Alto DB has 60 different
categories [35]). Network admins usually create URL-filtering
profiles containing groups of website categories and associate
filtering actions (e.g., block or override) per group [11], [21],
[35]. These profiles can then be associated with access-control
policies to gain visibility and control of user-access to the Web.
We re-apply our two-stage modeling approach here; URL-
filtering profiles are modeled first and then the association of
these profiles to the access-control policies is modeled.
Figure 5 shows the conditional metagraph of a URL-filtering
profile found in our case study. The profile can apply to any
user or resource. The protocol and port propositions have
scope of Web traffic. Here, these propositions block access
to URLs categorized as extremism, malware and phishing. In
addition, access to URLs classified as abused-drugs, adult,
nudity, gambling and weapons trigger alerts and access to
sites classified as abortion require restriction override using
a temporary password (generally issued by network admins
or helpdesk staff). Associating this profile to the access-
control policy in Figure 4 yields a policy model which has
propositions that collectively block, alert, override or allow
through URL-access requests, depending on the URL category.

D. Reporting policies

Network devices can also generate logs, alerts, traps, and
provide other information, for instance, via SNMP (Simple
Network Management Protocol) polling [39]. We group all
these informational content and call them reporting.

An integral component of reporting is TCP session-logging
which is commonly used to troubleshoot and debug policy
problems. Network admins can choose to log a TCP session
on transaction initiation (i.e., session start) or end. For access-
control policies that permit traffic, the best practice is to log at
session end [21], [35]. Doing so, provides a detailed summary
of important information including the application utilizing
the session traffic (e.g., Facebook), endpoint details (i.e., IP
addresses and ports), policy-rule ID applied to the flow and
flow statistics (e.g., number of bytes). Logging at session start
is recommended for access-control policies that deny traffic as
it involves a smaller subset of information overhead.

It’s worth noting here that these TCP session logs can be
exported to a Syslog server or a NetFlow collector for further
analysis (requires translating logs to NetFlows first). Traffic
statistics similar to those obtained from TCP session logs can
also be derived by directly enabling NetFlow on the Firewall.

We model a TCP session-logging policy by extending the
metagraph model of an access-control policy to include an
additional log_event proposition. This proposition can acco-
modate the values session-start and session-end.

E. Quality of Service(QoS) policies

QoS assigns priorities to network devices and services
and controls the amount of bandwidth each device/service is
allowed to consume. Network admins often manage QoS by

{ application=(HTTP, HTTPS), action=block,
url_category=(extremism, malware, phishing] }

e

{ application=(HTTP, HTTPS),

action=override, url_category=(ahortion)

{ application=HTTP, HTTPS), action=alert,
url_category=(abused-drugs,adult, nudity,gambling, weapons) }

Al

Resources

All Users

Fig. 5: URL-filtering policy metagraph specifying URL cate-
gories and response actions for HTTP and HTTPS traffic.

associating a priority level (e.g., high, medium or low) with
traffic types (e.g., HTTP), applications (e.g., netflix) or devices
(IP or MAC address). We model a QoS policy by extending
the metagraph model of an access-control policy to include an
additional priority proposition.

The policy models derived for the different policy classes
above reveal what an intuitive graphical tool, metagraphs actu-
ally are for specifying network policies. In the next section, we
describe how we instantiate the policy models derived above
in code to analyze their underlying properties.

V. PoLICY DEFINITION AND VERIFICATION

We wrote MGtoolkit [38] — a generic package for imple-
menting metagraphs — to define our policy models. MGtoolkit
is implemented in Python 2.7. The API allows users to in-
stantiate metagraphs, apply metagraph operations and evaluate
results.

The API provides a Metagraph class to instantiate a
metagraph object consisting of Node and Edge objects. Each
Node contains a subset of elements from the metagraph’s
generating set. An Edge has the members: invertex and
outvertex, assigned a Node each, and an attributes
member that returns any edge attributes. The class also
supports methods to derive its adjacency matrix, find meta-
paths, check metapath properties (e.g., is_dominant_
metapath ()) and edge properties (e.g., is_cutset ()).

The toolkit also provides a ConditionalMetagraph
class which extends a Metagraph and supports
proposition attributes in addition to variables. A
ConditionalMetagraph inherits the base properties
and methods of a Metagraph and additionally supports
methods to check connectivity properties and redundancy
properties. We use the ConditionalMetagraph class to
instantiate the policy models described in Section IV using
EPGs as variables, policy propositions and edges. We also
extended the API methods in the original MGtroolkit package
to include network-policy specific logic to accurately check
policy consistency (e.g., when detecting policy conflicts).

Our verification of metagraph consistency uses dominance
[6] which can be introduced constructively as follows:

Definition 4 (Edge-dominant Metapath). Given a metagraph
S=(X, E) for any two sets of elements B and C in X, a
metapath M (B, C) is edge-dominant if no proper subset of
M (B, C) is also a metapath from B to C.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:22:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2974727, IEEE

Transactions on Dependable and Secure Computing

Definition 5 (Input-dominant Metapath). Given a metagraph
S=(X, E) for any two sets of elements B and C in X, a
metapath M (B, C) is said to be input-dominant if there is no
metapath M'(B’,C) such that B' C B.

