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ABSTRACT
Reverse engineering of the Internet is a valuable activity.Apart
from providing scientific insight, the resulting datasets are invalu-
able in providing realistic network scenarios for other researchers.
The Rocketfuel project attempted this process, but it is surprising
how little effort has been made to validate its results. Thispaper
concentrates on validating a particular inference methodology used
to obtain link weights on a network. There is a basic difficulty in
assessing the accuracy of such inferences in that a non-unique set
of link-weights may produce the same routing, and so simple mea-
surements of accuracy (even where ground truth data are available)
do not capture the usefulness of a set of inferred weights. Wepro-
pose a methodology based onpredictive power to assess the quality
of the weight inference. We used this to test Rocketfuel’s algo-
rithm, and our tests suggest that it is reasonably good particularly
on certain topologies, though it has limitations when its underlying
assumptions are incorrect.

Categories and Subject Descriptors
C.2.3 [Computer-Communications Networks]: Network Opera-
tions—network monitoring

General Terms
Measurement

Keywords
Topology, Inference, Routing

1. INTRODUCTION
Internet providers are (quite reasonably) unwilling to share in-

formation about their networks. The information (such as topol-
ogy, routing policies and so on) would be very useful to network
researchers, but also of great interest to their competitors. Never-
theless, some example networks are required for much of network
research. Such data also holds great interest for scientists interested
in properties of large networks (or graphs).

The Rocketfuel project [1, 2] suggested techniques for “reverse
engineering” the Internet. Springet al. [1] performed extensive
traceroute studies to determine the router- or Point-of-Presence (PoP)
level topologies of ISPs (Internet Service Providers), including esti-
mates of Interior Gateway Protocol (IGP) weights [2]. Such weights
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are useful for a number of reasons, for instance as a basis forcom-
parison when studying weight optimization [3–5].

The Rocketfuel topologies and weights have been of such great
use that they have become the basis for many recent networking
papers, so it may seem somewhat surprising then that very lit-
tle validation has been performed. Some work [6, 7] has ques-
tioned the accuracy of the network graphs provided by Rocketfuel.
However, little work has considered systematically the question of
weight inference. The lack of validation is problematic because the
inference problem is underconstrained: the possible solutions are
non-unique, and identified only through the use of additional side-
assumptions about the behaviour of “typical” weights. The side-
assumptions are known to be wrong in some instances, but until
now there has been no understanding of the impact this may have
on the inferred weights.

The problem is complicated by the fact that direct comparisons
of two sets of links weights tells us little about the usefulness of a
set of inferences. For instance, one could scale links weights by a
constant factor and obtain a completely equivalent set of weights.
The fact that the inferred links weights can thus be made arbitrarily
“inaccurate” has little impact on their usefulness for network exper-
iments. More subtle cases are common: the change of a weight can
have no consequence or may cause dramatic rerouting. So even
if one knew the true value of the link weights, we still require a
new way to assess the value of results. A naive approach would
be to assess inferred weights on how closely the paths chosenby
the resulting algorithm match those of the real routing. However,
inference techniques can be designed to ensure this condition, but
still be wildly inaccurate.

We take the approach of considering thepredictive power of the
inferred weights. That is, we use the inferred weights to predict net-
work behaviour after a change in the network occurs, and compare
the prediction with real behaviour. The aim is to find whetherthe
weights are useful, rather than “accurate”. Auseful set of weights
can be used to make predictions about the behaviour of a network.
We concentrate on the ability to predict routes that we didn’t ob-
serve in our measurements, or to predict rerouting after link failure.

The problem is actually more general than just the inferenceof
IGP link weights. In general, we are trying to infer routing policies.
IGP weights are a simple example, but the inference of policies can
extend to estimation of inter-domain routing policies. Inter-domain
policy inference has been considered in a number of papers [8–11].
For instance, Mühlbaueret al. [11] propose to use the inferred rout-
ing policies to answer “what if” questions to aide operatorsin mak-
ing decision about inter-domain routing configuration. Answers to
such questions could be very useful to network operators, and are
hard to obtain without inference.

