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ABSTRACT

Reverse engineering of the Internet is a valuable activipart
from providing scientific insight, the resulting datasets avalu-
able in providing realistic network scenarios for otheregashers.
The Rocketfuel project attempted this process, but it iprssing
how little effort has been made to validate its results. Taper
concentrates on validating a particular inference metloggyoused
to obtain link weights on a network. There is a basic diffiguft
assessing the accuracy of such inferences in that a noneusiet
of link-weights may produce the same routing, and so simga-m
surements of accuracy (even where ground truth data arellei
do not capture the usefulness of a set of inferred weightspidve
pose a methodology based jmedictive power to assess the quality
of the weight inference. We used this to test Rocketfuelp-al
rithm, and our tests suggest that it is reasonably goodcodatiy
on certain topologies, though it has limitations when itdentying
assumptions are incorrect.

Categories and Subject Descriptors

C.2.3 [Computer-Communications Networkg: Network Opera-
tions—network monitoring
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1. INTRODUCTION

Internet providers are (quite reasonably) unwilling torshia-
formation about their networks. The information (such gsote
ogy, routing policies and so on) would be very useful to nekwo
researchers, but also of great interest to their compstitNever-
theless, some example networks are required for much ofonketw
research. Such data also holds great interest for scieintistested
in properties of large networks (or graphs).

The Rocketfuel project [1, 2] suggested techniques foreres
engineering” the Internet. Spring al. [1] performed extensive
traceroute studies to determine the router- or Point-e&&mce (PoP)
level topologies of ISPs (Internet Service Providers)uding esti-
mates of Interior Gateway Protocol (IGP) weights [2]. Sueights
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are useful for a number of reasons, for instance as a basisfior
parison when studying weight optimization [3-5].

The Rocketfuel topologies and weights have been of such grea
use that they have become the basis for many recent networkin
papers, so it may seem somewhat surprising then that very lit
tle validation has been performed. Some work [6, 7] has ques-
tioned the accuracy of the network graphs provided by Réabt
However, little work has considered systematically thestjoa of
weight inference. The lack of validation is problematic dese the
inference problem is underconstrained: the possible isolsitare
non-unique, and identified only through the use of addiliside-
assumptions about the behaviour of “typical” weights. Tiies
assumptions are known to be wrong in some instances, but unti
now there has been no understanding of the impact this may hav
on the inferred weights.

The problem is complicated by the fact that direct compasso
of two sets of links weights tells us little about the use&ds of a
set of inferences. For instance, one could scale links weigih a
constant factor and obtain a completely equivalent set dfhis.

The fact that the inferred links weights can thus be maderarby
“inaccurate” has little impact on their usefulness for nataexper-
iments. More subtle cases are common: the change of a weight ¢
have no consequence or may cause dramatic rerouting. So even
if one knew the true value of the link weights, we still regua

new way to assess the value of results. A naive approach would
be to assess inferred weights on how closely the paths chnsen
the resulting algorithm match those of the real routing. Eaosv,
inference techniques can be designed to ensure this comditiit

still be wildly inaccurate.

We take the approach of considering firedictive power of the
inferred weights. That is, we use the inferred weights tdistenet-
work behaviour after a change in the network occurs, and eoenp
the prediction with real behaviour. The aim is to find whettier
weights are useful, rather than “accurate” ugeful set of weights
can be used to make predictions about the behaviour of a netwo
We concentrate on the ability to predict routes that we didb-*
serve in our measurements, or to predict rerouting aftkifiiture.

The problem is actually more general than just the infererice
IGP link weights. In general, we are trying to infer routingipies.

IGP weights are a simple example, but the inference of mslican
extend to estimation of inter-domain routing policies elrtlomain
policy inference has been considered in a number of papet4]8
For instance, Mihlbauet al. [11] propose to use the inferred rout-
ing policies to answer “what if” questions to aide operatonsak-
ing decision about inter-domain routing configuration. yass to
such questions could be very useful to network operatoxs aam
hard to obtain without inference.

