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As thelnternethasbecomea big businessits performancéiasbecomeanimportantquestion.Several
companiehave startedmonitoringInternetperformancemary ISPsnow conductinternalperformance
measurementgndtherearealsoindependenbrganizationssuchas RIPE that conductregular perfor
mancemonitoring of ISPs. The exactform of measurementsiay vary, but typically they arebasedon
active probing. A commonresultpresenteds an overall statisticcombiningthe measurementsver a
whole network, andthis is frequentlyusedto rate,or rank ISP performanceandis sometimesisedasa
metricfor overall network health.Of course a singlenumbercannothopeto validly represenall of the
informationgatheredn thesetypesof measurementdut neverthelessthis type of measurés used,and
we shouldensurghatthemethodologyfor compilingthe measuremenis robust,andappropriate Most
methodghathave beenusedarebasedon the mean but it is surprisinghow diversethe “mean” canbe.
Thereareseveralalternatves(e.g. arithmeticmeanversusggeometrianean) andeachcomparny applying
thesemethodsseemso usea differentapproach. This paperconsiderdive approacheén detail and,
explainswhich of theseis the best,andwhy. In particular we shav thatthe geometric,andharmonic
meanswhile appealingbecausedf their robustnesgo outliers, are actually very poor statisticsto use
whencombiningInternetmeasurement@nd can causechangesn apparenperformancewithout any
realchangean the network performance.

1. Introduction

As thelnternethasbecomeabig businessits performancéasbecomeanimportantquestion.Several
companieshave startedmonitoring Internetperformance and publishingresults. Furthermary ISPs
now conductinternal performancemeasurementsnd thereare also organizationssuchas RIPE that
conductregular performancamonitoring. Typically, the measurementgseactive probingto determine
performancethoughthe exactform of measurememnayvary, for instanceTCP connectiortime, DNS
lookuptime, ICMP echotime, file downloadtime, applicationperformanceor somepurposedesigned
protocol.In additionto thetimesmeasure@bove, onecan,in somecasesneasurgacketlossesput we
shallconcentratdereon thetime basedneasures.

Eachmethodhas adwantagesand disadwantages put thesedetailsare not of prime importancein
this paper which is insteadconcernedvith how to composdhesemeasurement®getherto getoverall
measurementsf performanceThatis, givenasetof geographicallyandtopologicallydiversemeasure-
ments how do you combinetheseto getanoverall measure.

Obviously, in combiningthe resultsof mary measurementthereis dataloss. Ideally, one would
considerthe individual measurementseparatelyto retainthis information. However, thereis a valid
reasorfor wantingasinglemetric: it is helpfulto assessverall healthof anetwork overtime, e.g.to see
trendsin performance Onecanthenexaminethe detailsto seethe cause®f certainbehaior. Of more
dubiousmeritis the naturaldesireto usea singlenumbersoasto “rate” differentlISPs.Many companies
now performthis type of rating. We saythatit is of dubiousmeritfor mary reasons:

¢ A singlenumbermeandifferentthingsto differentpeople(VPNs careaboutforwardingacrossa

backbonewebsener customemwantsgoodpeering,andaccesdinks aswell).



e A singlenumbercanbe deceptve. Combininglots of issues(geograpl, peering,accesspack
bone,webhosting,...) into onedatapoint canobscuresomedetails,andhighlight others.

e Relatedto the above point, thereis a paradox,referredto asthe voting paradoxwhereyou can
always constructsituationswheretwo differentvoting schemewwill reporta differentresultin an
election— or in this casejn rankingtwo InternetServiceProviders(ISPs).

e If theresultisn't weightedby a representatie numberof customersn a location, doesit mean
arything?If you doweight,thenthe numberof customerperlocationvariesby backbone.

However, it seemghat companiesandindividualswill continueto composeesultsinto a singlenum-
bers,despitetheseproblems. Anecdotally someprofessionalsiow have their performancgandthus
bonuseshasedon their web sitesratedperformanceas measuredy a singlecompary, anda single
metric. Hencewe cannotignoretheseaggrgatedmetrics.