Routing weight inference lies in the area ofnetwork tomogra-
phy. Tomography problems in general are formulated in such a
way as to infer desired information from a set of indirect mea-



surements. The canonical examples of network tomography are
traffic matrix inference [12, 13], link performance estimation [14],
and topology inference [15]. Routing policy inference displays dis-
tinct similarities to these, in particular, to traffic matrix estimation.
The problems are both linear inverse problems, and they are both
highly underconstrained. In link-weight inference we write a set of
linear constraints that express the fact that the observed routes are
shortest-paths. The constraints represent the measurablequantities
(in traffic matrix estimation these would be the link load measure-
ments, whereas here these are path measurements). As in traffic
matrix inference, there are (typically) an infinite number of possible
feasible solutions to these constraints. We choose one solution by
selecting a single “best” set of weights by solving an optimization
problem, where the objective function expresses ourprior beliefs
about IGP weights. Medinaet al. [12] showed that in the traffic ma-
trix inference the quality of the solution was critically dependent on
the quality of the prior. However, it is known [16, 17] that atleast
one network operator systematically varies its weights away from
the priors used by Rocketfuel. So we need, at the very least, to
understand how robust route-weight inference is to errors in these
priors.

We test our approach on a variety of networks: the Rocketfuel
networks themselves plus two real networks for which we have
precise routing information (Abilene and GEANT). We test the
distance proportionality prior against a number of different weight
scenarios varying from the real (or hypothetical weights inthe case
of Rocketfuel), to sets of weights generated by a variety of synthetic
techniques intended to test the range of possible responses.

2. WEIGHT INFERENCE
A good deal of past research has considered topology inference.

In this paper our focus is router- or PoP-level network structure.
There are several approaches to topology measurement, but for the
purpose of assessing route weight inference we shall assumethat
this has already been done, and we know the topology, and the
routes used across a significant part of this topology.

Many modern networks use SPF (Shortest-Path First) routingin-
ternally. SPF routing should not be confused with shortest-geographic-
distance routing — in most SPFs the notion of “path-length” has
been generalized to allow links to have an arbitrarylink weight that
might have little to do with geographic distances.

Let us describe the problem formally: the network is a graph
G = (N, E) where the setN denotes the nodes, andE the edges.
Then we assign link weightswe ≥ 0 to the edges of the network. A
SPF calculation seeks to find the paths which minimize the sumof
link weights along the paths, i.e., it findŝµij = argmin

µ∈Pij

P

e∈µ
we,

wherePij is the set of all loop-free paths betweeni andj.
Weight inference refers to the problem of inferring the network

weightswe from a set of indirect measurements. An observation of
a route implies that it is shorter than alternative routes. Therefore
the sum of the weights of this specific path is known to be no more
than the weights of all alternate paths. The observed routesthere-
fore imply a set of constraints on the link weights from whichwe
must select a feasible set of weights. More formally, given that an
edge from nodei to j (with latencydij) has weightwij we could
easily determine the shortest-paths. We could also determine the
complete set of pathsPij , and for each such path we can write an
inequality

X

e∈µ̂ij

we ≤
X

e∈µ

we, ∀µ ∈ Pij ,

whereµ̂ij is the observed path fromi to j. The number of paths be-
tween a source and a destination grows exponentially with network
size, and hence so does the number of constraints, but can reduce
their number by pruning [2] redundant constraints.

The actual weights of a network must be a feasible solution to
the above set of constraints. However, there are multiple feasible
solutions to these constraints. For example, all weights from a so-
lution could be scaled up without affecting the routing in the net-
work. There are a number of approaches to choose a single solution
from this set of feasible solutions. In Rocketfuel, the mostrecent
approach [2] was to choose the set of weights closest to the link
latencies (which are in turn proportional to the link’s length). This
“distance proportionality” represents a prior model for the weights,
and in effect this paper presents a test of how important thisprior is
in the inference process, because we know that it is not always used,
e.g., Cisco’s default setting for IGP weights isinverse-capacity.