In other words, edge-dominance (input-dominance) ensures
that none of the edges (elements) in the metapath is superflu-
ous. Thus, a dominant metapath can be defined as follows:

Definition 6 (Dominant Metapath). Given a metagraph
S=(X, E) for any two sets of elements B and C in X, a
metapath M (B, C) is said to be dominant if it is both edge
dominant and input-dominant.

A non-dominant metapath indicates redundancy in the pol-
icy represented by the metagraph. The property provides a
general framework to detect redundancies in multiple policy
domains; simply check all feasible metapaths in a policy meta-
graph for edge and input dominance, if either fails, the policy
includes redundancies. Past works [3] also classify policy
redundancies based on the level of policy-rule overlap. But,
these classifications are only meaningful when the policy-rule
order is important (e.g., in a vendor-device implementation).
In a policy metagraph, rule order is generally inapplicable.

Algorithm 1 shows our implementation of Definition 6
to identify redundancies in each of our policy classes. An
important aspect of the algorithm is how we compute feasible
metapaths in the policy metagraph to check dominance. The
text in [6] leaves determining this up to the implementor.

We could consider every possible combination of metagraph
nodes as a potential source and target to search for feasible
metapaths, but that would be too exhaustive. Instead, we
begin by first identifying edge sets with overlapping invertices,
outvertices and propositions (lines 2-16). A redundancy can
only occur between edges with some invertex or outvertex
overlap. Using this less exhaustive approach, we narrow down
sources and targets (lines 17-22) to base our search for
feasible metapaths. Each feasible metapath is then checked
for dominance to identify policy redundancies.

The potential ‘conflict set’ of propositions in a metapath
M (B, C) can also be defined as follows:

Definition 7 (Conflict-set of Propositions). Given a condi-
tional metagraph S=(X,UX,,, E) for any two sets of elements
B and C in X, a metapath M (B, C') has the potential conflict
set of propositions given by (UeeM(B,C) Ve) N X,

Definition 7 provides a general framework for detecting pol-
icy conflicts for multiple policy classes. We can use it to com-
pute the potential conflict set of propositions per metapath in a
policy metagraph. We then apply domain specific knowledge
to determine if the conflict is valid. For instance, with anti-
malware policies, a conflict occurs when flows overlap and (a)
have identical malware signature lists with different response
actions (e.g., alert and block); or (b) have identical response
actions with different malware signature lists (e.g., pa_sigs and
wildfire_sigs). Algorithm 1 also shows the implementation of
this policy conflict detection logic.

The code snippet in Listing 1 instantiates an anti-malware
policy using MGtoolkit and then checks policy consistency.

Algorithm 1 Detects policy redundancies and conflicts using
Metagraph algebras. The policy metagraph is pmg.

1: procedure DETECTPOLICYINCONSISTENCIES(pmg)
2: Ri1 + dict()

3 Ro +— diCt()

4: processed < [|

5: redundancies < ||

6: conflicts +]

7 for each e; € pmg.edges do

8: for each e> € pmg.edges do

9: if e1 != ez and (ez2,e1) not in processed then
10: i1 4 ep.nvertex N eg.invertex

11: 19 <— ep.outvertex N es.outvertex

12: i3 <— e1.propositions M ez.propositions
13: if len(z1)> 0 and len(iz)> O then

14: Ri[e1].append(e2)

15: if len(i2)> 0 and len(iz)> O then

16: R>[e1].append(e2)

17: processed.append((e1, €2))

18: for each e;, v1 € R; do

19: src < ej.invertex
20: for each e; € Ri[e1] do

21: src < src U ea.invertex
22: for each e3, v3 € R2 do
23: target < esz.outvertex
24: 14 <— e1.propositions M e3.propositions
25: if len(i4)> O then
26: mps < GetMetapaths(src, target)
27: for each mp € mps do
28: if not IsDominantMetapath(mp) then
29: redundancies.append(mp)

30: if (PropositionsConflict(mp) and
31: IsValidConflict(mp)) then

32: conflicts.append(mp)

return (redundancies, conflicts)

The snippet is based on the example in Figure 4 together
with another policy. The latter is generated by associating
an anti-malware profile — enabling alerts for infected HTTP
traffic — to the flow: Students — Internet : protocol=Any,
action=allow. Executing the code snippet returns a conflict
(Listing 2). This conflict originates from the different response
actions (i.e., block vs alert) for a malware-signature match
against wildfire_sigs between the two profiles.

The construction of a formal policy metagraph also allows
us to reason about policies. For instance, we could check
a specified security policy against an industry best practice
policy for compliance. Our past work [40] has investigated
this in the context of security policies in critical infrastructure
networks using graph-based policy abstractions. The semantics
developed there can readily be applied to policy metagraphs
given a metagraph is a generalization of a simple graph.