Giventhatthis approachwill be used,a reasonabl@uestionis “how may we do this with the least
lossof information?” The typical approachesreto usea statisticalmeasureandwe have seenthree
suchusedin this way: the Arithmetic Mean (AM), the GeometricMean (GM), andthe median. We
examinethesehere,along with the HarmonicMean (HM) and Trimmed Mean (TM). Thereare still
further alternatves(e.g. the worstcase,...), but we cannotexaminethe full rangeof possibilitieshere
andsoconcentraten measuresf the scaleof thedistribution. The AM (or average)s themeasuravith
which mostpeoplehave experience.The statedreasondgor measuremerntompaniesisingalternatves
arerelatedto their robustnesgo outliers.

The principle highlightedhereis that the measurementshouldmeasurea propertythat a customer
is interestedin. For instance,if a customeris interestedin the customerlateny of a web site, the
measuremerghouldbeanaverageweightedoy thenumberof peopleviewing his pagefrom eachregion.
However, eachtype of customerwill have diverserequirementgsomecare aboutworst case,others
aboutaverage andweightingswould differ by customer)andsomemay notevenknow whatthey need
to measure As an exampleof the compleity here,the utility of awebsiteis notlinearly proportional
to the RTT to theweb site, but rather the RTT’s exactvalueis almostirrelevantaslong asit lies belov
somethreshold,and onceit crosseghat thresholdthe utility quickly decreaseslin this case,the best
performancametric might be the numberof casesvhich exceedthethreshold.Part of theaim hereis to
elucidatethe propertiesof the statisticspresentedio allow aninformedchoicewhendecidingwhatto
usefor aparticularapplication.

Our otheraim is to make somesuggestiongboutthe methodologiesisedin makingmeasurements.
The schemegonsideredmay be hierarchical: it not necessaryo usethe samestatisticto aggreate
resultsfrom asinglepathor locality, asthatusedto aggrgjatedatafrom differentpathsor localities. This
paperconsidersshowvs thatwhencombiningmeasurementis makessenseo usethe median,trimmed
or geometricmeanto combineresultsfrom a single path (due to their robustnesgo outliers), but in
combiningdiversepathswe shoulduseanarithmeticmean(possiblyweighted).The arithmeticmeanis
the leastsusceptibleo distortionsthatdon't really represenperformance.Thatis, with otherstatistics
the apparenperformancemay changethroughminor changeghat do not actually changethe network
performancexceptin detailsthatthe particularstatisticis sensitve to. Thereasorthe arithmeticmean
is leastsusceptiblavhencombininggeographicallydiversedatais thatit performsin theway closesto
the averageperformanceseenby a customeror user whereasstatisticslike the geometricmeanhave
little relationto arealcustomer

Thepaperstartshy providing somestatisticabackgroundn Section2. Then,in Section3 we consider
the effect of aggregating measurementffom geographically and topologically different paths. The
notewvorthy factis thatthe statisticsdo not performthe samewhenanalyzingdisparatedistributionsas
they doin analysinga singledistribution. In Sectiond we combinelocal andglobalinformationtogether
andshov which combinationshave the bestperformance.

2. Statistical Background

The purposeof this sectionis to describethe basicstatisticS AM, GM, median,TM, andHM) exam-
inedhere,andillustratethe propertief each,n particularthesusceptibility/reliancef eachto outliers.



Thesestatisticsarewell known, andtheir propertieshave beenpreviously elucidatedn mary placesas
have the reasonsachis typically used. However, in the contet of Internetmeasurements number
of companieshave startedusing statisticssuchasthe GM dueto its robustnesdo outliers. We argue
herethat, while this is a valuableaim in ary areawherethe dataareinherentlyheary-tailed, thereare
alternatvesotherthanthe GM which arealsorobust,in particularthe medianandTM, andaswe shall
seelaterin this papertherearereasongo avoid the GM here.