Routing weight inference lies in the area retwork tomogra-
phy. Tomography problems in general are formulated in such a
way as to infer desired information from a set of indirect mea



surements. The canonical examples of network tomograpdy ar

traffic matrix inference [12, 13], link performance estiinat[14],
and topology inference [15]. Routing policy inference thys dis-
tinct similarities to these, in particular, to traffic matgstimation.
The problems are both linear inverse problems, and theyatte b
highly underconstrained. In link-weight inference we witset of
linear constraints that express the fact that the obsexvegs are
shortest-paths. The constraints represent the measuyadnteities
(in traffic matrix estimation these would be the link load s@e-

ments, whereas here these are path measurements). Asfim traf

matrix inference, there are (typically) an infinite numbfpassible
feasible solutions to these constraints. We choose oné&@oloy
selecting a single “best” set of weights by solving an optation
problem, where the objective function expressespior beliefs
about IGP weights. Medinet al. [12] showed that in the traffic ma-
trix inference the quality of the solution was criticallymndent on
the quality of the prior. However, it is known [16, 17] thatlaast
one network operator systematically varies its weightsyafs@m

the priors used by Rocketfuel. So we need, at the very least, t

understand how robust route-weight inference is to errothése
priors.

We test our approach on a variety of networks: the Rocketfuel
networks themselves plus two real networks for which we have

precise routing information (Abilene and GEANT). We tesé th
distance proportionality prior against a number of différ@eight
scenarios varying from the real (or hypothetical weightthicase
of Rocketfuel), to sets of weights generated by a varietyofteetic
techniques intended to test the range of possible responses

2. WEIGHT INFERENCE

A good deal of past research has considered topology irderen
In this paper our focus is router- or PoP-level network stmec
There are several approaches to topology measuremengrtibef
purpose of assessing route weight inference we shall asthahe

The actual weights of a network must be a feasible solution to
the above set of constraints. However, there are multisilide
solutions to these constraints. For example, all weiglus fa so-
lution could be scaled up without affecting the routing ie thet-
work. There are a number of approaches to choose a singté&solu
from this set of feasible solutions. In Rocketfuel, the mesent
approach [2] was to choose the set of weights closest to ke i
latencies (which are in turn proportional to the link’s lémg This
“distance proportionality” represents a prior model fa theights,
and in effect this paper presents a test of how importanpifiis is
in the inference process, because we know that it is not alwsed,
e.g., Cisco’s default setting for IGP weightsiiserse-capacity.

The distance proportionality prior can be incorporated im o
inference by performing an optimization: minimize the dbto
value of the difference between the distances and the linghi®
under the constraints imposed by our shortest-path rousesune-
ments. We can write the problem as an Linear Program (LP) as
follows:

minimize f = e,
ecE
subject to
w6_€6§d67 V66E7
We + € > de, Ve € E,

> we <> we, Vi,j €N, andVp € Py,
e€fi;j ecp
We,€e >0, Vee€ E,

whered,. is the link latency in millisecondg, is the absolute dif-
ference between the link weight and the laterigy,is the observed
path fromq to j, and P;; is the set of all loop-free paths betwegn
andj. In effect the optimization attempts to minimize the sum of
the absolute differences = |we — de|.

In some networks, weights may be configured such that there ar
multiple equal-cost paths between a source and destingfiooh

this has already been done, and we know the topology, and thepaths complicate both measurement and inference, thougltived

routes used across a significant part of this topology.

Many modern networks use SPF (Shortest-Path First) roiring
ternally. SPF routing should not be confused with shorgestgraphic-
distance routing — in most SPFs the notion of “path-lengths h
been generalized to allow links to have an arbitiani weight that
might have little to do with geographic distances.

Let us describe the problem formally: the network is a graph

G = (N, E) where the selV denotes the nodes, atfigithe edges.
Then we assign link weights. > 0 to the edges of the network. A
SPF calculation seeks to find the paths which minimize theaum
link weights along the paths, i.e., it finds; = azgergin Zee“ We,

)

whereP;; is the set of all loop-free paths betweeand.
Weight inference refers to the problem of inferring the raatw

weightsw. from a set of indirect measurements. An observation of

a route implies that it is shorter than alternative routelser&fore
the sum of the weights of this specific path is known to be ncemor
than the weights of all alternate paths. The observed rdbers-
fore imply a set of constraints on the link weights from whigh
must select a feasible set of weights. More formally, giveat &n
edge from nodée to 5 (with latencyd;;) has weightw;; we could
easily determine the shortest-paths. We could also deterihie
complete set of pathB;;, and for each such path we can write an

inequality

z we < Zwe, Yu € Py,

e€flij ecp
whereji;; is the observed path froirto j. The number of paths be-
tween a source and a destination grows exponentially withar&
size, and hence so does the number of constraints, but cacered
their number by pruning [2] redundant constraints.

our constraints explicitly allow for equal cost paths.