The distance proportionality prior can be incorporated in our
inference by performing an optimization: minimize the absolute
value of the difference between the distances and the link weights
under the constraints imposed by our shortest-path route measure-
ments. We can write the problem as an Linear Program (LP) as
follows:

minimize f =
X

e∈E

εe,

subject to
we − εe ≤ de, ∀e ∈ E,
we + εe ≥ de, ∀e ∈ E,
X

e∈µ̂ij

we ≤
X

e∈µ

we, ∀i, j ∈ N, and∀µ ∈ Pij ,

we, εe ≥ 0, ∀e ∈ E,

wherede is the link latency in milliseconds,εe is the absolute dif-
ference between the link weight and the latency,µ̂ij is the observed
path fromi to j, andPij is the set of all loop-free paths betweeni
andj. In effect the optimization attempts to minimize the sum of
the absolute differencesεe = |we − de|.

In some networks, weights may be configured such that there are
multiple equal-cost paths between a source and destination. Such
paths complicate both measurement and inference, though note that
our constraints explicitly allow for equal cost paths.

3. PREDICTIVE POWER
Two sets of weights may be quite different, and yet still result in

the same routing. For instance consider the network shown inFig-
ure 1, in which we see two quite different sets of possible weights
(shown as bold, and italic text), however, they produce the same
routing, both under normal conditions, and under single link fail-
ures. If one set of weights was real, and the other inferred, we might
legitimately criticise theaccuracy of the inference. However, the
difference is unimportant for all practical purposes. We say that the
real and observed weights arepredictively equivalent in the sense
that both predict exactly the same routing.

It should be noted that weight inference will automaticallyresult
in a set of weights that are consistent with observed routing, and
so predictively equivalent for allobserved routes. Hence predictive
equivalence is only interesting when defined with respect tounob-
served paths or abnormal conditions. In this paper we will consider
two cases:predictive equivalence of

1. unobserved paths (where not all paths are measured),
2. route changes under single link failures.

In many cases two sets of weights will not be exactly equivalent,
and we compare them by measuring the proportion of routes that
are correctly inferred, i.e.,S = |C|/|U |, whereC ⊂ U is the
subset of correctly inferred paths out of the set of pathsU that we
seek to predict. We call this thepredictive power of the weights.
Where we measureS with respect to the proportion of measured
pathsr we will write S(r), and we will perform multiple exper-
iments removing data in random orders to obtain averagesS̄(r).
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Figure 1: Two sets of equivalent weights. The bold and italic
weights give the same routing under normal conditions, and all
single link failures. These weights are predictively equivalent.

When considering single link failures we consider the failure of a
particular linke and denote the predictive power byQe. Under nor-
mal routing conditions a set of routesRe will use link e. When link
e fails, these will be rerouted on alternative paths (assuming such
exist). ThenQe = |Ce|/|Re|, whereCe ⊂ Re is the set of alterna-
tive paths that are correctly predicted by the inferred weights (the
notationQ andR are used instead ofS andU in order to keep the
two sets of results clearly separated). We define the averagevalue
by Q = 1

|E|

P

e Qe.
Predictive power is more complicated where Equal-Cost Multi-

ple Paths (ECMP) exists. In this case, we present two metrics. The
first requires that the sets of paths observed, and predictedshould
be identical. The second (which we denote byS′ and Q′) tests
whether the set of predicted paths is a subset of the true ECMPset
of solutions. This metric is perhaps more useful for practical char-
acterisations of the results, though it is sometimes interesting to see
where the two differ.

4. DATA
In order to test predictive equivalence we need networks with

known topology and weights. We have access to two such net-
works: Abilene and GEANT. However, both networks are aca-
demic networks, and relatively small in scale (in terms of numbers
of routers and links). In addition, the weight choice in Abilene is
very simple (and easy to infer), and so this network shows us only
that the route weight inference performs well on a network where
the prior is true.

In order to have a larger selection of networks to test we use
Rocketfuel data. We work with the PoP-level topologies. We con-
sidered the large group of Rocketfuel networks shown in Table 3
(indexed by the AS number, though note that we do not assert that
these are truly accurate renditions of these particular networks), but
in order to see more detail we will focus on two networks.

