
MGtoolkit: A python package for implementing

metagraphs

D.Ranathunga*, H. Nguyen*, M.Roughan**

* Teletraffic Research Centre, University of Adelaide, Australia
** ARC Centre of Excellence for Mathematical and Statistical Frontiers, University of

Adelaide, Australia

Abstract

In this paper we present MGtoolkit: an open-source Python package for im-
plementing metagraphs - a first of its kind. Metagraphs are commonly used
to specify and analyse business and computer-network policies alike. MG-
toolkit can help verify such policies and promotes learning and experimenta-
tion with metagraphs. The package currently provides purely textual output
for visualising metagraphs and their analysis results.

Keywords: metagraph implementation, computer-network policy, policy
analysis

1. Motivation1

A metagraph is a generalised graph theoretic structure that has sev-2

eral useful applications. They are commonly used to construct and analyse3

business policies in decision-support systems and workflow-management sys-4

tems [1]. Metagraphs are also useful to analyse, optimise and troubleshoot5

communication-network policies [2].6

A metagraph is a directed graph between a collection of sets of ‘atomic’7

elements. Each set is a node in the graph and each directed edge represents8

the relationship between the sets. A simple example is given in Figure 1(a)9

where multiple sets of users (U1, U2, U3) are related to sets of network re-10

sources (R1, R2) by the directed edges e1, e2 and e3 which describes which11

user ui is allowed to access resource rj.12

In this paper we describe an off-the-shelf tool for implementing meta-13

graphs – MGtoolkit – implemented in Python. At the time of writing, we14

are aware of one other metagraph API- ‘Haskell library for metagraph data15

structure’ [3]. This library is being developed in the Haskell programming16

language but is not complete as far as we can determine.17

Preprint submitted to SoftwareX April 11, 2017

(a) Metagraph consisting of five sets and
three edges.

(b) Metagraph that shows the advantage
of a metapath over simple paths.

Figure 1: Metagraph examples.

Developing a metagraph tool faces several key challenges. For instance,18

a metagraph does not use simple edge weights in its adjacency matrix. Also19

metagraphs admit representations other than those used for simple graphs,20

but as in simple graphs, the representation is important for certain algo-21

rithms. In addition, there are many operations defined on a metagraph that22

must be supported by such a tool. These operations help analyse useful23

properties such as connectivity, redundancy and allow metagraph transfor-24

mations, but go beyond standard graph operators.25

Metagraphs have many uses in general. One in particular is in specifying26

and analysing communication-network policies. We will demonstrate the use27

of metagraphs here by taking access-control policies in a computer network28

as an example. But, metagraphs can be equally used in other policy contexts29

(e.g., QoS, network-service chaining, traffic measurement etc.).30

2. Background31

The formal structure of a metagraph can be defined as follows:32

Definition 1 (Metagraph). A metagraph S=〈X,E〉 is a graphical construct33

specified by a generating set X and a set of edges E defined on X. A generat-34

ing set is a set of variables X = {x1, x2,, xn} and an edge e ∈ E is a pair35

e=〈Ve,We〉 such that Ve ⊂ X is the invertex and We ⊂ X is the outvertex.36

This definition is similar to that of a directed hypergraph, but in addition37

metagraphs have several useful operators and properties. One in particular38

is the notion of a metapath [1] which describes connectivity between sets of39

elements in a metagraph, but is somewhat different from a path in a graph.40

Definition 2 (Metapath). A metapath from source B ⊂ X to target C ⊂ X41

in a metagraph S=〈X,E〉 is set of edges E ′ such that every e′ ∈ E ′ is on a42

2

path from an element in B to an element in C. In addition [
⋃

e′ Ve′\
⋃

e′ We′] ⊆43

B and C ⊆
⋃

e′ We′.44

A metapath is more useful than a simple path (i.e., a sequence of edges).45

Figure 1(b) illustrates this using two simple paths from x1 to x5: (e1, e3)46

and (e2, e3). Element x1 can reach x5 without knowing anything about47

the intermediate nodes x2, x3, x4 if all three edges e1, e2, e3 are used but the48

simple paths do no capture this fact. But, {e1, e2, e3} does not represent49

a simple path; there is no sequence of connected edges consisting of these50

edges. Rather, this metapath is the union of edges in two simple paths.51

Reachability between a source node and a target node can be determined52

by finding valid metapaths between the two in a metagraph [1] (e.g., the53

metapath from x1 to x5 in Figure 1(b) is {e1, e2, e3}).54

Metagraphs have a property called dominance which allows to determine55

whether a metapath has any redundant components (edges or elements) [1].56

A metapath is input-dominant if no proper subset of its source connects to the57

target; edge-dominant if no proper subset of its edges is also a metapath from58

the source to the target; and dominant if it is both input- and edge-dominant59

[1]. Non-dominant metapaths indicate redundancies in a metagraph and60

hence, redundancies in the policies depicted by the metagraph.61

In metagraph theory, the notion of cutsets and bridges allow one to lo-62

cate edges that are critical [1]. A cutset is a set of edges which if removed,63

eliminates all metapaths between a given source and a target. A singleton64

cutset is a bridge. In an access-control policy context for instance, bridges65

and cutsets indicate if there exists a critical policy or a policy set that enable66