VI. A UNIVERSITY NETWORK CASE STUDY

Obtaining real network configurations from enterprise net-
works is difficult due to the sensitive nature of the data. We
were able to obtain such configurations from a large university
network. Due to security concerns and non-disclosure agree-
ments, a modified version of the real network analyzed is pre-
sented. Effort has been taken to ensure that the implemented
network, its policies and underlying issues uncovered remain
intact. However, details such as IP addresses are anonymized.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:22:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2974727, IEEE

Transactions on Dependable and Secure Computing

Listing 1: MGtoolkit implementation of an anti-malware policy defined using VRF-Zones as endpoint groups (e.g., Students).

1 from mgtoolkit.library import ConditionalMetagraph, Edge

2

3 # define policy metagraph

4 variable_set = {’students’,’staff’,’internet’,’dmz’}

5 propositions_set = {’protocol=tcp’, ’dest_port=80’, ’sig_present=true’, ’sig_present=false’, ’action=permit’,

6 ’action=deny’, ’action=alert’, ’malware_sigs=[wildfire_sigs]’, ’malware_sigs=[pa_sigs, wildfire_sigs]’}
7 cm = ConditionalMetagraph(variable_set, propositions_set)

8

9 cm.add_edges_from([

10 Edge({’students’}, {’internet’}, attributes=[’protocol=tcp’, ’dest_port=80’, ’malware_sigs=[wildfire_sigs]’, ’

sig_present=true’, ’action=deny’]),

sig_present=false’, ’action=permit’]),

12 Edge({’students’}, {’internet’}, attributes=[’protocol=tcp’,

]’, ’sig_present=true’, ’action=alert’]),

13 Edge({’students’}, {’internet’}, attributes=[’protocol=tcp’,

]’, ’sig_present=false’, ’action=permit’])])

15 # check for conflicts using metagraph algebras

1 Edge({’students’}, {’internet’}, attributes=[’protocol=tcp’,

’dest_port=80’, ’malware_sigs=[wildfire_sigs]’, °’

’dest_port=80’, ’malware_sigs=[pa_sigs, wildfire_sigs

’dest_port=80’, ’malware_sigs=[pa_sigs, wildfire_sigs

16 metapaths = cm.get_all_metapaths_from({’students’}, {’internet’})

17 for mp in metapaths:

18 # apply domain—specific knowledge
19 if cm.has_conflicts(mp):
20 print (’conflict detected: \n’ \%s’\%(repr(mp.edge_list)))

Listing 2: Partial output from running code in Listing 1. The detected conflict is caused by overlapping HTTP flows having
different malware response actions (i.e., deny vs alert) for a match against the malware-signature list wildfire_sigs.

1 conflict detected:

2 [Edge(set([’protocol=tcp’, ’students’, ’dest_port=80’, ’malware_sigs=[wildfire_sigs]’, ’action=deny’, ’sig_present=

true’]), set([’internet’])),

3 Edge(set([’protocol=tcp’, ’students’, ’malware_sigs=[pa_sigs,wildfire_sigs]’, ’dest_port=80’, ’sig_present=true’, ’

action=alert’]), set([’internet’]))]

A. Analyzed Configuration Data

The System Under Consideration (SUC) includes hundreds
of switches and routers and thousands of links. Figure 6
shows a high-level view of the physical-network topology.
The core devices enforcing bulk of the network policies
include a pair of Internet-facing Palo Alto firewalls, a pair
of internal Juniper SRX firewalls and nine Cisco Catalyst
core/distribution routers. The multiple network devices and
links provide redundancy and defense-in-depth. The function
of these devices and networks are described below:

NREN: The National Research and Education Network which
provides Internet services to the nation’s education and re-
search communities and their research partners.

The Cisco Border Routers (BR1, BR2): These perimeter
routers connect the university network to the outside world.
The Palo Alto 5060 firewalls (PAl, PA2): These firewalls
segregate the internal university networks (i.e., inside) from
the NREN (i.e.,, outside). The firewall configurations are
mirror images of each other and they implement access-control
policies which restrict traffic flows. Being stateful firewalls,
they ensure only solicited connections are allowed. The traffic
filtering capabilities of these units extend to application layer
filtering (i.e., deep-packet inspection). QoS is also enabled on
these firewalls using traffic rate-limiting functionality.

The Juniper SRX 5800 firewalls (SRX1, SRX2): These fire-
walls restrict traffic flow between internal university networks.
Being stateful, they also only allow solicited connections.
Their configurations are also mirror images of each other given
they provide redundancy in the network.

Data Centers (DC1, DC2): These offsite facilities provide
secure, reliable backup and archiving of campus-network user
data. Our study scope includes policies that enable traffic to or
from these centers but excludes internal data center policies.
Cisco Catalyst 6807 Core Switches (CSWI1, CSW2): These
switches construct the core layer of the network. They enable
a high-speed packet switching backbone and do not perform
any packet manipulation such as policy-based filtering.