3. PREDICTIVE POWER

Two sets of weights may be quite different, and yet still teisu
the same routing. For instance consider the network showigin
ure 1, in which we see two quite different sets of possibleghvsi
(shown as bold, and italic text), however, they produce traes
routing, both under normal conditions, and under singlk fail-
ures. If one set of weights was real, and the other inferrednight
legitimately criticise theaccuracy of the inference. However, the
difference is unimportant for all practical purposes. Wetkat the
real and observed weights goeedictively equivalent in the sense
that both predict exactly the same routing.

It should be noted that weight inference will automaticadigult
in a set of weights that are consistent with observed routng
so predictively equivalent for atibserved routes. Hence predictive
equivalence is only interesting when defined with respeantab-
served paths or abnormal conditions. In this paper we wilkater
two casespredictive equivalence of

1. unobserved paths (where not all paths are measured),

2. route changes under single link failures.
In many cases two sets of weights will not be exactly equivtale
and we compare them by measuring the proportion of routds tha
are correctly inferred, i.e§ = |C|/|U|, whereC C U is the
subset of correctly inferred paths out of the set of paftthat we
seek to predict. We call this thgredictive power of the weights.
Where we measur® with respect to the proportion of measured
pathsr we will write S(r), and we will perform multiple exper-
iments removing data in random orders to obtain aver&es.



Figure 1: Two sets of equivalent weights. The bold and italic
weights give the same routing under normal conditions, andla
single link failures. These weights are predictively equialent.

When considering single link failures we consider the failaf a
particular linke and denote the predictive power 8. Under nor-
mal routing conditions a set of routé&s will use link e. When link
e fails, these will be rerouted on alternative paths (assgrsirch
exist). ThenQ. = |C.|/|Re|, whereC. C R. is the set of alterna-
tive paths that are correctly predicted by the inferred Wesidthe
notation@ and R are used instead ¢f andU in order to keep the
two sets of results clearly separated). We define the averalge
by Q = ﬁ Ze QE-

Predictive power is more complicated where Equal-Cost Mult
ple Paths (ECMP) exists. In this case, we present two meffios
first requires that the sets of paths observed, and predittedd
be identical. The second (which we denote $iyand Q') tests
whether the set of predicted paths is a subset of the true E€3VIP
of solutions. This metric is perhaps more useful for prattihar-
acterisations of the results, though it is sometimes istarg to see
where the two differ.

4. DATA

In order to test predictive equivalence we need networks wit
known topology and weights. We have access to two such net-
works: Abilene and GEANT. However, both networks are aca-
demic networks, and relatively small in scale (in terms ahbers
of routers and links). In addition, the weight choice in Adpié is
very simple (and easy to infer), and so this network showsnlis o
that the route weight inference performs well on a networlergh
the prior is true.

In order to have a larger selection of networks to test we use
Rocketfuel data. We work with the PoP-level topologies. \&le-c
sidered the large group of Rocketfuel networks shown in &bl
(indexed by the AS number, though note that we do not assart th
these are truly accurate renditions of these particulavarss), but
in order to see more detail we will focus on two networks.

