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ABSTRACT

Traffic matricesare requiredinputsfor mary IP network manage-
menttasks:for instance capacityplanning,traffic engineeringand
network reliability analysis.However, it is difficult to measurehese
matricesdirectly, andso therehasbeenrecentinterestin inferring
traffic matricedfrom link measurementndothermoreeasilymea-
sureddata. Typically, this inferenceproblemis ill-posed, asit in-
volvessignificantlymoreunknaovnsthandata. Experiencén mary
scientific and engineeringdfields has shovn that it is essentialto
approachsuchill-posed problemsvia “regularization”. This paper
presents new approacho traffic matrix estimationusingaregular
ization basedon “entropy penalization”. Our solutionchooseghe
traffic matrix consistentvith the measuredlatathatis information-
theoreticallyclosesto amodelin which source/destinatiopairsare
stochasticallyindependentWe usefastalgorithmsbasedon mod-
erncorvex optimizationtheoryto solwve for our traffic matrices.We
evaluatethe algorithmwith real backboneraffic androuting data,
anddemonstratéhatit is fast,accuraterobust,andflexible.

Categoriesand Subject Descriptors

C.2.3[Computer-Communications Networks]: Network Opera-
tions—networkmonitoring C.2.5[Computer-CommunicationsNet-
works]: LocalandWide-AreaNetworks—Internet

General Terms
Measuremenll?erformance

Keywords

Traffic Matrix Estimation,Information Theory Minimum Mutual
Information,Regularization,Traffic Engineering SNMP.

1. INTRODUCTION

A point-to-pointtraffic matrix givesthevolumeof traffic between
origin/destinationpairsin somenetwork. Traffic matricesare re-
quiredinputsfor mary IP network managemertiasks:for instance,
capacityplanning,traffic engineeringandnetwork reliability analy-
sis. However, it is difficult to measuréhesematricedirectly, andso
thereis interestin inferring traffic matricesfrom link load statistics
andothermoreeasilymeasuredlata[24, 23,2, 16, 28].

Traffic matricesmay be estimatedor measuredat varying levels
of detail[15]: betweerPoints-of-Presend@oPs)16], routers28],
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links, or evenIP prefixes[8]. Thefiner grainedtraffic matricesare
generallymoreuseful,for example,in the analysisof thereliability
of anetwork undera componenfailure. During a failure, IP traffic
is reroutedo find thenew paththroughthenetwork, andonewishes
to testif this would causea link overloadanywherein the network.
Failure of a link within a PoP may causetraffic to reroutevia al-
ternatdinks within the PoPwithout changingheinter-PoProuting.
Thusto understandailure loadson the network we mustmeasure
traffic atarouterto-routerevel. In generaltheinferenceproblemis
morechallengingatfinerlevelsof detail,thefinestsofar considered
beingrouterto-router

The challengelies in the ill-posed natureof the problem: for a
network with N ingress/gresspointswe needto estimatethe N2
origin/destinationrdemands.At a PoPlevel N is in the tens,at a
routerlevel N maybein thehundredsatalink level N maybetens
of thousandsandat the prefix level N may be of the orderof one
hundredthousand.However, the numberof piecesof information
available,the link measurementsemainsapproximatelyconstant.
Onecanseethedifficulty — for large N the problembecomesnas-
sively underconstrained.

Thereis extensie experiencewith ill-posedlinearinverseprob-
lemsfrom fields asdiverseasseismologyastronomyandmedical
imaging[1, 5, 17, 18, 26], all leadingto the conclusionthat some
sortof sideinformationmustbebroughtin, producingaresultwhich
may be good or bad dependingon the quality of this information.
All of the previous work on IP traffic matrix estimationhasincor-
poratedprior information: for instance Vardi [24] and Tebaldiand
West [23] assumea Poissontraffic model, Cao et al. [2] assume
a Gaussiartraffic model, Zhanget al. [28] assumean underlying
gravity model,andMedinaetal. [16] assumea logit-choicemodel.
Eachmethodis sensitve to the accurag of this prior: for instance,
[16] shaved thatthe methodsin [24, 23, 2] were sensitve to their
prior assumptionswhile [28] showved that their methods perfor
mancewasimproved if the prior (the so calledgravity model)was
generalizedo moreaccuratelyreflectrealisticroutingrules.