The Rocketfuel data have the problem that the real weights are
not publically known. We also wish to test the impact of incor-
rect priors on the inference process. Hence we need to generate
sets of simulated weights that have some realistic properties of
weights, and yet are not necessarily correlated with distances. Our
first approach is to start with a network topology (in the examples
we use Rocketfuel’s inferred topology for AS 1). We then use a
simple gravity model to generate a random traffic matrix for the
network. This approach was validated in [18], which showed that
such a matrix could have some properties in common with real traf-
fic matrices. We make no attempt to match the traffic matrix to the
topology, as in [16], because we need a traffic matrix that is not
fitted exactly to the network in question so that our traffic engi-
neering step (where we determine the weights) will have a greater
impact. We determine the weights by solving an optimizationprob-
lem: namely, we solve the optimal weights traffic engineering prob-
lem, where the set of weights that balance the load best are chosen.

There are several good approaches to solving such problems (e.g.,
see [3–5]), and we use a genetic algorithm based approach similar
to that of [4]. The resulting set of weights has some aspects of ran-
domness due to the randomness of the input traffic matrices. How-
ever, we know that many operators will be performing a similar
operation in determining their weights, even though in manycases
it may be performed in an ad hoc manner by humans attempting to
balance traffic by hand. Hence these weights give us a reasonable
way of generating multiple simulation scenarios.

The resulting weights appear to be quite random. For instance,
Figure 2 shows the mean value of the weight for each link, along
with 95th % Confidence Intervals (CIs) for the mean estimates, and
minimum and maximum values for the weight on each link (over
100 simulations) vs distances of the links. Note that we havecon-
strained the weights to lie in the range[1, 255] in the above op-
timization, and that the mean values largely fall around half way
through this range (shown as a dashed line), with a few exceptions
where they appear to systematically vary from the average. Also,
the weights appear to vary over almost the entire range of possible
values as shown by the minimum and maximum values shown in
the figure. Most importantly, the weights have little correlation to
the geographic distances in the network. The average correlation
coefficient over the 100 simulations conducted above is 0.05indi-
cating only insignificant correlation with distance, whichis visually
confirmed in Figure 2.

The next step away from the distance proportionality prior is to
take weights which are intrinsically uncorrelated with distance, for
instance, unit weights. Given every link has a weight equal to one,
shortest-path routing reverts to minimum hop routing. However,
strict unit-weights results in many equal-cost shortest paths, and so
we also consider a case with unit weights with a small random jitter
added to change the weights slightly away from one and separate
the equal cost paths.

A more extreme approach is to generate a network in which the
routing is essentially a tree. In this approach, we generateweights
to be either 1 or 100 and choose the links withwe = 1 to form a
spanning tree of the network. We will refer to this approach as a
backbone network because it resembles what might happen if a net-
work provider were to build a tree-like high-capacity backbone and
then create additional low capacity links for redundancy. In such
a network, the ISP might wish the low-capacity links to be used
only in the event of a link failure, and so would give them much
higher weights. This is a rather extreme variation from the dis-
tance related weights because the resulting network will generally
shunt traffic over this backbone regardless of geographic distance.
This approach also has the advantage that we can draw some idea
of the behaviour of inter-domain routing, which has been modelled
using minimum-hop with filtering rules [11]. The filtering rules
might be modelled by infinite weights (that restrict the use of cer-
tain routes), while otherwise minimum hop-length paths areused
because weights are equal elsewhere. We keep our large weight fi-
nite because otherwise our test networks can become disconnected
under some failure scenarios, but we choose a value (100) large
enough that these links would not normally be used.

We generate a set of backbone networks by taking unit weight
networks, adding jitter to the weights, and then finding the mini-
mum spanning trees. The links on the minimum spanning tree are
given weight one, and the other links are given weight 100. Wedo
not contend that these networks are actually realistic network de-
signs (though they do reflect some of the lessons learnt in [16, 17]
regarding the use of large weights to create backup links). The net-
works are primarily intended to generate a network with weights as
far from the Rocketfuel prior as is possible.