Take a setof N datasamplesX; all independenthdravn from the samestatisticaldistribution. The
arithmeticmean(or samplemean)is AM (X) = % Zf\il X;, The AM is frequentlyusedto combine
datato reducethe impactof errorsin measurementsThatis, if we wish to measuresomequantity X,
and the measurementsontainerrorse;, we canobtain a more accurateestimateusingthe AM. The
reasorwe cando sois the law of large numberswhich saysthat (undersuitableconditions)the AM
will corvergeto the true value X asthe numberof measurementsecomedarge. More generally the
CentralLimit Theorem(CLT) shows the errorin the resultbecomesormally distributedfor large N
with known variance. In this application,the AM would be the equivalentof trying to measuresome
underlyingperformancearametenf the system,usinga numberof obsenations. More generally the
basictaskis to find somemeasuref the centraltendeng of the measurements.

Oneof theconditionsof the CLT (andlaw of large numbers)s thatthe the distribution of therandom
variablesin questionhasfinite variance. Distributionswith “heavy-tails” may not satisfythis criteria,
but evenwhenthey do, the heavy tail resultsin a very slow corvergencerate,andsomary samplesare
required[1,2]. A heavy-tailed distribution is onein which thereis a significantprobability of a large
event. A typical exampleis the Paretodistribution, which hasdistribution function F'(z) = 1 — (b/z)”,
whereq is a shapeparameterandb a scaleparameter The Paretodistribution only hasfinite variance
for « > 2, andin fact,the AM of Paretorandomvariablesdoesnot cornverge at all for & < 1. Such
distributionshave beenshavn to befundamentato mostof traffic modeling[3], andhave beensuggested
to occurin active performanceneasurement.

For suchdistributions the AM haspoor properties— it may not corverge at all, and even whenit
doesit requiresvery mary samples.Thisis a statedreasorfor avoiding the useof the AM. An obvious
alternatve is the median,or 50th percentileof the distribution, thatis, the valuex for which the distri-
bution function F'(z) = 0.5. The medianis an obvious choicebecauseét dependwn the body of the
distribution, notthetail.

Theremay, however, be someconcerrthatthe medianexplicitly failsto captureary of thetail beha-
ior. Somepeoplemaywish to have thetail representeth their measuref centraltendeny, thoughstill
avoiding the problemsof the AM. This hasleadto thechoice(in atleastonemeasuremerdompary) of

the GM which is givenby GM(X) = Y/ Z-Nzl X;, which canbe more easily calculatedby taking the
exponentialof the sumof logs. The normaluseof the GM is wherethe valuesmeasuredremultiplied
togetherto obtainsomelargermeasure- for instancejn computingthe averagegrowth over threeyears,
onewould multiply thepercentaggrowth in eachof thethreeyearsratherthanadding.However, taking
thelog of the datareduceghe lengthof thetail —for instancethe log of Paretodistributeddatahasan
exponentialdistribution—andsothe GM is lesssensitve to outliersin a setof measurementdut it does
notdiscountthetail altogether

Anotheralternatve that hassimilar propertiesto the GM is the HM (X) = (% 0%, X%_)—l, which
is morerobustto outliersthanthe GM. The HM hasnot beenusedin Internetmeasurementdut we
includeit herefor comparison.

Finally, the Trimmedmean(TM), whichisthe AM aftertheupperandlower « percentilesareremoved
from the data)is quite robustto outliers,while only omitting a small part of the distribution. We shall
remove theupperandlower 5 percentilegroundedup) here.

2.1. Real RTT measurements

If the distribution of the quantity of interest(RTT, TCP connecttime, etc.) were Pareto, or log-
normal we would have a naturalreasonto examinethe dataon a log scale,and hencethe GM is a
reasonablenetric. The questionis whethertypical Internetmetricstake this form. Someaspectsof
Internetmeasuremendo — for instancethe length of Internetflows exhibit heavy, powerlaw tails [3].



