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ABSTRACT

The traffic matrix (TM) is an important input in traffic engi-
neering and network design. However, the design of current
synthesis models of TMs has been rather ad hoc, and does
not necessarily conform to observed traffic constraints. We
apply the principle of maximum entropy to develop fast TM
synthesis models, with the future goal of developing realistic
spatio-temporal TMs.

Categories and Subject Descriptors

C.2.5 [Computer Communications]: Local and Wide
Area Networks—Internet ; C.4 [Performance of Systems]:
Modeling Techniques
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1. INTRODUCTION
The Internet traffic matrix (TM) is an important input in

network traffic engineering. Each entry of the matrix con-
tains the traffic volume (typically measured in bytes) from
an ingress router to an egress router in a network [6].
Despite their usefulness, there is a lack of work on synthe-

sising these matrices for practical network design optimisa-
tion and protocol testing. Often in TM synthesis, there ex-
ists observations about the traffic, for e.g., the total ingress
and egress traffic [5, 7].
Ideally, a TM synthesis method should satisfy the follow-

ing criteria:

• speed : generation of elements of the model must be
fast, scaling well with the dimensions of the matrix,

• aggregation: an aggregate of the models should pre-
serve the structure of the original model,

• model complexity : the number of parameters control-
ling the method should be minimal, and

• conformance: artificial TMs should conform to ob-
served traffic constraints.

To systematise work on TM synthesis, we propose using
the principle of maximum entropy [1] as a starting point
in deriving models based on the traffic observation. The
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models we derive satisfy the above four criteria and have a
strong theoretical basis.

2. SYNTHESIS MODELS
We first develop spatial models i.e., model of a TM in

one measurement bin (about 5 minutes to an hour). We
consider the modeling of the Ingress/Egress (IE) TM, as
traffic information regarding this TM class is more readily
available compared to the Origin/Destination (OD) TM.

Our motivation for adopting the principle of maximum
entropy to derive the models is related to the concept of
parsimony : the model fits the data with the least number
of assumptions. In such a case, differential entropy turns
out to be a very good measure of complexity. Let h(f) =
−
∫

∞

0
· · ·

∫

∞

0
f(X) log f(X) dX denote the differential en-

tropy of a random TM X distributed with density f(X)
(note that TMs are nonnegative). Let C = {X | {φℓ(X) =
aℓ}

L
ℓ=0} be the convex set of L+ 1 constraints on X, with

φ0(X) =

∫

∞

0

· · ·

∫

∞

0

f(X) dX = 1,

since f(X) is a density function. The principle of maximum
entropy says that the best model fitting the constraints is
the unique solution to the optimization problem

max
f(X)

h(f)

s.t. f(X) ≥ 0,X ∈ C.
(1)

The constraints we consider here are the first and second
order statistics of the following random variables:

• R: N × 1 total ingress traffic, i.e., Ri =
∑

j
Xi,j ,

• C: N × 1 total egress traffic, i.e., Cj =
∑

i
Xi,j , and

• S: total traffic, i.e., S =
∑

i,j
Xi,j .

These constraints provide a natural starting point because
the traffic can be measured fairly well from SNMP data
[6]. Other constraints may also be used, so as long as the
constraints are convex to ensure (1) has a global solution.

Table 1 lists the purely spatial maximum entropy models
in an increasing number of constraints, labeled from PS1 to
PS4. Let X̄ = E[X]. The covariance matrix is defined as

Cov(X) = E[vec(X− X̄)vec(X− X̄)T], (2)

where vec(X) is the vectorization of X, i.e., stacking the
columns of X on top of another, beginning from the first col-
umn. The operation A ⊗B defines the Kronecker product



Label Constraints Model Mean Covariance

PS1 E[S] = T Xi,j ∼ Exp
(

N2

T

)

, ∀i, j T

N2 1N1T
N

T2

N4 IN2

E[S] = T , X = TUV
T,

PS2 E[R] = r, Ui ∼ Exp
(

T
ri

)

, 1
T
rcT 1

T2 ([diag(c)]
2 + ccT)⊗ ([diag(r)]2 + rrT)

E[C] = c Vj ∼ Exp
(

T
cj

)

− 1
T2 (cc

T ⊗ rrT)

E[S] = T ,
E[R] = r, X = TUV

T, 1
T2 (diag(σc) + ccT)⊗ (diag(σr) + rrT)

PS3 E[C] = c, Ui ∼ TNorm

(

ri
T
,
σ2

ri

T2

)

, 1
T
rcT − 1

T2 (cc
T ⊗ rrT)

E[(Ri − ri)
2] = σ2

ri
, ∀i, Vj ∼ TNorm

(

cj

T
,
σ2

cj

T2

)

E[(Cj − cj)
2] = σ2

cj
, ∀j

E[S] = T ,
E[R ] = r, X = TUV

T,
PS4 E[C ] = c, U ∼ TNorm

(

r

T
, 1
T2Σr

)