5. RESULTS



weights
Network given1 unit unit + jitter synthetic backbone

Rocketfuel AS 1 92.0%, 97.3% 86.9%, 95.3% 83.7%, 95.5% 82.7%, 92.9% 69.9%, 78.3%
Rocketfuel AS 1239 86.0%, 96.6% 90.7%, 96.4% 88.8%, 96.6% 67.9%, 92.9% 65.9%, 74.2%

GEANT 83.9%, 91.5% 86.1%, 95.4% 86.6%, 94.4% 81.2%, 90.3% 63.0%, 67.8%
number of simulations 30 30 100 100 100

Table 1: Predictive equivalence (̄S and S̄′ values shown for each case) for the various networks with incomplete data (5 routes are
missing in the dataset). (1) ’given’ refers to either the hypothetical weights in the Rocketfuel data, or the real weights in GEANT.

weights
Network given1 unit unit + jitter synthetic backbone

Rocketfuel AS 1 94.2%, 94.4% 98.8%, 99.9% 98.7%, 99.2% 90.8%, 90.9% 68.1%, 69.5%
Rocketfuel AS 1239 86.1%, 89.9% 83.7%, 100.0% 93.3%, 94.1% 59.3%, 59.8% 23.5%, 27.3%

GEANT 82.5%, 87.8% 95.1%, 99.7% 93.2%, 94.2% 74.6%, 74.7% 31.0%, 35.5%
number of simulations |E| |E| 10 × |E| 10 × |E| 10 × |E|

Table 2: Predictive equivalence (̄Q and Q̄′ values shown for each case) for the various networks under single link failures. (1) ’given’
refers to the weights given either in the Rocketfuel data, orthe real weights in GEANT.
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Figure 2: Relationship between weights and distance showing
the mean (o), 95th % CIs (lines), max. (△) and min. (▽).

We first test our algorithm on the Abilene network where the
weights are known. This is a diagnostic test, because the Abilene
network (at the time of measurement) used weights which were
proportional to geographic distances. The algorithm performs cor-
rectly, predicting these weights correctly (up to a scale factor). We
do not need to test power equivalence on this network as the two
weights are equivalent, and we will omit Abilene results from the
remainder of the paper.

We will investigate three networks (GEANT and Rocketfuel ASs
1 and 1239) in more detail. Tables 1 and 2 summarize the results.

Table 1 shows the average predictive powerS̄ for unobserved
routes for each network and each weight scenario, where routes as-
sociated with five links are missing (the choice of the value five
is explained later). The table also shows the number of simula-
tions upon which these results are based. There are two results per
network/weight scenario. The first of these shows the average pro-
portion of exactly inferred sets of paths̄S, and the second shows
the average proportion where the inferred set of ECMPs is a subset
of the actual set, i.e.,̄S′.

The results show that for many cases the route weight inference
is highly effective.S̄′ values above 90% are common, andS̄ values
are typically above 80% (requiring exact matches for all ECMPs
seems to degrade the results by 5-10% in most cases). The ex-
ception where the results are noticeably worse is with the back-
bone weight scenarios. As noted, it is in this case that the network
weights most clearly violate the prior assumption of the inference

technique, and so it is not surprising to see these results. What is
perhaps surprising is that the results are not terrible. We still obtain
S̄′ values around 70%, which is not fantastic, but may still be at
a level that is useful. More importantly, even in cases such as unit
weights (which have no distance term), or synthetic weights(which
we showed were not correlated with distances), we get quite good
predictive power. In fact, in some cases the predictive power is bet-
ter for unit weights than it is for the real weights (e.g., seeGEANT
— note that although these GEANT weights are not directly pro-
portional to distance, there is a correlation between distance and
the real weights). These results are very promising.

Table 2 shows the average predictive powersQ̄ andQ̄′ for single
link failures. In these cases we created the same number of net-
works as for prediction of unobserved routes, but run one test case
considering the failure of each link in each network, so the total
number of results being averaged in the value reported is depen-
dent on|E|, the number of edges in a network (see Table 3 to find
the number of edges.). The results in this table support the previ-
ous results in that they show that quite good predictive power can
be obtained over a range of networks and scenarios. However,the
results are far worse for the backbone network weights. In partic-
ular, for AS 1239 and GEANT the predictive power is poor. We
will further discuss reasons for this below where we consider the
detailed results.