However, theliteratureon the distributionsof performancenetricsseemsmorelimited. Theremajority
of currentliteratureexaminescorrelationsbetweenmeasurement®.g.[4,5]. In orderto fill the gap,
we have useddatagatheredoy NIMI (the NationalInternetMeasuremeninfrastructure)6-8] by Vern
PaxsonandYin Zhang.Thedataseprovidesthe RTTs betweera sampleof the approximately50 nodes
of NIMI for threedaysin January2001.
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Figurel. Examplesof theNIMI RTT data.Thegraphshavs the PDFandCCDFon log-log axis.

Unfortunatelythereis nosimpledistributionthatworkshere—to seewhy seetheexamplesn Figurel.
Thedistributionscanbe multimodal,and have severalregimesin thetail. From observingover 100 of
thesejt is clearthatwhile thedistribution tails areconsiderabljneavier thanexponential they couldnot
bedescribedshaving apower-law tail (exceptover somerange,in somecases)In hindsightthis should
be obvious: thetime a paclet canexist in the Internetis limited by the TTL, andsoary distribution of
pacletdelayswill betruncated Whenonecomputeghestatisticsabore onthesemeasuredlistributions
onefindsthattheimpactof thetail is minimal—in only 8 of 176 casesvastherearny marked deviation
betweerthe statisticsandevenin thesecaset wasnotlarge.

Giventhe above results,why would anyone considerusinganything but the AM? On reasonis data
errors— outliersnot reflectingreal network performance.Despiteone’s bestefforts to do experiments
without suchartifacts,they mayappear

A secondreasonis thatin somecasesthe measuremenis not at the IP layer, but at the TCP, or
applicationlayer, which may introducemore comple delaysthan are seenby simply measuringlP
performance . TCP connectiorntimesare sometimesusedto measurgerformancebecausahey canbe
madeto almostary host. However, if the TCP SYN pacletis lost, the sendemwaitsfor atimeoutbefore
retransmittinghe packet (andsimilarly thereceverwaitsfor atimeoutbeforeresendinghe SYN-ACK).
The initial timeoutis quite large: measurementsuggesthat 3 secondss common,andit doublesas
eachsuccessie paclet is lost. Hencea singlelost paclet canincreasehe responsdime by two orders
of magnitude(from around30-50msto 3 seconds)resultingin afairly heary-tailed distribution, albeit
onewhichis notwell modeledby a Paretodistribution.

We cansimulatethisusinga RTT thatis normallydistributedaroundsomemean(50msin theexample
presented)but with someprobability p thatthe SYN paclet (or its response)s lost, in which casewe
add 3 secondgo the RTTL. Simulationsof the statisticsshaved onceagin thatthe medianand GM,
andHM arequite unafectedby the unusualoutlier events,while the AM is stronglyaffectedby p, and
alsodoesnot corverge quickly. The TM is stableuntil p = 0.05 whenthe probability of a lost paclet
becomeshigherthanthetrimmedpartof thedistribution, whereuporit quickly corvergesto the AM.

3. Geographic and Topological Aggregation

In the previous sectionwe wereestimatingsomequantity (for instancethe RTT betweerntwo nodes),
wherethe measurementsadsomeerror, or variability aroundthe “true” value. A statisticlike the AM
obeyslimit theoremghatcausat to corvergeto a singlevaluethatdescribeghe centraltendeng of the

' A bettermodelis presentedn Cardwell,SavageandAndersor[9] but thefull detailsof theresultsarenotneedechere.



distribution, andis thereforeassociatedvith the underlyingquantitywe wish to measureHowever, we
saw thatfor somedistributions— thosewith heary-tails —the AM diverged,or did not corverge quickly,
which providedthe motivationfor usingthe alternatve statistics.