Cisco Catalyst 6807 Distribution Routers (DRI- DR2): These
routers form the distribution layer of the network which is the
demarcation point between the core layer and the access-layer.
LANs and VLANs: These form the access layer of the
network which comprise of devices enabling workgroups and
users to utilize services provided by the distribution and core
layers. These networks construct the VRF zones admins use to
manage policies. There were 43 such logical zones including
Students, Staff, Internal- and External-DMZ.

The Palo Alto firewalls have intrusion and threat prevention
enabled using anti-malware, anti-spyware, file-blocking and
URL-filtering policies. Each firewall has three anti-malware
profiles configured and used; these profiles alert on or block
different types of malware-infected traffic. Two spyware poli-
cies are also configured on each firewall but only one is used.
This active policy sends alerts or blocks infected traffic based
on the spyware-severity level. Each firewall also has 10 URL-
filtering profiles configured and used. The most commonly
used profile (i.e., default profile) blocks the URL categories
copyright-infringement and extremism and sends alerts for the
categories abortion and alcohol-and-tobacco. Some profiles

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:22:12 UTC from IEEE Xplore. Restrictions apply.

Transactions on Dependable and Secure Computing

Fig. 6: A high-level view of the university network studied.
It includes border routers (BR), heterogeneous firewalls (Palo
Alto and Juniper SRX), core switches (CSW) and distribution
routers (DR). These devices collectively enable access between
internal networks as well as between internal networks and the
NREN (National Research and Education Network).

create exceptions to this default policy; for instance, one allows
selected access to URLs classified as copyright-infringement.

There are 931 access-control rules on each Palo Alto
firewall enabling traffic flow between internal networks and
the Internet. These rules allow, for instance, outbound Web,
DNS and SSH application access from inside. They also allow
SMB and FTP based file sharing, HTTPS and SMTP access
inbound from the Internet. Of these access-control rules, 451
rules associate an anti-malware profile to enable malware-
detection at a flow level, 436 rules have spyware-detection
enabled and 61 have URL-filtering enabled.

Each Palo Alto firewall also has 29 QoS rules configured
and active. These rules rate limit for instance, inside to outside
traffic belonging to netflix, twitch and Peer-to-Peer (P2P)
applications during business hours. Some rules create QoS
exceptions; for instance, to bypass rate-limiting of P2P appli-
cations from inside to outside for particular subnet addresses.

Each Juniper firewall has 86 access-control rules enabling
internal traffic flow. For instance, hosts in Students and Staff
zones are allowed to access the licensing-servers located in
the Internal-DMZ; and Staff and Management-network hosts
can access the SQL servers in the External-DMZ.

B. Policy Visualization

We ran our system on a standard desktop computer (e.g.,
Intel Core CPU 2.7-GHz computer with 8GB of RAM running
Mac OS X). Our Parser extracted 1017 high-level rules written
for 43 EPGs for the SUC. The EPG sizes varied from several
IP addresses to over 200K IP addresses.

We instantiated a policy metagraph for each policy class in
our SUC using MGtoolkit. The high-level access-control policy
metagraph, for instance, consisted of 714 nodes and 1044
edges. For brevity, a partial view of this metagraph is shown

Network_mgt

iz

Prod_servers

subzone_22

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2974727, IEEE

Staff

q subzone_25 '

(a) Metagraph describing access-control policies in the SUC (partially shown).

Internal DMZ

(b) Projection of (a).

Network mgt

Fig. 7: The high-level policy metagraph (partially
shown) describing sSUC access-control policies
and its projection over the subset of elements

X = {Network_mgt, Internal_DM Z, Internet}. Policies
are described using VRF zones and subzones. The projected
edges depict reachability between the elements of X.

in Figure 7(a). The resemblance of this policy to a network
allows us to exploit the pattern recognition capabilities of the
human visual cortex to better visualize policies.

Figure 7(b) is a projection over the subset
X {Network_mgt, Internal_DM Z, Internet},
describing end-end reachability between these elements.
Each projection edge corresponds to one or more metapaths
in the original metagraph. The reduction of size and
complexity relative to the original metagraph simplifies
understanding policy. For instance, as per the projection,
access between Internal DM Z and Internet is enabled
at a zone level while access between Network_mgt and
Internal_DM Z is enabled at a subzone level.

This high-level reachability summary provided by a projec-
tion is very useful to network administrators. For instance,
in the event of a cyber attack involving these zones, the
knowledge allows one to quickly and precisely evaluate what
access facilitates the ongoing attack. After all, the projection
in Figure 7(b) consists of only two edges in comparison to
the many in the original metagraph. Administrators can then
disable corresponding access to mitigate the cyber attack.