In contrastthis paperstartsfrom a regularizationformulationof
theproblemdrawn from thefield of ill-posedproblemsandderives
a prior distribution thatis mostappropriateto this problem. Our
prior assumesource/destinatiomdependenceayntil proven other
wiseby measurement§.he methodthenblendsmeasurementsith
prior information, producingthe reconstructiorclosestto indepen-
dence put consistentvith the measurediata. Themethodproceeds
by solving an optimizationproblemthatis understandablandin-
tuitively appealing.This approachallows a convenientimplemen-
tation usingmodernoptimizationsoftware, with the resultthatthe
algorithmis very efficient.

We testthe estimationalgorithm extensvely on network traffic
andtopology datafrom an operationalbackbonelSP. The results
shaw thatthealgorithmis fast,andaccuratdor point-to-pointtraffic
matrix estimation.\We alsotestthe algorithmon topologiesgener
atedthroughthe Rocletfuel project[21, 14, 22] to resemblealter
native ISPs,providing usefulinsightinto wherethe algorithmwill



work well. Oneinterestingsideresultis thatthereis arelationship
betweenthe network traffic andtopologythatis beneficialin this
estimationproblem. We also testthe sensitvity of the algorithm
to measurementsrrors,demonstratinghat the algorithmis highly
robustto errors,andmissingdatain thetraffic measurements.

Ourapproactalsoallows usto addresshe problemof estimating
point-to-multipointdemandmatrices. As shavn in [8], point-to-
pointtraffic matricesarenot alwaysenoughfor applicationsUnder
somefailuresthe traffic may actually changeits origin and desti-
nation;its network entry andexit points. The point-to-pointtraffic
matrix will be altered,becausehe point-to-pointtraffic matrix de-
scribesthe “carried” load on the network betweentwo points. The
demandmatrix, which describeghe “offered” load for an IP net-
work, is point-to-multipoint. To understandhis, considera paclet
enteringa backbondSP througha custometlink, destinedfor an-
otherbackbonelSP’s customer Large North-Americanbackbone
providerstypically are connectedat multiple peeringpoints. Our
paclet couldreachits final destinatiorthroughary of thesepeering
links; the actualdecisionis madethrougha combinationof Bor-
der Gatavay Protocol(BGP) and Interior Gatavay Protocol (IGP)
routing protocols.If thenormalexit link fails, thentherouting pro-
tocolswould choosea differentexit point. In a more complicated
scenariothe recipientof the paclet might be multi-homed— that
is, connectedo morethanonelSRP In this casethe paclet may exit
thefirst ISPthroughmultiple setsof peeringinks. Finally, evensin-
gle homedcustomersnay sometimede reachedhroughmultiple
interAS (AutonomousSystem)paths.

Giventhecompleity andill-posednatureof thepoint-to-multipoint

problem,oneis temptedto throw his armsin the air andsay: “we

cannotsolve the point-to-multipointproblemwith link level data;
we needbetterinformation (for instancefrom Netflow [8]).” This

papershavs, however, thatby adoptingthe regularizationapproach
above it is possibleto make some progresstowards solving this

problem. We cannotestimatedemandmatricesat the ideal level

of detail (prefix level), becausehe dataat our disposalSNMP link

loads)cannotdistinguishprefixes. However, the operationakeali-

tiesof large networks make a simplificationto routerlevel practical,
and useful. Using thesesimplificationswe presenta methodfor

estimatingthe point-to-multipointdemandmatrices thoughin this

papemwe only testtheseimplicitly to make theresultsmoredirectly

comparableo previouswork.

