Spatio-Temporal Compressive Sensing

Yin Zhang

The University of Texas at Austin

yzhang@cs.utexas.edu

Joint work with

Matthew Roughan

Walter Willinger

Lili Qiu

University of Adelaide

AT&T Labs–Research Univ. of Texas at Austin

ACM SIGCOMM 2009 August 20, 2009

\mathbf{Q} : How to fill in missing values in a matrix?

- Traffic matrix
- Delay matrix
- Social proximity matrix

Internet Traffic Matrices

- Traffic Matrix (TM)
 - Gives traffic volumes between origins and destinations
- Essential for many networking tasks
 - what-if analysis, traffic engineering, anomaly detection

- Lots of prior research
 - Measurement, e.g. [FGLR+01, VE03]
 - Inference, e.g. [MTSB+02, ZRDG03, ZRLD03, ZRLD05, SLTP+06, ZGWX06]
 - Anomaly detection, e.g. [LCD04, ZGRG05, RSRD07]

<u>Missing Values: Why Bother?</u>

- Missing values are common in TM measurements
 - Direct measurement is infeasible/expensive
 - Measurement and data collection are unreliable
 - Anomalies/outliers hide non-anomaly-related traffic
 - Future traffic has not yet appeared
- The need for missing value interpolation
 - Many networking tasks are sensitive to missing values
 - Need non-anomaly-related traffic for diagnosis
 - Need predicted TMs in what-if analysis, traffic engineering, capacity planning, etc.

The Problem

 $X_{r,t}$: traffic volume on route r at time t

The Problem

$\mathcal{A}(\mathbf{X}) = \mathbf{B}$

<u>Challenge</u>: In real networks, the problem is massively underconstrained!

Spatio-Temporal Compressive Sensing

- Idea 1: Exploit low-rank nature of TMs
 - Observation: TMs are low-rank [LPCD+04, LCD04]:

 $\mathbf{X}_{nxm} \approx \mathbf{L}_{nxr} * \mathbf{R}_{mxr}^{T}$ (r « n,m)

- Idea 2: Exploit spatio-temporal properties
 - Observation: TM rows or columns close to each other (in some sense) are often close in value
- Idea 3: Exploit local structures in TMs
 - Observation: TMs have both global & local structures

Spatio-Temporal Compressive Sensing

- Idea 1: Exploit low-rank nature of TMs
 - Technique: Compressive Sensing

- Idea 2: Exploit spatio-temporal properties
 - Technique: Sparsity Regularized Matrix Factorization (SRMF)
- Idea 3: Exploit local structures in TMs
 - Technique: Combine global and local interpolation

Compressive Sensing

- Basic approach: find $X = LR^T s.t. A(LR^T) = B$
 - (m+n)*r unknowns (instead of m*n)
- Challenges
 - $A(LR^T) = B$ may have many solutions \rightarrow which to pick?
 - A(LR^T)=B may have zero solution, e.g. when X is approximately low-rank, or there is noise
- Solution: Sparsity Regularized SVD (SRSVD)
 - minimize $|\mathcal{A}(\mathsf{LR}^{\mathsf{T}}) \mathsf{B}|^2$ // fitting error + $\lambda (|\mathsf{L}|^2 + |\mathsf{R}|^2)$ // regularization
 - Similar to SVD but can handle missing values and indirect measurements

Sparsity Regularized Matrix Factorization

- Motivation
 - The theoretical conditions for compressive sensing to perform well may not hold on real-world TMs
- Sparsity Regularized Matrix Factorization
 - minimize $|\mathcal{A}(LR^T) B|^2$
 - + λ (|L|²+|R|²) // regularization $+ |S(LR^{T})|^{2}$ + $|(LR^{T})T^{T}|^{2}$
- // fitting error // spatial constraint *// temporal constraint*
 - S and T capture spatio-temporal properties of TMs
 - Can be solved efficiently via alternating least-squares

<u>Spatio-Temporal Constraints</u>

- Temporal constraint matrix T
 - Captures temporal smoothness
 - Simple choices suffice, e.g.: T =

$$\begin{bmatrix} 1 & -1 & 0 & \cdots \\ 0 & 1 & -1 & \ddots \\ 0 & 0 & 1 & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{bmatrix}$$