The Rocketfuel data have the problem that the real weiglets ar
not publically known. We also wish to test the impact of ircor
rect priors on the inference process. Hence we need to denera
sets of simulated weights that have some realistic prasef
weights, and yet are not necessarily correlated with digtanOur
first approach is to start with a network topology (in the eglan
we use Rocketfuel's inferred topology for AS 1). We then use a
simple gravity model to generate a random traffic matrix for t
network. This approach was validated in [18], which showeat t
such a matrix could have some properties in common with rafl t
fic matrices. We make no attempt to match the traffic matrixeo t
topology, as in [16], because we need a traffic matrix thatbis n
fitted exactly to the network in question so that our traffigien
neering step (where we determine the weights) will have atgre
impact. We determine the weights by solving an optimizagimb-
lem: namely, we solve the optimal weights traffic enginegprob-
lem, where the set of weights that balance the load best as=nh

There are several good approaches to solving such probems (
see [3-5]), and we use a genetic algorithm based approadarsim
to that of [4]. The resulting set of weights has some aspdatoe
domness due to the randomness of the input traffic matricesw- H
ever, we know that many operators will be performing a simila
operation in determining their weights, even though in meases

it may be performed in an ad hoc manner by humans attempting to
balance traffic by hand. Hence these weights give us a rellgona
way of generating multiple simulation scenarios.

The resulting weights appear to be quite random. For instanc
Figure 2 shows the mean value of the weight for each link,glon
with 95th % Confidence Intervals (ClIs) for the mean estimated
minimum and maximum values for the weight on each link (over
100 simulations) vs distances of the links. Note that we ltave
strained the weights to lie in the rangi 255] in the above op-
timization, and that the mean values largely fall around aly
through this range (shown as a dashed line), with a few exugept
where they appear to systematically vary from the averadso,A
the weights appear to vary over almost the entire range dilples
values as shown by the minimum and maximum values shown in
the figure. Most importantly, the weights have little coatan to
the geographic distances in the network. The average atimel
coefficient over the 100 simulations conducted above is @5
cating only insignificant correlation with distance, whislvisually
confirmed in Figure 2.

The next step away from the distance proportionality préatoi
take weights which are intrinsically uncorrelated withtdiece, for
instance, unit weights. Given every link has a weight eqoalrte,
shortest-path routing reverts to minimum hop routing. Hasve
strict unit-weights results in many equal-cost shortettgand so
we also consider a case with unit weights with a small randten j
added to change the weights slightly away from one and separa
the equal cost paths.

A more extreme approach is to generate a network in which the
routing is essentially a tree. In this approach, we genevatghts
to be either 1 or 100 and choose the links with = 1 to form a
spanning tree of the network. We will refer to this approastaa
backbone network because it resembles what might happen if a net-
work provider were to build a tree-like high-capacity baokb and
then create additional low capacity links for redundangy.siich
a network, the ISP might wish the low-capacity links to beduse
only in the event of a link failure, and so would give them much
higher weights. This is a rather extreme variation from tie d
tance related weights because the resulting network wilegsly
shunt traffic over this backbone regardless of geograpstauice.
This approach also has the advantage that we can draw soee ide
of the behaviour of inter-domain routing, which has been efled
using minimum-hop with filtering rules [11]. The filteringles
might be modelled by infinite weights (that restrict the ueer-
tain routes), while otherwise minimum hop-length pathswsed
because weights are equal elsewhere. We keep our largetfieigh
nite because otherwise our test networks can become disci@th
under some failure scenarios, but we choose a value (10§9 lar
enough that these links would not normally be used.

We generate a set of backbone networks by taking unit weight
networks, adding jitter to the weights, and then finding thgaim
mum spanning trees. The links on the minimum spanning tree ar
given weight one, and the other links are given weight 100.dd¢/e
not contend that these networks are actually realistic ot\de-
signs (though they do reflect some of the lessons learnt irl[16
regarding the use of large weights to create backup links. niet-
works are primarily intended to generate a network with Wweigs
far from the Rocketfuel prior as is possible.

