How to Compute Accurate Traffic Matrices for your Network in Seconds

Yin Zhang, Matthew Roughan, Carsten Lund, Nick Duffield, Albert Greenberg, Quynh Nguyen – AT&T Labs-Research

David Donoho – Stanford

Problem

Have link traffic measurements (from SNMP) Want to know demands from source to destination

Example App: reliability analysis

Under a link failure, routes change want to predict new link loads

Network Engineering

#What you want to do Reliability analysis △Traffic engineering Capacity planning #What do you need to know ✓ Network and routing Prediction and optimization techniques ? Traffic matrix

Solution: Tomo-gravity

#Computes traffic matrices

Minput: SNMP, topology, routing policies

#Advantages

- \square Today's data \rightarrow no special instrumentation
- Fast: a few seconds
- Accurate: average 12% error
- Scales: hundreds of nodes
- Robust: copes easily with data glitches
- ○Flexible: can incorporate more detailed data

Foundation: Information Theory

Tomo-gravity in a Nutshell

Tomo-gravity in practice

- 1. Get topology & routing
- 2. Measure SNMP link loads
- 3. Derive gravity solution
 ¥ Uses edge loads
- 4. Compute tomo-gravity solution
 - 🔀 Use internal link data
 - 🔀 Matches observed link loads
 - Can incorporate more detailed measurements to boost accuracy

Real example

actual matrix element

I omo-gravity

Example use: reliability analysis

I omo-gravity

Conclusion

#Tomo-gravity implemented △AT&T's IP backbone (AS 7018) Hourly traffic matrices for > 1 year (in secs) **#**For a number of applications Reliability analysis (killer app...) Traffic engineering Capacity planning http://www.research.att.com/ ~roughan/tomogravity.html

Key References

"Fast, accurate computation of large-scale IP traffic matrices from link measurements", Y.Zhang, M.Roughan, N.Duffield and A.Greenberg, ACM SIGMETRICS 2003.

- An information theoretic approach to traffic matrix estimation", Y.Zhang, M.Roughan, C.Lund and D.Donoho, ACM SIGCOMM 2003.
- 🗠 Both available at

http://www.research.att.com/~roughan/papers.html

Additional Slides

Mathematical Formalism

Many more unknowns than measurements

Robustness (input errors)

Dependence on Topology

Additional information - Netflow

Local traffic matrix (George Varghese)

Robustness (missing data)

Point-to-multipoint

We don't see whole Internet – What if an edge link fails? Point-to-point traffic matrix isn't invariant

Point-to-multipoint

- **#** Included in this approach
- **#** Implicit in results above
- **#** Explicit results worse
 - Ambiguity in demands in increased
 - More demands use exactly the same sets of routes
- 🔀 use in applications is better

actual matrix element