In this sectionwe considerwhat happensvhenyou usethesestatisticsto combineestimatedrom a
numberof paths.In essenceywe arenow usingthe statisticto combinedatafrom differentdistributions.
While onemay argueaboutthe weightthatshouldbe givento outlier measurementisom a singlepath
or locality, individual pathsshouldnever be considereautliers— eachis distinctandimportantto incor
poratein the results. We do not wish to discountthe RTT measurementsetweerntwo importantnodes
simply becausét is unusuallylarge.

3.1. Simpleillustrative simulation

We startwith a simpleillustration. We usea very simple simulationof a network with no buffering,
or forwarding delays,and propagtion delayswhich dependonly on the shortestsurfacepathdistance
betweemodes.Thetypical methodologyof a compaly wishingto measurdnternetperformanceaisea
setof monitors (at geographicallydispersegoints)to make measurement® somesetof serversin the
network to bemeasured.

In this simulationwe have threemonitors(at Atlanta,New York, andSanFranciscopndthreeseners
(at Chicago,New York, and SanFrancisco).The threesener pointsarechoserbecausehey arethree
of the largestcitiesin the US (from the perspectie of traffic) andeachhasgoodpeeringconnectyity,
andsoarelikely placesfor seners. In particulay all elsebeingequal,one might expectChicagoto be
the bestchoiceof the threefor a sener location, because sener on the eastor westcoastwould be
far from the large populationcentersat the oppositecoast,while Chicagois not sofar from either The
RTTsbetweerthesdocationswerecalculatedusingaprogramcalledgeod [10] to computethedistance
betweerrtities. Notethatthe RTT betweera senerandmonitorin the samecity is somesmalltime A.

The statisticsfor eachsener, andoverall andshavn in Tablel1 for A = 0.01 ms, which would not
be unrealisticif the sener andmonitorwereon the samelLAN segment. The mostnotevorthy pointis
thatthoughthe GM andHM suggestshat Chicagois the worstcity (by anorderof magnitude}o place
asener, theotherstatisticssupportthe intuition that Chicagois the bestplaceto putasener.

Sener AM GM median HM ™
Chicago | 16.944 14.789 11.478 13.229 11.478
New York | 17.836 1.710 12.080 0.030 12.080
SanFran. | 25.296 2.426 34.460 0.030 34.460
overall 20.025 3.944 12.080 0.045 19.828

Tablel
Resultsby sener (A = 0.01).

Why is theresucha differencebetweenthe inferencesof different statistics. We can discover the
reasorby examiningtheir behaior aswe vary A. Figure?2 (a) shavs the statisticsover all the monitors
andseners. The x-axis shav thelog of A. We canseethatas A varies,the medianremainsconstant,
andthe AM variesonly alittle, but the GM variesquite considerably(by morethanafactorof 3). Thus
we seethatthe GM is sensitve to the shortdelay betweena monitor andsener in the samecity. The
reasorthatChicagofairssopoorly in the GM is simply becausehereis no monitorin Chicago!

To summarizethe GM is highly sensitve to the smallestmeasuremeniyhich will typically be be-
tweena monitorandsener in the samecity (andsamepeer). Thisis hardlythe “overall” measurement
thatwe desired.If this werea purely geographigroblem,we might be ableto allay concernsn some
manney but considerthe situationwith respecto peering.If thereis amonitorin acity in asinglepeers
network, a comparisorbetweenpeerswould shav an unjustifiedimprovementto the network perfor
mancefor the peercontainingthe monitor, leadingto statisticsthat favour networks containingmore
monitors. Adding more monitorsis not a suitablemethodfor fixing this problem. The sensitvity still
remainsput themeasurementsill thenbecomplicatecenougho obscurdghesourceof thediscrepang.
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Figure2. Two examples.