, 1
T
rcT 1

T2 (Σc + ccT)⊗ (Σr + rrT)
E[(R− r)(R− r)T] = Σr, V ∼ TNorm

(

c

T
, 1
T2Σc

)

− 1
T2 (cc

T ⊗ rrT)
E[(C− c)(C− c)T] = Σc

Table 1: Purely spatial maximum entropy models under various constraints, with corresponding mean and covariance. The
models are listed in the order of an increasing number of constraints. Note that the mean is an N by N matrix, while the
covariance matrix is N2 by N2.

between matrices A and B. The notation Exp (λ) denotes
the exponential distribution with rate λ and TNorm (µ,Σ)
denotes the truncated normal distribution (nonnegative sup-
port) with mean µ and covariance Σ.
The mean of these models correspond to their determin-

istic gravity model counterparts. For instance, for PS1,

E[X] =
T

N2
1N1

T
N

is precisely the gravity model when there is only a constraint
on the total traffic, and for PS2, PS3 and PS4,

E[X] = TE[U ]E[VT] =
rcT

T
, (3)

which is precisely the deterministic gravity model under
row and column sum constraints [8]. Thus, the models are
stochastic extensions of the classic gravity model. These
models also obey the independence property, where the source
and destination are independent to each other, and the ag-

gregation property, just like the gravity model [6].
Computationally, each of these models require 2N random

variables to be generated, which is as simple as the method
outlined in [5]. Moreover, the number of random variables
required scales linearly with N .
Our models use classical distributions, resulting in effi-

cient generation of these random variables as there already
exist efficient algorithms for this task. The truncated nor-
mal distribution can be generated via accept-reject sampling
i.e., one only needs to first generate normally distributed
random variables and choosing only values of Ui and Vj

that are nonnegative, or via Gibbs sampling [4]. Similarly,
in the generalized case, the covariance matrices Σr and Σc

can be easily incorporated, simply by generating spatially
correlated normally distributed random vectors and using
accept-reject sampling to select samples. The sample co-
variance matrices Σ̂r and Σ̂c can be estimated from data
(though this potentially conflicts with our stance, since there
is a degree of inaccuracy in any estimate).

2.1 Data fitting
Figure 1 shows an example of three purely spatial maxi-

mum entropy models (PS2, PS3 and PS4 from Table 1) fit-
ted on a single 5 minute PoP–PoP TM taken from Abilene
at 0140 to 0145 on March 1st, 2004 [2]. The plots present
the cumulative and complementary cumulative distribution
functions (CDF and CCDF) of the flow volume distributions
of the test TM.

We assume that we have measurements of the row, col-
umn and total sums. The row and column sums correspond
to measurement of the total incoming traffic of ingress nodes
and total outgoing traffic of the egress nodes. These mea-
surements are not perfect (due to sampling errors), and spa-
tial correlations between measurements may be present.

All models provide a fairly good fit of the distribution of
the empirical Abilene traffic matrix, as seen in Figure 1(a).
However, we see here that assuming the measurements are
perfect is not enough. PS2’s fit is less accurate compared
to the other two models. Figure 1(b) and (c) highlight the
discrepancy between the fit and the underlying flow distri-
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Figure 1: Comparison between several purely spatial maximum entropy models fits to empirical Abilene data: the exponential, truncated
normal and generalized truncated normal. The real TM is a single 5 minute PoP–PoP TM from 0140 on March 1st, 2004. Note the
logarithm scale on the x-axis of (b) and the y-axis of (c).
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Figure 2: Comparison of the CDFs of the KS statistics against the relative errors in the 99th percentile of the models over a week of
data on the Abilene network, beginning March 1st, 2004.

bution for the smaller and larger flows respectively.
All three models do not fit small flows well. The same

observation was reported by [3, 5], where small flows were
handled differently from medium and large sized flows.
Figure 2 presents the CDF of the Kolmogorov-Smirnov

(KS) statistics and the relative errors in the 99th percentile
of all three models computed over one week of data on Abi-
lene, beginning from March 1st, 2004. For each traffic ma-
trix lasting 5 minutes (duration of a single measurement bin)
over the entire measurement interval, we generated 1000 in-
stances for each of the three models and then compared their
traffic flow size CDFs to actual traffic flow size CDFs of Abi-
lene over the period. Using these CDFs, we compute each
of their KS statistics and relative error. Interestingly, we
varied the measurement bin size from 5 minutes to an hour
but observed little change in the results. A similar observa-
tion was noted in [5]. We found that although both PS3 and
PS4 clearly outperformed PS2, PS4 only marginally outper-
formed PS3. This is almost indistinguishable in the figure,
with a zoom-in only providing the required resolution to
verify the outperformance.
Future work will extend maximum entropy to spatio-temporal

ensembles of TMs.
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