We demonstrated these projections to our university’s net-
work operations team and were informed that they were much
helpful in comparison to current visualization tools such as
the Cisco Adaptive Security Device Manager (ASDM) [9]
or Palo Alto Panaroma [33]. The ASDM allows to visualize
single policy rules (e.g., access-control rules) in a diagram,
to clarify which direction a rule is controlling traffic, but does
not allow to generate a summary view between two end points
to understand the net effect of rules.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:22:12 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2974727, IEEE

Transactions on Dependable and Secure Computing

TABLE III: Summary of policy inconsistencies found in the SUC (* VRF-Zone based rules, ** IP address/subnet based rules)

Device Policy Type High-level rule Network-level rule # Intra-Device # Inter-Device # Redundancies
count™ count™* Conflicts Conflicts

SRX Firewall Access-control 86 61,305 9 179 14

Reporting 72 29,656 0 0 10

Palo Alto Firewall Access-control 931 1,591,633 142 179 69

Anti-malware 451 565,908 309 0 32

Anti-spyware 436 636,241 0 0 38

URL-filtering 61 366,720 306 0 809

Reporting 588 551,662 53 0 39

QoS 29 563,296 38 0 49

TABLE II: Summary of execution times of our PDN tool to
detect SUC policy inconsistencies (* describes time taken to
deploy low-level policy rules to a Mininet emulated network).

Processing step Execution time

(seconds)
High-level policy extraction 37
Conflict detection (High-level) 223
Policy refinement (High-level to Low-level) 8
Conflict detection (Network-level) 3715
Conflict resolution (Network-level) 4
Policy deployment* 11

C. Formal Verification

We checked policy consistency as per Section V. Table II
depicts a summary of execution times of our PDN tool for
policy extraction, refinement, conflict detection, conflict reso-
lution and policy deployment on to an emulated network. The
conflicts and redundancies found are summarized in Table III.

Using metagraphs we can analyze policy conflicts and
redundancies both (i) at a high-level (i.e., independent of net-
work implementation details); and (ii) at a network level (i.e.,
incorporating implementation details). The high-level policy
conflicts (redundancies) involving VRF zones, indicate incon-
sistencies in network admins’ intent. Network-level conflicts
(redundancies) additionally include inconsistencies caused by
network-implementation errors (e.g., the incorrect assignment
of IP addresses to VRF zones which lead to unexpected zone
overlaps). We report in Table III the more comprehensive
network-level policy conflicts and redundancies.

We classify the policy conflicts found as intra-device and
inter-device conflicts as described below.

1) Intra-Device Policy Conflicts: These are policy rules
within a network device that have common packet matching
criteria and yield conflicting outcomes. Each policy class in
our SUC is disjoint. Hence, we can detect these by creating
a metagraph per policy class and device and applying the
metagraph algebras over the structures. We found 151 intra-
device access-control policy conflicts in the Palo Alto and
Juniper firewalls. These conflicts stemmed from overlapping
rules with different modalities (e.g., permit vs deny).

Likewise, there were 38 QoS conflicts in the Palo Alto
firewall due to overlapping rules having different traffic-
priority levels. An example of such a QoS conflict is depicted
in Figure 9. We also found 309 anti-malware policy conflicts
in the Palo Alto firewall. These were due to overlapping rules
associating profiles with different response actions (e.g., alert

vs block) for the same signature match (an example is depicted
in Figure 8). There were also 306 URL-filtering conflicts in
the Palo Alto firewall due to overlapping rules having different
response actions for an identical URL-category match.

2) Inter-Device Policy Conflicts: Even when there are no
intra-device conflicts for a particular policy class, there could
still be conflicts between policies of different network devices.
For instance, an upstream firewall might deny traffic that is
allowed by a downstream firewall. We refer to such policy
conflicts as inter-device policy conflicts.

The disjoint nature of the policy classes in our SUC allows
us to detect these conflicts by considering policy interactions
across different network devices for the same policy class.
By doing so, we found 179 access-control policy conflicts
between Palo Alto and Juniper firewalls. These originated from
overlapping rules having different access-control actions.

3) Redundancies: We consider here policy redundancies
that stem within a network device. The disjoint nature of
the policy classes in our SUC allows us to re-use the meta-
graphs created for detecting intra-device policy conflicts, to
also detect redundancies. We used Algorithm 1 to locate the
redundancies in Table III.

We discussed with the university’s network operations team
to verify and fix the above problems. It is worth noting here
that we were able to identify the above policy inconsistencies
through the use of the rigorous formal foundations provided
by our new tool: metagraphs. Application of metagraphs to the
target use case allows us to demonstrate their effectiveness in
formally describing and verifying policies in a large network.

Inside {protocol=IP, priority=1, action=Allowed,

malware_profile=UofA block }

Dept A

{protocol=UDP, dport=53,
priority=1, action=Allowed,
malware profile=UofA default }

Fig. 8: Example Anti-malware policy conflict found by our
tool. The conflict occurs due to overlapping rules associating
anti-malware profiles with different response actions (e.g.,
alert vs block).