An adwantageof the approachusedin this paperis thatit also
providessomeinsightinto alternative algorithms.For instancethe
simplegravity modelof [28] is equialentto completeéndependence
of sourceanddestinationwhile the generalizedyravity modelcor-
respondso independenceonditionalon sourceanddestinatiodink
classes Furthermorethe algorithmof [28] is a first-orderapprox-
imation of the algorithm presentedere,explaining the succes®f
thatalgorithm,andsuggestinghatit alsocanbe extendedto mea-
sure point-to-multipointdemandmatrices. Our methodopensup
further opportunitiesfor extensionsgiventhe betterunderstanding
of theimportanceof priorinformationaboutnetwork traffic andhow
it canbeincorporatednto theproces®f findingtraffic matrices.For
instanceanappealingalternatie prior generatiorprocedures pro-
posedin [16] (this ideais suggestedn [16] but the mechanisnto
do sois not explored). Alternatively, the Bayesianrmethodof [23]
canbeplacedinto the optimizationframewnork here with adifferent
penaltyfunction,ascouldthe method<of [24, 2].

Finally, we examinesomealternatve measuremerstrat@iesthat
could benefitour estimatesWe examinetwo possibilities:thefirst
(suggesteih [16]) is to make directmeasurementsf somerows of
the traffic matrix, the seconds to measurdocal traffic matricesas
suggestedn [25]. Both resultin improvementsin accurag, how-
ever, we foundin contrasto [16] thattheorderin which rows of the
traffic matrix areincludeddoesmatter— addingrows in order of
thelargestrow sumfirst is betterthanrandomordering.

To summarizethis paperdemonstratea specifictool thatworks
well on large scalepoint-to-pointtraffic matrix estimationandcan

be extendedin a numberof ways,for instanceto computepoint-to-
multipoint demandmatrices. The resultsshov thatit is important
to addappropriaterior information. Our prior informationis based
on independence-until-pven-otherwisewhich is plausible,com-
putationallyconvenient,andresultsin accurateestimates.

Thepaperbaginsin Section2 with somebackgrounddefinitions
of terminologyanddescriptionof the typesof dataavailable. Sec-
tion 3 describeghe regularizationapproachusedhere,andour al-
gorithm, followed by Section4, the evaluationmethodology and
Section5, which shaws the algorithm’s performanceon a large set
of measurementfom an operationaltier-1 ISP Section6 exam-
inesthe algorithm’ robustnesgo errorsin its inputs,andSection7
shaws the flexibility of the algorithmto incorporateadditionalin-
formation.We concludethe paperin Section8.

2. BACKGROUND
2.1 Network

An IP network is madeup of routersand adjacenciedetween
thoserouterswithin asingleAS or administratve domain. It is nat-
ural to think of the network asa setof nodesandlinks, associated
with the routersandadjacenciesasillustratedin Figurel. We re-
fer to routersandlinks that are wholly internalto the network as
BadboneRouters(BRs) andlinks, andreferto the othersasEdge
Routerg ERs)andlinks.

One could computetraffic matriceswith differentlevels of ag-
gregation at the sourceand destinationend-points for instance at
thelevel of PoPto PoR or routerto router or link to link [15]. In
this paperwe areprimarily interestedn computingrouterto router
traffic matriceswhich areappropriat€for anumberof network and
traffic engineeringapplicationsandcanbe usedto constructmore
highly aggrejatedtraffic matrices(e.g. PoPto PoP)usingtopology
information[15]. We may further specify the traffic matrix to be
betweerBRs, by aggregatingup to this level.

Peers

Peering Links

IP Network Backbone

Access Links

Customers

Figure 1: IP network componentsand terminology

In addition,it is helpfulfor IP networksmanagedy InternetSer
vice Providers (ISPs)to further classify the edgelinks. We cate-
gorizethe edgelinks into accesdinks, connectingcustomersand
peeringlinks, which connecbther(non-customerqutonomousys-
tems. A significantfraction of the traffic in an ISP is inter-domain
andis exchangedetweercustomersndpeemetworks. Todaytraf-
fic to peemetworksis largely focusedon dedicategeeringinks, as
illustratedin Figure 1. Under the typical routing policies imple-
mentedby large ISPs, very little traffic will transitthe backbone
from onepeerto another Transittraffic betweerpeersmay reflect
atemporarystepin network consolidatiorfollowing anISP memger
or acquisition but shouldnot occurundernormaloperations.