5.1 Detailed results
5.1.1 Given weights

In our first comparison, we consider a wide selection of the Rock-
etfuel networks using the hypothetical weights from Rocketfuel.
Our estimation algorithm is similar to Rocketfuel, and so weex-
pect to get good estimates. We do not know real weights, so this
test simply compares the differences between our approach,and
the Rocketfuel’s. Table 3 shows the values ofQ̄ andQ̄′. As ex-
pected, the results are good, though there are small errors as we use
implicit routing information rather than actual traceroutes. These
results also reveal some of the basic properties of this approach.
Typical values are above 80%, but many are greater than 90%, with
an average of 95%. When we considerQ̄′ we note that in many
casesQ̄ ≃ Q̄′ as ECMP has little impact on the network, but in a
few cases,̄Q′ is somewhat larger. We considered a number of fac-
tors that could influence the quality of the results. We considered
the correlation coefficients of the errors1 − Q̄ with the number of
nodes|N |, edges|E|, and the average node degree|E|/|N |, with
values 0.32, 0.29 and 0.50, respectively. The average node degree
has the largest impact on the quality of the results. The results are



not conclusive. There are clearly other factors at work, butthe fact
that there is any reduction in quality appears counter-intuitive. A
higher node degree leads to more paths and more constraints,which
we might assume improves the quality of estimates. However,in
fact, given more possible alternative paths it is harder to correctly
predict the rerouting after a failure.

The computation times (on a 1.8 Ghz Intel PC) for the optimiza-
tion problems (after pruning) are also shown in Table 3 with respect
to the number of edges in the network. The CPU time is well ap-
proximated as cubicO(|E|3).

ASN |N | |E| |E|/|N | Q̄ (%) Q̄′ (%) CPU (ms)
1 24 74 3.1 94.2 94.4 20

174 22 112 5.1 86.6 92.3 30
702 38 162 4.3 79.4 92.4 60
852 15 38 2.5 95.0 95.0 10

1239 33 130 3.9 86.1 89.9 60
1299 17 60 3.5 84.6 94.9 10
2686 17 54 3.2 98.1 98.1 10
3300 21 68 3.2 95.2 99.4 10
3561 59 592 10.0 88.0 99.6 6369
3701 3 6 2.0 100.0 100.0 0
4323 40 300 7.5 73.8 87.6 460
5511 26 80 3.1 95.0 99.3 20
5669 10 22 2.2 1.00 1.00 0
6453 22 70 3.2 71.9 93.9 20
7018 36 136 3.8 95.5 98.1 40
7170 18 120 6.7 66.8 88.2 70
8220 23 124 5.4 93.5 96.7 50

average 88.3 95.2

Table 3: Predictive power Q̄ and Q̄′ for Rocketfuel weights,
along with CPU times, and the number of edges and nodes in
each network (after removing degree one nodes).

5.1.2 Synthetic weights
The above results are favourably biased by the nature of the ex-

periment, so we also investigate our synthetic weights, which are
not correlated with distance. We simulate 10 weight scenarios for
each of the three networks investigated in detail. Tables 1 and 2
present a summary of the results.

We first consider the quality of predictions under single link fail-
ures. Figure 3 shows Cumulative Distribution Functions (CDFs)
for 1 − Q

(i)
e for each of the three networks. Note that the plots for

Q′(i)
e look almost identical though slightly shifted. We can see that

the averageQ values 90.8%, 59.3%, 74.6% (for AS 1, 1239 and
GEANT respectively), are reflected in the CDFs.
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Figure 3: A CDF of the values of1 − Q
(i)
e for the single link

failure prediction cases for synthetic weights.

The most notable thing about these CDFs is that they spread the
errors out across quite a range of values (e.g., the full range from
0 to 1 for AS 1239). Given this range of values, it is natural toask
whether there is some pattern in the values. Does a particular link
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(a) Rocketfuel AS 1239.
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Figure 4: Q̄e for each link e for synthetic weights including 95th
percentile CIs (lines), and the maximum (△) and minimum (▽).