{application=any, action=class-4 }
-

{application=P2P, action=class-6 }

Fig. 9: Example QoS policy conflict found by our PDN tool.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:22:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2974727, IEEE

Transactions on Dependable and Secure Computing

FV-PDN Application

POX Messenger API

POX Controller

OpenFlow API

Mininet Emulated
Network

Fig. 10: SDN test bed used for pre-deployment verification.
Network policies are specified via the FV-PDN application
and sent through to the POX SDN controller to update on to
the mininet-based emulated network.

D. Pre-deployment Verification

Checking policy consistency helps evaluate policy correct-
ness [41], but configuration problems can also arise due
to policy creators oversights as well as bugs in the policy
refinement process. A key step in FV-PDN is to debug such
configuration problems prior to deployment [41].

Network emulation offers a cost effective way to test config-
urations [25]. We use an OpenFlow based network emulator —
Mininet — for our pre-deployment tests. The emulator is open
source and enables virtual devices and interconnections using
a singe Linux kernel [32]. Mininet offers flexibility- custom
SDN topologies (such as that in our target network in Figure
7) can be created from a single, simple Python APL

We sourced our policies from a traditional network. But,
we deploy them to a SDN network, to show the versatility of
FV-PDN; users can manage heterogenous networks without
being conversant with technology details required to deploy
policies. The PDN engine automatically translates the user-
specified high-level policies to match the target-network.

We use a POX [30] controller with Mininet in our test bed
(Figure 10). POX is well-known for rapid prototyping of SDN
controllers. In this setup, the Mininet network communicates
directly with the POX controller via OpenFlow, which in turn
communicates with our FV-PDN application using a built-
in messenger-service API. The application obtains emulated-
network topology details via this API to check compatibility
of the input policy against the target network - another key
verification step in FV-PDN [41].

Our tool resolves detected policy conflicts, automatically
using a simple first-match strategy (i.e., selects the most re-
cently configured rule as the desired administrator intent). This
strategy works for most cases in our SUC but in future a more
complex conflict resolution framework can be incorporated to
support more granular, conflict resolution policies.

Our system derives OpenFlow-equivalent statements from
the conflict-free policies for the target SDN switches using
the shortest-path algorithm. PDN sends these flow statements
to the switches via the controller. Currently, we deploy policies
that are natively supported by OpenFlow v1.1 switches (i.e.,
access-control and QoS). We use the Mininet Python API to
also create test scripts automatically; i.e., test sources and

sinks in the emulated network that match the input policy.
These scripts are generated using Expect — a UNIX scripting
and testing utility — which enables automated interactions with
programs that expose a text terminal interface [26]. When the
emulation is run, these tests create pathological traffic to verify
expected policy-configuration behavior. The test scripts verify
that the permit rules in a policy work correctly (i.e., positive
vetting), but we also need to ensure that services not explicitly
enabled are blocked (i.e., negative vetting). We achieve the
latter using nmap and tshark based exhaustive port-scans.

E. Limitations

Our tool can currently extract and verify policies configured
on a few vendor models; Palo Alto 5060, Juniper SRX 5800
and Cisco Catalyst switches. This support needs to be extended
to popular vendor models such as Cisco ASA, Firepower fire-
walls [45] and Huawei USG6600 [52] to allow analysis of their
network policies. In addition, the metagraph algorithms, both
in mgtoolkit and PDN tool needs performance improvement.
For instance, currently the PDN tool takes 62 minutes to find
non-dominant metapaths of a policy metagraph containing 200
nodes and 1500 edges! Our PDN tool is also limited in its
metagraph visualization capabilities. We could not find any
off the shelf graph package that allows to crisply visualize
metagraphs. Currently we utilize Graphviz [13] for this task;
the package allows clustering of nodes, but creates duplicate
nodes when a node is associated with more than one cluster.

VII. CONCLUSION AND FUTURE WORK

There are various obstacles that hinder reliable network-
policy specification. One most prominent is the lack of policy
abstractions that (i) can decouple policy from the underlying
physical infrastructure; and (ii) offer rigorous formal founda-
tions to verify and reason about policies.

Metagraphs can help address the shortfall; they allow to
express network policies abstractly, independent of implemen-
tation details and provide rich algebras to analyze important
policy properties such as reachability and consistency. We
demonstrate the versatility of metagraphs in network-policy
specification by using them to model and analyze real policies
from a large university network.

REFERENCES

[1] DMTF Policy Working Group. CIM Simplified Policy Language (CIM-
SPL). International Standard DSP0231,DMTF, 2009.

[2] E. Al-Shaer and H. Hamed. Design and implementation of firewall
policy advisor tools. DePaul University, CTI, Technical Report, 2002.

[3] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Conflict clas-
sification and analysis of distributed firewall policies. IEEE JSAC,
23(10):2069-2084, 2005.

[4] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker. NetKAT: Semantic foundations for
networks. ACM SIGPLAN Notices, 49(1):113-126, 2014.