In large IP networks, distributed routing protocolsare usedto
build the forwardingtableswithin eachrouter It is possibleto pre-
dict theresultsof thesedistributedcomputationgrom datagathered
from routerconfigurationfiles, or a route monitor suchas[19]. In
our investigation,we employ arouting simulatorsuchasin [7] that



makesuseof this routinginformationto computea routing matrix.
We alsosimulateload balancingacrossmultiple shortespaths.

2.2 Traffic Data

In IP networks today link load measurementare readily avail-
ablevia the SimpleNetwork ManagemenProtocol(SNMP).SNMP
is uniquein thatit is supportedy essentiallyevery device in anIP
network. The SNMP datathatis available on a device is defined
in a abstractdatastructureknown as a Managementnformation
Base(MIB). An SNMP poller periodicallyrequestshe appropriate
SNMP MIB datafrom arouter(or otherdevice). Sinceevery router
maintainsacyclic counterof thenumberof bytestransmittecandre-
ceivedon eachof its interfaces we canobtainbasictraffic statistics
for theentirenetwork with little additionalinfrastructurga poller).

The propertiesof datagatheredvia SNMP areimportantfor the
implementatiorof a usefulalgorithm— SNMP datahasmary lim-
itations. Datamay be lost in transit(SNMP usesunreliableUDP
transporticopying to our researctarchive may alsointroduceloss).
Data may be incorrect (through poor router vendorimplementa-
tions). The samplingintenal is coarse(in our case5 minutes).
Marny of the typical problemsin SNMP datamay be mitigatedby
usinghourly traffic averagegof five minutedata),andwe shalluse
this approach. The problemswith the finer time-scaledatamake
time-serieaapproacheso traffic matrix estimationmoredifficult.

We useflow level datain this paperfor validationpurposesThis
datais collectedat the routerwhich aggreatestraffic by IP source
anddestinatioraddressandportnumbers This level of granularity
is sufficientto obtainarealtraffic matrix[8], andin thefuture such
measurementay provide direct traffic matrix measurementdut
at presentimitationsin vendorimplementationgrevent collection
of this datafrom the entirenetwork.

2.3 Information Theory

Informationtheoryis of courseastandardool in communications
systemg12], but a brief review will setup our terminology We
begin with basicprobabilisticnotation: we definepx (z) to mean
the probability that a randomvariable X is equalto . We shall
typically alusethis notation (whereit is clear) and simply write
p(z) = px(x). Supposdor sale of discussiorthat X andY are
independentandomvariablesthen

p(z,y) = p(x)p(y), 1)

i.e. thejoint distributionis the productof its maginals. This canbe
equivalentlywritten usingthe conditionalprobability

p(zly) = p(z). )

In this paperwe shalltypically use ratherthanthe standardandom
variablesX andY, S and D, the sourceS andthe destinationD
of a paclet (or bit). Thusp(d|s) is the conditionalprobability of a
paclet (bit) exiting the network at D = d, giventhatit enteredat
S = s, andp(d) is the unconditionalprobability of a paclet (bit)
goingto D = d.

We cannow definethe DiscreteShannorEntropy of a discrete
randomvariable X takingvaluesz; as

=- Z p(x:) log, p(:), ®)

The entropy is a measureof the uncertaintyaboutthe outcomeof
X. Forinstancejf X = z; with certainty then H(X) = 0, and
H(X) takesits maximumvaluewhenX is uniformly distributed—
thatis, whenthe uncertaintyaboutits valueis greatest.