3.2. A second simple example

As a secondsimple example, we considera comparisonbetweentwo ISPs, the first a backbone
provider, andthe seconda customerof the first, with only a single POR and a poor connectionto the
backbone However, the customer(basedn NY for the purposeof this discussionhasa monitoragent
onthesamelL AN segmentasits sener, while thetier 1 ISP hasits senersin ahostingcenterone(short)
stepfrom the backbongnotemonitorsarelocatedon thebackbonewith negligible additionaldelay). We
shall usethe samemonitoring pointsas before(with the additionof the secondmonitorin NY for ISP
2), andconsidera comparisorof senersin NY city.

We will simulatethis asabore, usinggeographiaistanceto computethe delaysbetweersenersand
monitors,but with anextraRTT delayA associateavith transferfrom thetier 1 ISPto its hostingcenter
aRTT delayd to ISP 2 from ISP 1, anda RTT delaye betweenSP 2’s monitorandsener. Figure3
shawvs thetopologyandthe network delaytimes.

hosting

San Francisco ’ A BBB

monitor

Ej server

Figure3. Example2: two ISPs.The customedSP (ISP 2) is hasthe singleshadedspurnodein NY.

The aggrejate statisticsfor eachsener arealsoshovn in Table2, given A = 0.1, § = 5, € = 0.01.
Thelarge backbondSP hasa clearadvantagan the AM, TM andmedianmeasurementsecaus®f the
extra5 msdelayon ISP 2's link to the backbone However, whenwe considerthe HM andGM, ISP 2’s
performanceppearso be substantiallybetter Clearly, the smalldelaye betweerthe monitorandsener
on ISP 2’s network is dominatingthe performanceneasure.



ISP AM GM median HM ™
1 14.724 4.007 8.640 0.388 8.640
2 17.127 2.509 11.040 0.040 11.040

Table2
Aggregatestatisticfor example2 (givenin milliseconds).

3.3. A morerealistic smulation

It might be easyto dismissthe above argumentsby sayingthat a typical monitoring compary has
mary moremonitoringpoints,andsothe problemgoesaway. To illustratethatthis is notthe casewe
provide a morerealisticexample. In this example,we usethe Keynote 25 (25 monitoringpointsbased
in the USA) asour monitoringpoints. To make the exampleeven morerealisticwe do not usesimple
geometridistanceso estimatedelays put ratherwe usea setof realmeasurementsetweerthe Keynote
agentghemselesto estimatethe propagtiondelaybetweeragentqvia themin RTT measurement)t
is assumedhat eachsener will be locateda shortdelaye from the correspondingaigenti. We could
conducta numberof experimentson this basis, but the mostillustrative is to do a comparisorof seners
basedin differentISPs,but in the samecity (we usereal ISPsfor this purposebut anorymize them
becausetherwisetheseresultsmight be subjectto misinterpretation- they arenot real measurements
of the ISP performance).We choseNY city asa goodillustrative examplebecauseseveral ISPshave
Keynoteagentghere(but any othercity would sene).

We cannotmeasuralirectly thetime ¢, andsowe vary thisto seethe effect onthemeasurementg he
value of ¢ hasalmostno effect on the overall AM and no effect whatsoger on the median,but hasa
ratherstrongeffect onthe GM. Figure2 (b) shavs the GM for threeTier 1 ISPswith Keynoteagentsn
NY, with respecto thevalueof e. The GM variessomuchthat, givendifferentvaluesfor ¢ in eachlSP,
onemightreasonablachieve ary rankingof thethreelSPs.

Oneissueraisedabore is that often raw measurementare roundedto somedegree,in somecases
becausehe clocksinvolved have finite precision. The above shows that suchroundingin the datacan
actually impactthe resultsdisproportionately Particularly if the measurementare madeon different
platformswhich have differentaccuraciesas often occursin distributed measuremeninfrastructures
wherenodesarenot all deployed simultaneouslyor onthe sametype of hardware.