[5] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall
management toolkit. ACM TOCS, 22(4):381-420, 2004.

[6] A. Basu and R. W. Blanning. Metagraphs and their applications,
volume 15. Springer Science & Business Media, 2007.

[71 M. S. Beigi, S. Calo, and D. Verma. Policy transformation techniques
in policy-based systems management. In Proceedings. Fifth IEEE Inter-
national Workshop on Policies for Distributed Systems and Networks,
2004. POLICY 2004., pages 13-22, June 2004.

[8] R. Boutaba and I. Aib. Policy-based management: A historical perspec-
tive. JNSM, 15(4):447-480, Dec 2007.

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:22:12 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.2974727, IEEE

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
(17]
(18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]
[27]
(28]
[29]

(30]
[31]

[32]
[33]

[34]
[35]

[36]

[37]

[38]
[39]
[40]

[41]

1545-5971 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Transactions on Dependable and Secure Computing

A. Cisco. Series firewall ASDM configuration guide. Cisco Systems
Inc., updated March, 31, 2014.

Cisco Systems Inc. Catalyst 6500 Series Switch and Cisco 7600 Series
Router Firewall Services Module Configuration Guide, 2010.

Cisco Systems Inc. Cisco ASA Series Configuration Guide, 9.0, 2013.
N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy
specification language. In Policies for Distributed Systems and Networks,
pages 18-38. Springer, 2001.

J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull.
Graphvizopen source graph drawing tools. In International Symposium
on Graph Drawing, pages 483—484. Springer, 2001.

A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi.
Hierarchical policies for software defined networks. In HotSDN, pages
3742, New York, NY, USA, 2012. ACM.

N. Foster, M. J. Freedman, R. Harrison, J. Rexford, M. L. Meola, and
D. Walker. Frenetic: a high-level language for openflow networks. In
PRESTO, page 6. ACM, 2010.

M. G. Gouda and A. X. Liu. Structured firewall design.
Networks, 51(4):1106-1120, 2007.

T. G. Griffin and J. L. Sobrinho. Metarouting. SIGCOMM °05, pages
1-12, New York, NY, USA, 2005. ACM.

A.J. T. Gurney and T. G. Griffin. Lexicographic products in metarouting.
In 2007 IEEE ICNP, pages 113-122, Oct 2007.

S. Gutz, A. Story, C. Schlesinger, and N. Foster. Splendid isolation:
A slice abstraction for software-defined networks. In HotSDN, pages
79-84. ACM, 2012.

A. Hamza, D. Ranathunga, H. H. Gharakheili, M. Roughan, and
V. Sivaraman. Clear as mud: generating, validating and applying iot
behavioral profiles. In IoTS&P, pages 8-14. ACM, 2018.

Juniper Networks, Inc. Getting Started Guide for the Branch SRX Series.
1133 Innovation Way, Sunnyvale, CA 94089, USA, 2016.

P. Kazemian, G. Varghese, and N. McKeown. Header space analysis:
Static checking for networks. In NSDI, pages 113-126, 2012.

B. W. Kernighan and P. J. Plauger. The elements of programming style.
McGraw-Hill, PJ New York, 1978.

A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey. Veriflow: Verifying
network-wide invariants in real time. ACM SIGCOMM Computer
Communication Review, 42(4):467-472, 2012.

S. Knight, H. Nguyen, O. Maennel, 1. Phillips, N. Falkner, R. Bush, and
M. Roughan. An automated system for emulated network experimenta-
tion. In ACM CoNEXT, pages 235-246, 2013.

D. Libes. Exploring Expect: A Tcl-based toolkit for automating
interactive programs. O’Reilly, 1995.

A. X. Liu and M. G. Gouda. Diverse firewall design. IEEE ICDSN,
pages 1237-1251, 2008.

J. Lobo, R. Bhatia, and S. Naqvi. A policy description language. In
Proceedings of AAAI, pages 291-298, 1999.

E. C. Lupu and M. Sloman. Conflicts in policy-based distributed systems
management. /[EEE TSE, 25(6):852-869, Nov 1999.

M. M. [Online]. POX Available: www.noxrepo.org/.

C. C. Machado, J. A. Wickboldt, L. Z. Granville, and A. Schaeffer-
Filho. Policy authoring for software-defined networking management.
In 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), pages 216-224, May 2015.

Mininet. [Online]. An Instant Virtual Network on your Laptop (or other
PC) Available: www.mininet.org/.

P. A. Networks. Panorama administrator’s guide. Palo Alto Networks
Inc., updated July, 8, 2019.

J. Nicklisch. A rule language for network policies. Position Paper, 1999.
Palo Alto Networks, Inc. PAN-OS Administrator’s Guide, 8.0. 4401
Great America Parkway, Santa Clara, CA 95054, USA, 2017.

Palo Alto Networks, Inc. WildFire Administrator’s Guide, 7.0. 4401
Great America Parkway, Santa Clara, CA 95054, USA, 2017.