5. RESULTS



weights

Network

given!

unit

unit + jitter

synthetic

backbone

Rocketfuel AS 1

Rocketfuel AS 1239

GEANT

92.0%, 97.3%
86.0%, 96.6%
83.9%, 91.5%

86.9%, 95.3%
90.7%, 96.4%
86.1%, 95.4%

83.7%, 95.5%
88.8%, 96.6%
86.6%, 94.4%

82.7%, 92.9%
67.9%, 92.9%
81.2%, 90.3%

69.9%, 78.3%
65.9%, 74.2%
63.0%, 67.8%

number of simulationg 30

30

100 100 100

Table 1: Predictive equivalence § and S’ values shown for each case) for the various networks with iramplete data (5 routes are
missing in the dataset). (1) 'given’ refers to either the hypthetical weights in the Rocketfuel data, or the real weight in GEANT.

weights

Network given'

unit

unit + jitter synthetic backbone

Rocketfuel AS 1
Rocketfuel AS 1239
GEANT

94.2%, 94.4%
86.1%, 89.9%
82.5%, 87.8%

98.8%, 99.9%
83.7%, 100.0%
95.1%, 99.7%

98.7%, 99.2%
93.3%, 94.1%
93.2%, 94.2%

90.8%, 90.9%
59.3%, 59.8%
74.6%, 74.7%

68.1%, 69.5%
23.5%, 27.3%
31.0%, 35.5%

number of simulations |E|

£

10 x |E] 10 x |E| 10 x |E|

Table 2: Predictive equivalence Q and Q' values shown for each case) for the various networks underrsgle link failures. (1) 'given’
refers to the weights given either in the Rocketfuel data, othe real weights in GEANT.

1000 1500 2000

geographic distance

Figure 2: Relationship between weights and distance showgn
the mean (0), 95th % Cls (lines), max. {\) and min. (V).

2500

We first test our algorithm on the Abilene network where the
weights are known. This is a diagnostic test, because thierddi
network (at the time of measurement) used weights which were
proportional to geographic distances. The algorithm peréocor-
rectly, predicting these weights correctly (up to a scatedig. We
do not need to test power equivalence on this network as tbe tw
weights are equivalent, and we will omit Abilene resultsifrthe
remainder of the paper.

We will investigate three networks (GEANT and RocketfuelkAS
1 and 1239) in more detail. Tables 1 and 2 summarize the sesult

Table 1 shows the average predictive powefor unobserved
routes for each network and each weight scenario, wheresast
sociated with five links are missing (the choice of the valwe fi
is explained later). The table also shows the number of simul
tions upon which these results are based. There are twdsesul
network/weight scenario. The first of these shows the aespag-
portion of exactly inferred sets of patls§ and the second shows
the average proportion where the inferred set of ECMPs ibsegu
of the actual set, i.eS’.

The results show that for many cases the route weight inferen
is highly effective.S’ values above 90% are common, éhdalues
are typically above 80% (requiring exact matches for all BGM

technique, and so it is not surprising to see these resultgat\§
perhaps surprising is that the results are not terrible. iNelstain
S’ values around 70%, which is not fantastic, but may still be at
a level that is useful. More importantly, even in cases susctrdt
weights (which have no distance term), or synthetic wei@ghitéch
we showed were not correlated with distances), we get qoitel g
predictive power. In fact, in some cases the predictive pasveet-
ter for unit weights than it is for the real weights (e.g., &ANT
— note that although these GEANT weights are not directly pro
portional to distance, there is a correlation between déstaand
the real weights). These results are very promising.

Table 2 shows the average predictive powgrandQ’ for single
link failures. In these cases we created the same numbert-of ne
works as for prediction of unobserved routes, but run orteceese
considering the failure of each link in each network, so thtalt
number of results being averaged in the value reported isrdep
dent on|E|, the number of edges in a network (see Table 3 to find
the number of edges.). The results in this table support té-p
ous results in that they show that quite good predictive paaea
be obtained over a range of networks and scenarios. Howtaeer,
results are far worse for the backbone network weights. ttigpa
ular, for AS 1239 and GEANT the predictive power is poor. We
will further discuss reasons for this below where we corstbe
detailed results.