3.4. Reversal

In this sectionwe presenbnemoreillustration of theissuesabove. However, in this casewe usereal
measurementdirectly, to illustratethe point. To do this we reversethe problem: normally we measure
from themonitorto thesener, but let ustemporarilyreversetherolesof thesedevicesandmeasurdrom
the sener to the monitor. We could placesenersin all of the mostinterestingpositions,andgain an
understandingf the tradeofs in positioninga sener in this way, therebyoptimizing our performance
undersomemetric. We shalluseping (ICMP echo)to make the measurementSve areinterestechere
in how to put measurement®gethernotin the potentiallimitations of pings). We shalldo pingsfrom
two “sener” sitesto all of Keynote’s North Americanmonitors. Thenwe cancomputethe statisticsof
themeasurement®r each'server” site.

measpoint | AM GM median HM ™
backbonel | 52.48 41.26 56.85 24.11 52.50
backbone | 62.60 42.46 64.00 16.92 60.38

Table3
Resultsby sener (in ms).

Theresultsareshavn in Table3. Theresultssupportourassertionthoughin this casethe GM reports
thesamerankingasthe AM, TM andmedianthetwo GMs arefar closerthanthe othermetrics,andthe
HM doesreportthe oppositeranking.



3.5. Geographic weighting

As anasidejn mary casest would make moresensdo weightthevariousstatisticaused.Forinstance,
if a statisticis intendedto representin averageof the customerssiew of the data,thenit would malke
senseto weight eachvalue by the numberof customersasedin that region. It is easyto weightan
AM. Weightinga GM is alsopossiblein thelog domain,but it is not clearthatthis retainsthe meaning.
Weightingof a medianis alittle moredifficult, but possible.Thetechniques to give eachmeasurement
a weight, and after sorting the datacomputethe cumulative sum of the weightsuntil onereacheghe
half-way point. Rigorousweightingmethodgor the othertwo methodsarenot known to the authors.

In actuality weightingin a meaningfulway is hardwhenthe groupperformingthe measurementgo
nothave datasuchascustomersy location(for instancdf themeasurement@remadeby anindependent
measuremergompary) andfurtherin measurementsetweemroviderstheactualcustometbasewould
be different. Even weighting by populationcan be hard becauset is not always clearfrom external
datawhich partsof the populationare sened at which point in the network (particularlyin regional
PoPs). Weightingcanalsoleadto strangeeffects, suchasa changein the overall performancemetric
becaus®f achangdn the geographidistribution of customersatherthananactualchangan network
performance For thesereasonsveightingdoesnot seemto be commonlyused,but the ability to do it
easily andmeaningfullyin the AM, andmedianis anadwantage.

4. Combined Geographic and Statistical Modeling

The previous examplesassumeperformanceas dominatedoy propagtion delay andhasno random
delayssuchasmight be seenfrom queueingof pacletsin buffers, or dueto randomapplicationlayer
delays. In reality, thereare going to be both geographiceffects on our measurementsand random
componentsn the individual measurementsHencein generalwe mustconsiderthe combinationof
theseeffectson our total measure.

We may useone statisticto combinemeasurementBom the samepath (is essenceo estimatethe
underlyingdelay from measurementsith noise)andthen usea secondstatisticto combinethe data
from differentpathsinto oneresult. We refer to the former asthe local method,andthe latter asthe
globalmethod.In this sectionwe examinewhathappensvhenyou usedifferentcombinationof global
andlocal method andmake a numberof suggestionsegardingwhich combinationsaremostuseful. We
basethe resultson a seriesof simulations,but in orderto make the simulationsasrealisticaspossible
we have usedthe dataobtainedusingNIMI (discusseaarlier)to populatethe simulationmodel. NIMI
randomlysamplegathsbetweemodes,and sowe do not have a completelyconnectedyraphof data.
In fact the largestcompletelyconnectclique (found using the max clique solverathttp: //rtm
science.unitn.it/intertool s/clique/)has9 nodes(fnal, gatech,sandiasory, ucla, uky,
umass,utokyo, andverio2). This clique hasa wide variety of nodes,including North American,and
Internationakasesandsoseemsareasonablsetof points.