in the network topology have more or less impact results whenit
fails? Figure 4 (a) shows a plot of the values ofQ̄e for each indi-
vidual link failure (averaged over the different simulations, but also
showing 95th percentile confidence intervals forQ̄e) for Rocketfuel
AS 1239. The links are sorted in order of increasingQ̄e to make
the plot clearer. This leads to an apparent trend in the data,but we
argue here that the variations shown in this trend are at bestonly
marginally statistically significant. Figure 4 (b) shows a similar
plot based on a Independent, Identically-Distributed (IID) Gaussian
data (with similar parameters to the data shown in Figure 4 (a)).
We can see that when sorted in this fashion, this data also appears
to present a similar pattern despite the IID nature of the data. In
comparison, similar plots (not shown here) for GEANT show a lit-
tle more link based variability, and those for Rocketfuel AS1 show
less. Furthermore, we can see that the range of variations resulting
from different weight scenarios (shown by the maximum and min-
imums on the graphs) is generally wider than the variations due to
the link’s position in the network topology. Hence, we arguethat
the particular weights of a network are more important than the
link’s position in the network topology.

We also consider the quality of predictions of unobserved routes,
i.e., S̄. Figure 5 (a) shows the value of̄S(r) as we successively re-
moved random links from the set of measurements. The results
summarize 10 random order choices for link removal for each of
the 10 synthetically chosen weights (100 simulations in all). Also
shown (as short vertical bars) are 95th percentile confidence inter-
vals for the estimates ofS. The plots start (forr = 0) at S̄(0) = 1
because in this case there is no missing data and so the weights ob-
tained will be consistent with all routing. The value ofS̄ then de-
creases sharply. A very significant proportion of the loss offidelity
occurs in the first five steps (hence our choice of five in Table 1.)
The most interesting feature of these graphs is the fact thattheper-
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Figure 5: S̄(r) and 95th percentile confidence intervals.

formance can improve when we remove data and worsen when we
add data. This seems counter-intuitive and requires futureinves-
tigation. Also noteworthy is the fact thatS does not decrease to
zero. When there is zero information (in the form of route mea-
surements), the Rocketfuel prior will result in the inferred weights
being exactly proportional to the distances. The fact thatS(1) 6= 0
indicates that even the (known to be incorrect) prior can make a
reasonable proportion of valid predictions.

This is both a negative and positive result. It is negative because
it means that a partial traceroute survey of a network might not
improve route weight estimates dramatically (at least in terms of
inferring unobserved paths). It could even result in worse perfor-
mance. However, the result is positive in the sense that a complete,
or almost complete traceroute survey can be quite useful even if the
real link weights aren’t directly correlated with distance.

5.1.3 Unit weights
We next consider the predictive power when the network uses

unit weights, or unit weights with jitter. These mirror the results
for synthetic weights (qualitatively, though there are some quan-
titative differences), and so we do not reproduce them here.The
major thing that we learn from these scenarios concerns ECMP.
The CDFs for the case of pure unit weights differ profoundly be-
tween1 − Q

(i)
e and1 − Q′(i)

e . However, for the case where the
ECMPs have already been removed by adding some jitter, thereis
very little change between the CDFs for1 − Q

(i)
e and1 − Q′(i)

e .

5.1.4 Backbone weights
We repeat the results shown for the previous scenarios for the

backbone weights. The prediction of routes after failures is quite
poor. Apart from poor average results consideration of the CDF
(not shown) shows there are now many cases whereQ

(i)
e = 0.

Also, as we remove data, the average performance now degrades
monotonically to a much smaller value ofS(1) than before. Al-
though the average values ofS(r) is now monotonic individual
sample paths still show non-monotonic behaviour, but the net re-
sult is a much poorer set of estimated routes.

6. CONCLUSION
We have introduced, in this paper, a new concept: predictive

power, and we have used this to assess the accuracy of shortest-
path weight inference. In our tests, the accuracy of the prior model
used in the inference process is not as important as it is for traffic
matrix estimation. Significant departures from the prior resulted in
only a few percent change in the predictive power. The exception is

where we use the backbone weight scenario, which results in worse
performance particularly when trying to predict the routesused af-
ter a link failure. Also, interesting is the fact that in somecases
additional information is not helpful. We observed cases where pre-
dictive performance decreases as more measurements were added.

The results are quite positive, but they also leave scope forim-
proving such techniques, for instance in choosing between multiple
equivalent solutions to the LP. There are several directions for fu-
ture work: e.g., investigating the cause of information reversal.
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