5.1 Detailed results
511 Givenweights

In our first comparison, we consider a wide selection of thelkRo
etfuel networks using the hypothetical weights from Roftledt
Our estimation algorithm is similar to Rocketfuel, and so exe
pect to get good estimates. We do not know real weights, so thi
test simply compares the differences between our appraauh,
the Rocketfuel’'s. Table 3 shows the values@BndQ’. As ex-
pected, the results are good, though there are small esove ase
implicit routing information rather than actual traceresit These
results also reveal some of the basic properties of thisoagpr
Typical values are above 80%, but many are greater than 9%, w
an average of 95%. When we considgr we note that in many
cases) ~ Q' as ECMP has little impact on the network, but in a
few casesQ)’ is somewhat larger. We considered a number of fac-
tors that could influence the quality of the results. We adergd

seems to degrade the results by 5-10% in most cases). The exihe correlation coefficients of the errars- Q with the number of

ception where the results are noticeably worse is with thek-ba
bone weight scenarios. As noted, it is in this case that theatk
weights most clearly violate the prior assumption of theiahce

nodes| N|, edges E|, and the average node degiég/|N|, with
values 0.32, 0.29 and 0.50, respectively. The average negieel
has the largest impact on the quality of the results. Thdteate



not conclusive. There are clearly other factors at work thetfact
that there is any reduction in quality appears counteritiveu A
higher node degree leads to more paths and more constralmits,
we might assume improves the quality of estimates. Howéwer,
fact, given more possible alternative paths it is harderotoectly
predict the rerouting after a failure.

The computation times (on a 1.8 Ghz Intel PC) for the optimiza
tion problems (after pruning) are also shown in Table 3 wagpect
to the number of edges in the network. The CPU time is well ap-
proximated as cubi®©(|E|?).

ASN [ [NT [ [E] [ [EI/IN] | Q@ (%) | @ (%) [ CPU (ms)
1 241 74 3.1 94.2 94.4 20
174 | 22| 112 51 86.6 92.3 30
702 38| 162 4.3 79.4 92.4 60
852 | 15| 38 25 95.0 95.0 10
1239 | 33| 130 3.9 86.1 89.9 60
1299 | 17| 60 35 84.6 94.9 10
2686 17| 54 3.2 98.1 98.1 10
3300 21| 68 3.2 95.2 99.4 10
3561 59 | 592 10.0 88.0 99.6 6369
3701 3 6 2.0 | 100.0| 100.0 0
4323 | 40 | 300 7.5 73.8 87.6 460
5511 26| 80 3.1 95.0 99.3 20
5669 10| 22 2.2 1.00 1.00 0
6453 22| 70 3.2 71.9 93.9 20
7018 36 | 136 3.8 95.5 98.1 40
7170 18 | 120 6.7 66.8 88.2 70
8220 23| 124 5.4 93.5 96.7 50
average 88.3 95.2

Table 3: Predictive power Q and Q’ for Rocketfuel weights,
along with CPU times, and the number of edges and nodes in
each network (after removing degree one nodes).

5.1.2 Synthetic weights

The above results are favourably biased by the nature ofxthe e
periment, so we also investigate our synthetic weightschviire
not correlated with distance. We simulate 10 weight scesdor
each of the three networks investigated in detail. Tableadl2a
present a summary of the results.

We first consider the quality of predictions under singlé Fail-
ures. Figure 3 shows Cumulative Distribution Functions FSp
for 1 — Q' for each of the three networks. Note that the plots for

Q’Sf) look almost identical though slightly shifted. We can seat th
the average) values 90.8%, 59.3%, 74.6% (for AS 1, 1239 and
GEANT respectively), are reflected in the CDFs.

1

T ——=T=

0.8f 7 7
0.6 /
[T
D -
o ,
0.4+
0.2 — AS1
--- AS 1239
- - Geant
0 . . .
0 0.4 @ 06 0.8 1
1-Q;

Figure 3: A CDF of the values of1 — QS) for the single link
failure prediction cases for synthetic weights.

The most notable thing about these CDFs is that they spread th
errors out across quite a range of values (e.g., the fulledrgn
0to 1 for AS 1239). Given this range of values, it is naturahsé
whether there is some pattern in the values. Does a partidka

?0 30 40 50 60
link number
(a) Rocketfuel AS 1239.

0 10 20 30 40 50 60

(b) Random data.