In this simulationwe generatéV measurementsetweereachof thenodesabove basedntheempiri-
cal Cumulative DensityFunction(CDF) for theRTT measuremenfsom NIMI. We cansimulatesamples
from thesedistributions,in additionto computingthe statisticstheoreticalvaluedirectly from the CDF.
We comparezachof thefive statisticsdescribedabore asboththelocal, andglobalmethod.Notethatin
only afew casessuchasthe AM of the AM do the statisticsccommute pr arethey associatie.

We usefour performanceneasure$o assesthesecombinationsin eachcaseheresultsarebasedn
400simulationseachwith for N' = 60 measurementalongeachof 45 paths. -
relative bias: To measureahedeviation from thetruevaluewe look attherelatve biasE [X — X] /X,
whereX is thetruevalueof the performanceneasurédasedlirectly on the empirical CDFsof the data
set.We considettherelative measurdecauseachof the statistican questioncantake a differentvalue.
Theresultsareshavn in Figure4 (a). The resultsshav thatthe biasis generallysmall (belov 1% in
mostcases).The only casesvhereit might be consideredsignificantarewhenthe HM is usedasthe
globalin conjunctionwith the TM or medianasthelocal statistic.

relative RM SE: therelative RootMeanSquareError (RMSE)definecdby rRMSE = /E [(X — X)?]/X.
TherRMSEis analternative measurdor how closetheresultcomedo thetruevaluegivenafinite sample



of data.Theresultsin Figure4 (b) arelargerwhenthe HM or medianis usedfor the globally.
Sensitivity to large outliers. We deliberatelyreplaceonerandomlychoserdatapoint from eachsimu-
lation with anoutlier (of 100seconds)andassesimpactusingthe rRMSE definedabore. Figure4 (c)
shavstheseresults,andclearlythe pooresiperformers usingthe AM for bothglobalandlocal statistic,
but poorresultsoccurfor all casesvith the AM asthe globalstatistic,or theHM asthelocal statistic.
Sensitivity to small outliers. Alternatively we usea small outlier (1.0e-6). Figure4 (d) shavs these
results,andtherearetwo very poorperformersthe HM local with the GM or the HM asglobalstatistic.

We attemptto bring the generafeaturef thegraphsout by settingathreshold(at 0.01)andsayinga
methodis badif it exceedghis thresholdin oneof the performanceneasurementslhe actualvalue of
thisthresholds arbitrary andthenumberof measurementsill determinghe exactpatternof theresult,
but this is simply anattemptto summarizethe previous four graphswhich shouldbe referredto for the
true perspectie. Figure4 (e) shavs the summary:(paler)greenfor good,and(darker) redfor bad.

We canfurtherrule out usingthe GM for the global operationdueto the work of Section3. Hence
the mostusefulapproacheswolve usingthe TM, GM or medianfor thelocal operationandthe AM or
TM for the global. The ability to weightthe AM in an meaningfulway malkesit moreattractve for the
globaloperation.Thusthe bestapproactis to usethe AM for the globaloperationandthe TM, GM or
medianfor thelocal operation.

5. Conclusion

In conclusionwe have foundthatblind useof statisticssuchasthe GM canbe dangerousandpro-
ducemisleadingresults. After consideratiorof five statistics(the arithmetic,trimmed, geometricand
harmonicmean,and the median)we found that it madesenseto usedifferent statisticsfor local ag-
gregation (acrossa single path, or locality) andglobal aggrejation (acrossall pathsor localities). The
preferableglobal operationwasthe arithmeticmeanor simple average,andthe preferablelocal oper
ationswerethe geometricor trimmed means,andthe median. In the future it might be interestingto
considemtherstatistics.For instancehe AM andHM are L? norms(andthe GM canbe phrasedn this
form) andsowe mightbe ableto considerthe beststatisticover this whole classof statistics.
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Figure4. Performanceesultsfor combinationf globalandlocal statistics.