- Spatial constraint matrix S
 - Captures which rows of X are close to each other
 - Challenge: TM rows are ordered arbitrarily
 - Our solution: use a initial estimate of X to approximate similarity between rows of X

<u>Combining Global and Local Methods</u>

- Local correlation among individual elements may be stronger than among TM rows/columns
 - S and T in SRMF are chosen to capture global correlation among entire TM rows or columns
- SRMF+KNN: combine SRMF with local interpolation
 - Switch to K-Nearest-Neighbors if a missing element is temporally close to observed elements

<u>Generalizing Previous Methods</u>

• Tomo-SRMF: find a solution that is close to LR^T yet satisfies $\mathcal{A}(X)=B$

method for inferring TM from link loads

Applications

- Inference (a.k.a. tomography)
 - Can combine both direct and indirect measurements for TM inference
- Prediction
 - What-if analysis, traffic engineering, capacity planning all require predicted traffic matrix
- Anomaly Detection
 - Project TM onto a low-dimensional, spatially & temporally smooth subspace (LR^T) \rightarrow normal traffic

Spatio-temporal compressive sensing provides a unified approach for many applications

Evaluation Methodology

• Data sets

Network	Date	Duration	Resolution	Size
Abilene	03/2003	1 week	10 min.	121x1008
Commercial ISP	10/2006	3 weeks	1 hour	400x504
GEANT	04/2005	1 week	15 min.	529x672

• Metrics

- Normalized Mean Absolute Error for missing values

$$NMAE = \frac{\sum_{i, j: M(i, j) = 0} |X(i, j) - X_{est}(i, j)|}{\sum_{i, j: M(i, j) = 0} |X(i, j)|}$$

- Other metrics yield qualitatively similar results.

<u>Algorithms Compared</u>

Algorithm	Description
Baseline	Baseline estimate via rank-2 approximation
SRSVD	Sparsity Regularized SVD
SRSVD-base	SRSVD with baseline removal
NMF	Nonnegative Matrix Factorization
KNN	K-Nearest-Neighbors
SRSVD-base+KNN	Hybrid of SRSVD-base and KNN
SRMF	Sparsity Regularized Matrix Factorization
SRMF+KNN	Hybrid of SRMF and KNN
Tomo-SRMF	Generalization of tomo-gravity

Other Results

- Prediction
 - Taking periodicity into account helps prediction
 - Our method consistently outperforms other methods
 - Smooth, low-rank approximation improves prediction
- Anomaly detection
 - Generalizes many previous methods
 - E.g., PCA, anomography, time domain methods
 - Yet offers more
 - Can handle missing values, indirect measurements
 - Less sensitive to contamination in normal subspace
 - No need to specify exact # of dimensions for normal subspace
 - Preliminary results also show better accuracy

Conclusion

- Spatio-temporal compressive sensing
 - Advances ideas from compressive sensing
 - Uses the first truly spatio-temporal model of TMs
 - Exploits both global and local structures of TMs
- General and flexible
 - Generalizes previous methods yet can do much more
 - Provides a unified approach to TM estimation, prediction, anomaly detection, etc.
- Highly effective
 - Accurate: works even with 90+% values missing
 - Robust: copes easily with highly structured loss
 - Fast: a few seconds on TMs we tested

Lots of Future Work

- Other types of network matrices
 - Delay matrices, social proximity matrices
- Better choices of S and T
 - Tailor to both applications and datasets
- Extension to higher dimensions
 - E.g., 3D: source, destination, time
- Theoretical foundation
 - When and why our approach works so well?

Thank you!

<u>Alternating Least Squares</u>

- Goal: minimize $|\mathcal{A}(LR^T) B|^2 + \lambda (|L|^2 + |R|^2)$
- Step 1: fix L and optimize R
 - A standard least-squares problem
- Step 2: fix R and optimize L
 - A standard least-squares problem
- Step 3: goto Step 1 unless MaxIter is reached