Figure 4: .. for each link e for synthetic weights including 95th
percentile Cls (lines), and the maximum () and minimum (V).

in the network topology have more or less impact results when
fails? Figure 4 (a) shows a plot of the values(af for each indi-
vidual link failure (averaged over the different simulai$o but also
showing 95th percentile confidence intervals@ny) for Rocketfuel
AS 1239. The links are sorted in order of increasipgto make
the plot clearer. This leads to an apparent trend in the tataye
argue here that the variations shown in this trend are atdrégt
marginally statistically significant. Figure 4 (b) shows imitar
plot based on a Independent, Identically-Distributed  Eaussian
data (with similar parameters to the data shown in Figure)¥ (a
We can see that when sorted in this fashion, this data alseeapp
to present a similar pattern despite the IID nature of the.d#t
comparison, similar plots (not shown here) for GEANT shovt-a |
tle more link based variability, and those for Rocketfuel AShow
less. Furthermore, we can see that the range of variatisogtire
from different weight scenarios (shown by the maximum and-mi
imums on the graphs) is generally wider than the variatiarestd
the link’s position in the network topology. Hence, we argoat
the particular weights of a network are more important tHaa t
link’s position in the network topology.

We also consider the quality of predictions of unobservedas
i.e.,S. Figure 5 (a) shows the value 8{r) as we successively re-
moved random links from the set of measurements. The results
summarize 10 random order choices for link removal for edch o
the 10 synthetically chosen weights (100 simulations in @lso
shown (as short vertical bars) are 95th percentile confilérter-
vals for the estimates &f. The plots start (for = 0) at.S(0) = 1
because in this case there is no missing data and so the weight
tained will be consistent with all routing. The value $tthen de-
creases sharply. A very significant proportion of the losfdaity
occurs in the first five steps (hence our choice of five in Table 1
The most interesting feature of these graphs is the facthbaer-
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formance can improve when we remove data and worsen when we
add data. This seems counter-intuitive and requires fuhwes-
tigation. Also noteworthy is the fact that does not decrease to
zero. When there is zero information (in the form of route mea
surements), the Rocketfuel prior will result in the infefrgeights
being exactly proportional to the distances. The fact #{@t # 0
indicates that even the (known to be incorrect) prior canenak
reasonable proportion of valid predictions.

This is both a negative and positive result. It is negativeabee
it means that a partial traceroute survey of a network migtt n
improve route weight estimates dramatically (at least imgeof
inferring unobserved paths). It could even result in worsgqr-
mance. However, the result is positive in the sense that pleten
or almost complete traceroute survey can be quite usefualiétee
real link weights aren'’t directly correlated with distance

5.1.3 Unit weights

We next consider the predictive power when the network uses

unit weights, or unit weights with jitter. These mirror thesults
for synthetic weights (qualitatively, though there are soguan-
titative differences), and so we do not reproduce them h&he

major thing that we learn from these scenarios concerns ECMP

The CDFs for the case of pure unit weights differ profounddy b

tweenl — Q¢ and1 — Q'C”. However, for the case where the
ECMPs have already been removed by adding some jitter, there

very little change between the CDFs for- Q{” and1 — @',

5.1.4 Backboneweights

We repeat the results shown for the previous scenarios &r th
backbone weights. The prediction of routes after failusequite
poor. Apart from poor average results consideration of thé-C

(not shown) shows there are now many cases wb}ifé = 0.

Also, as we remove data, the average performance now degrade [14]

monotonically to a much smaller value 61) than before. Al-
though the average values 6{r) is now monotonic individual
sample paths still show non-monotonic behaviour, but theawe
sult is a much poorer set of estimated routes.

6. CONCLUSION

We have introduced, in this paper, a new concept: predictive

power, and we have used this to assess the accuracy of shortes

path weight inference. In our tests, the accuracy of the pniadel
used in the inference process is not as important as it igdffict
matrix estimation. Significant departures from the pri@uteed in
only a few percent change in the predictive power. The exoe|x

where we use the backbone weight scenario, which resulterisen
performance particularly when trying to predict the routesd af-
ter a link failure. Also, interesting is the fact that in soeses
additional information is not helpful. We observed casesnslpre-
dictive performance decreases as more measurements vadec ad

The results are quite positive, but they also leave scoparfor
proving such techniques, for instance in choosing betweadtipte
equivalent solutions to the LP. There are several direstfonfu-
ture work: e.g., investigating the cause of informatiorersal.
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