C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, C. Clark, Y. Ma,
and Y. Zhang. PGA: Using graphs to express and automatically reconcile
network policies. In ACM SIGCOMM, pages 29-42, 2015.

D. Ranathunga, H. Nguyen, and M. Roughan. Mgtoolkit: A python
package for implementing metagraphs. SoftwareX, 6:91-93, 2017.

D. Ranathunga, M. Roughan, P. Kernick, and N. Falkner. Towards
standardising firewall reporting. In WOS-CPS. Springer LNCS, 2015.
D. Ranathunga, M. Roughan, P. Kernick, and N. Falkner. Malachite:
Firewall policy comparison. In IEEE ISCC, pages 310-317, June 2016.
D. Ranathunga, M. Roughan, P. Kernick, N. Falkner, H. Nguyen, M. Mi-
hailescu, and M. McClintock. Verifiable policy-defined networking for
security management. In IJCET, 2016.

Computer

[42]

[43]

[44]

[45]

[46]

(471
(48]

[49]

[50]

[51]

[52]

[53]

[54]

D. Ranathunga, M. Roughan, H. Nguyen, P. Kernick, and N. Falkner.
Case studies of SCADA firewall configurations and the implications for
best practices. IEEE TNSM, pages 871-884, 2016.

J. Reich, C. Monsanto, N. Foster, J. Rexford, and D. Walker. Modular
SDN programming with Pyretic. Technical Report of USENIX, 2013.
R. Sahay, G. Blanc, Z. Zhang, K. Toumi, and H. Debar. Adaptive policy-
driven attack mitigation in sdn. In XDOMO, pages 4:1-4:6, New York,
NY, USA, 2017. ACM.

O. Santos, P. Kampanakis, and A. Woland. Cisco Next-Generation
Security Solutions: All-in-one Cisco ASA Firepower Services, NGIPS,
and AMP. Cisco Press, 2016.

A. Schwabe, P. A. Aranda-Gutiérrez, and H. Karl. Composition of sdn
applications: Options/challenges for real implementations. In ANRW,
pages 26-31, 2016.

R. Sinnema and E. Wilde. eXtensible Access Control Markup Language
(XACML). RFC 7061, 2013.

M. Sloman. Policy driven management for distributed systems. Journal
of network and Systems Management, 2(4):333-360, 1994.

R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster. Merlin: A language for provisioning network resources.
In CoNEXT, pages 213-226. ACM, 2014.

K. Stouffer, J. Falco, and K. Scarfone. Guide to Industrial Control
Systems (ICS) security. NIST Special Publication, 800(82):16-16, 2008.
J. Strassner. Policy-Based Network Management: Solutions for the Next
Generation (The Morgan Kaufmann Series in Networking). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2003.

H. Technologies. USG6600 Series Next-Generation Firewall. [Online].
Available: https://e.huawei.com/au/products/enterprise-networking/
security/firewall- gateway/usg6600, 2019.

D. C. Verma. Simplifying network administration using policy-based
management. /[EEE Network, 16(2):20-26, 2002.

A. Wool. Trends in firewall configuration errors: Measuring the holes
in Swiss cheese. IEEE Internet Computing, 14(4):58-65, 2010.

Dinesha Ranathunga is a Postdoctoral research fel-
low at the Teletraffic Research Centre at University
of Adelaide, Australia. He received his Ph.D. for his
thesis titled Auto-configuration of critical network
infrastructure from the University of Adelaide in
2017. His research interests include SCADA net-
work security, Policy Defined Networking, Software
Defined Networking and IoT security.

Prof. Matthew Roughan obtained his PhD in Ap-
plied Mathematics from the University of Adelaide
in 1994. He has since worked for the Co-operative
Research Centre for Sensor Signal and Information
Processing (CSSIP), in conjunction with DSTO; at
the Software Engineering Research Centre at RMIT
and the University of Melbourne, in conjunction
with Ericsson; and at AT&T Shannon Research Labs
in the United States. Most recently, he works in the
School of Mathematical Sciences at the University of
Adelaide, in South Australia. His research interests

range from stochastic modelling to measurement and management of networks
like the Internet. He is author of over a 100 refereed publications, half a dozen
patents, and has managed more than a million dollars worth of projects. In
addition, his coauthors and he won the 2013 Sigmetrics "Test of Time” award,
and his work has featured in New Scientist and other popular press.

Hung Nguyen joined the Teletraffic Research Centre
at the University of Adelaide in 2012. He received
his PhD in Computer and Communication Sciences
from the Swiss Federal Institute of Technology, Lau-
sanne, Switzerland (EPFL). His research interests
include Software Defined Networking, 5G, network
measurements, tomography, and privacy preserving
techniques. He has published more than 40 refereed
papers on these topics.

Authorized licensed use limited to: University of Adelaide. Downloaded on November 24,2020 at 07:22:12 UTC from IEEE Xplore. Restrictions apply.