access between certain users and resources.67

It is also possible to derive a projection for a given metagraph. A projec-68

tion is a simplified metagraph that provides a high-level view of the original69

metagraph by concealing certain details [1]. In a complex metagraph with70

many edges, a projection helps to visualise the important aspects with clarity71

and ease. For instance, in a complex access-control policy with many rules,72

projections help administrators visualise connectivity between a subset of73

users and resources.74

Metagraphs can have attributes associated with their edges. One such at-75

tributed metagraph is a conditional metagraph [1]. A conditional metagraph76

includes propositions – statements that may be true or false – assigned to77

their edges as qualitative attributes [1]. The generating set of these meta-78

graphs are partitioned into a variables set and a propositions set.79

Conditional metagraphs are particularly useful in specifying access-control80

policies because they allow a policy (such as permit user u1 to access resource81

r1) to be activated conditionally (e.g., during business hours only).82

3

Figure 2: MGtoolkit entity relationship model (*–1 denotes a many-to-one relationship
and → denotes an extension).

3. Overview of MGtoolkit83

MGtoolkit is implemented solely in Python 2.7 which is an interpreted,84

object-oriented, open-source language. Python has a concise but natural85

syntax for many of its data types, which makes programs exceedingly clear86

and easy to read; as the saying goes, ‘Python is executable pseudocode.’ De-87

pendencies of MGtoolkit include the packages NumPy 1.9 and NetworkX 1.7;88

both very popular and stable open source Python packages.89

Figure 2 depicts the entity model we have employed in the underlying90

framework. Some attributes have been omitted in the Metagraph entity for91

simplicity.92

A Metagraph entity consists of a set of Node entities and a set of Edge93

entities. Each Node contains a subset of elements from the metagraph’s gen-94

erating set. An Edge has the members: invertex and outvertex, assigned95

a Node each, and an attributes member that returns any edge attributes.96

A Metagraph entity also has the methods: add edges from() and97

remove edges from(), to add and delete edges as necessary. In addition, the98

entity includes methods to derive its adjacency matrix, find metapaths, check99

metapath properties (e.g., is dominant metapath()) and edge properties100

(e.g., is cutset()).101

The source and target members of a Metapath return subsets of ele-102

ments in a metagraph’s generating set. The edge list member returns an103

edge set between the source and target which satisfy Definition 2.104

A ConditionalMetagraph entity extends a Metagraph and supports propo-105

sition attributes in addition to variables. A ConditionalMetagraph inherits106

4

Listing 1: MGtoolkit implementation of policy in Figure 1(a).

1 # define policy metagraph

2 variable_set = {’u1’,’u2’,’u3’,’u4’,’u5’,’u6’,’r1’,’r2’,’r3’}

3 propositions_set = {’action=permit’, ’action=deny’}

4 cm = ConditionalMetagraph(variable_set, propositions_set)

5 cm.add_edges_from([

6 Edge({’u1’,’u2’,’u3’}, {’r1’,’r2’}, attributes=[’action=permit’]),

7 Edge({’u3’,’u4’,’u5’}, {’r2’,’r3’}, attributes=[’action=deny’]),

8 Edge({’u2’,’u3’,’u5’,’u6’}, {’r1’,’r2’}, attributes=[’action=permit’])])

9
10 # compute redundancies and conflicts

11 all_metapaths = cm.get_all_metapaths()

12 for metapath in all_metapaths:

13 if cm.has_redundancies(metapath):

14 print(’redundancy detected: %s’%repr(metapath))

15 if cm.has_conflicts(metapath):

16 print(’conflict detected: %s’%repr(metapath))

Listing 2: Partial output from running code in Listing 1.

1 conflict detected: Metapath({ Edge(set([’u1’,’u2’,’u3’,’action=permit’]),

set([’r1’,’r2’])), Edge({’u3’,’u4’,’u5’}, {’r2’,’r3’}, attributes=[’

action=deny’])})

the base properties and methods of a Metagraph and additionally supports107

methods to derive its context metagraphs (i.e., get context()), check con-108

nectivity properties (e.g., is fully connected()) and redundancy proper-109

ties (e.g., is non redundant()).110

The code snippet in Listing 1 instantiates the example access-control111

policy in Figure 1(a) using MGtoolkit and then checks policy consistency.112

It returns a redundancy and two conflicts–one is shown in Listing 2. The113

redundancy is due to e1 and e3 both enabling access to R1 from u2 and u3.114

The conflicts stem from e3 denying access to R2. More detailed examples115

based on business policies and workflows can be found on pages 81, 109 and116

126 of the metagraph text [1].117

4. Impact and challenges118

There are many packages available for analysing graphs, e.g., igraph, Net-119

workX, Gephi [4, 5, 6]. These are being increasingly utilised. Metagraphs120

provide a powerful generalisation of simple graphs and are particularly suit-121

able for modeling business and computer-network policies [1, 2].122

5

MGtoolkit is the first publicly available Python API for implementing123

metagraphs. It serves two key purposes. Firstly, the API allows users to124

learn about metagraphs in an interactive manner by creating metagraph125

examples, applying metagraph operations and evaluating the results. The126

documentation and tutorials associated with the package simplify the learn-127

ing curve. Secondly, the API is a building block for developing and analysing128

metagraph-based applications such as decision-support systems. Developers129

can harness the advantages and power of metagraphs in to their applications130

by simply importing MGtoolkit.131

We believe our API is a first step to revisit old questions and tackle132

new challenges. For instance, in the specification and analysis of computer133

network policies: current approaches either lack high-level specification ca-134

pability or formal semantics. MGtoolkit is a gateway to harness the best of135

both of these worlds.136

We have used the GitHub open source code hosting and development137

platform to enable user collaboration.138

A key drawback in developing MGtoolkit was the fact that the only meta-139

graph text available for reference contained several discrepancies. For in-140

stance, the inverse metagraph generation algorithm given in the text failed141

to replicate the example output provided (Figure 4.9 on page 47 in [1]). Upon142

clarification with the author, we found that the example was in fact incorrect.143

Also several metapath examples given contradicted the definition of a144

metapath (e.g., metapath M4 on page 28 in [1]). We strictly adhered to the145

definition because the formal metagraph properties derived were based on146

the definition.147

5. Conclusions and future work148

In this paper, we present MGtoolkit: an open-source Python package for149

implementing metagraphs. The software promotes learning and experimenta-150

tion with metagraphs and can help analyse business- and computer-network151

policies alike.152

In the future, we are planning several applications based on MGtoolkit,153

one in particular is a tool for the formal analysis of computer-network policies.154

Additionally, some of the algorithms suggested in [1] are not efficient and we155

plan to improve on them.156

Acknowledgements157

This project was supported by the Australian Government through the158

Australian Research Council Linkage Project LP140100489.159

6

[1] A. Basu, R. W. Blanning, Metagraphs and their applications, Vol. 15,160

Springer Science & Business Media, 2007.161

[2] H. X. Nguyen, T. Pham, K. Hoang, D. D. Nguyen, E. Parsonage, A proto-162

type of policy defined wireless access networks, in: International Telecom-163

munication Networks and Applications Conference (ITNAC), 2016, pp.164

1–5.165

[3] A. Gushcha, Haskell library for metagraph data structure, [Online]. Avail-166

able: https://github.com/Teaspot-Studio/metagraph (March 2017).167

[4] igraph Steering Committee, Get started with python-igraph, [Online].168

Available: http://igraph.org/python/ (January 2006).169

[5] NetworkX Developer Team, High-productivity software for complex net-170

works, [Online]. Available: https://networkx.github.io/ (2004).171

[6] M. Bastian, S. Heymann, M. Jacomy, Gephi: An open source software172

for exploring and manipulating networks, https://gephi.org/ (2009).173

Current code version174

Nr. Code metadata description
C1 Current code version V1.0.1
C2 Permanent link to code/repository

used for this code version
https://github.com/

dinesharanathunga/mgtoolkit

C3 Legal Code License MIT
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
Python2.7

C6 Compilation requirements, operat-
ing environments & dependencies

Mac OS X, Linux

C7 If available Link to developer docu-
mentation/manual

https://readthedocs.org/

projects/mgtoolkit/badge/

?version=latest

C8 Support email for questions mgtkhelp@gmail.com

Table 1: Code metadata

7

https://github.com/Teaspot-Studio/metagraph
http://igraph.org/python/
https://networkx.github.io/
https://gephi.org/
https://github.com/dinesharanathunga/mgtoolkit
https://github.com/dinesharanathunga/mgtoolkit
https://readthedocs.org/projects/mgtoolkit/badge/?version=latest
https://readthedocs.org/projects/mgtoolkit/badge/?version=latest
https://readthedocs.org/projects/mgtoolkit/badge/?version=latest

	Motivation
	Background
	Overview of MGtoolkit
	Impact and challenges
	Conclusions and future work