We canalsodefinetheconditionalentrogy of onerandomvariable
Y with respecto anotherX by

H(Y|X) = Zp(%) Zp yilw:) log, p(yilz:),  (4)

wherep(y;|x;) is the probabilitythatY = y; conditionalon X =

H(Y|X) canbethoughtof asthe uncertaintyremainingabout
Y giventhatwe areinformedof the outcomeof X. Noticethatthe
joint entropy of X andY canbeshowvn to be

H(X,Y) = H(X) + H(Y|X). ©)
We canalsodefinethe Shannorninformation
I(Y[X)=H(Y) - H(Y|X), (6)

whichthereforerepresentthedecreasé uncertaintyaboutY” from
measurememnf X, or the informationthatwe gain aboutY” from
X. Theinformationis symmetric,/ (X|Y) = I(Y|X) andsowe
canreferto this asthe mutualinformationof X andY’, andwrite
asI(X,Y). NotethatI(X,Y) > 0, with equalityif andonly if X
andY areindependent— when X andY areindependeniX gives
usno additionalinformationaboutY”.

The mutualinformationcanbe written in a numberof ways, but
herewe write it

p(z,y)

= 2 peon sy =

whereK (f||g) = >, filog(fi/g:) is the Kullback-Leiblerdiver
genceof f with respectto g, a well-knovn measureof distance
betweerprobability distributions.

DiscreteEntropy is frequentlyusedin codingbecaus¢heentropy
H(X) givesa measureof the numberof bits requiredto codethe
valuesof X. Thatis, if we hada large numbern of randomly-
generatednstancesX;, X, ..., X,, andneededo representhis
streamascompactlyaspossible we couldrepresenthis streamus-
ing only n H (X) bits, usingentrofy codingaspracticedor example
in variousstandarccommerciakcompressiorschemes.

Entropy hasalsobeenadwcatedasa tool in the estimationof
probabilities.Simply put, themaximunentopyprinciple stateghat
we shouldestimatean unknavn probability distribution by enumer
atingall theconstraintsve know it mustobey on‘physical’ grounds,
andsearchindor theprobabilitydistribution thatmaximizegheen-
tropy subjectto thoseconstraints.It is well known thatthe proba-
bility distributionsoccurringin mary physicalsituationscanbe ob-
tainedby the maximumentrogy principle. Heuristically if we had
no prior information abouta randomvariable X, our uncertainty
aboutX is atits peak,andthereforewe shouldchoosea distribu-
tion for X which maximizesthis uncertaintyor theentrogy. In the
casewherewe do haveinformationaboutthevariable, usuallyin the
form of somesetof mathematicatonstrainta”, thenthe principle
statesthat we shouldmaximizethe entrofy H (X |C) of X condi-
tional on consisteng with theseconstraints Thatis, we choosethe
solutionwhich maintainsthe mostuncertaintywhile satisfyingthe
constraints. The principle canalso be derived directly from some
simpleaxiomswhich we wish the solutionto obey [20].

2.4 lll-P osedLinear InverseProblems

Mary scientificandengineeringroblemshave to solve inference
problemswhich canbe posedasfollows. We obsene datay which
arethoughtto follow a systemof linearequations

y = Ax, ®

wherethen by 1 vectory containsthe data,andthe p by 1 vector
x containsunknavnsto be estimated.The matrix A is ann by p
matrix. In mary casef interestp > n, andsothereis no unique
solutionto the equations Suchproblemsarecalledill-posedlinear
inverseproblems In addition,frequentlythe dataarenoisy, sothat
it is moreaccurateo write

y = Ax + z. 9

In thatcaseary reconstructiomprocedureneedgo remainstableun-
derperturbation®f the obsenations.In our casey arethe SNMP

K(pzyllpz X py), (7)



link measurements; is thetraffic matrix written asa vector and A
is the routing matrix.

Thereis extensive experiencewith ill-posedlinearinverseprob-
lemsfrom fields asdiverseas seismologyastronomyandmedical
imaging[1, 5, 17, 18, 26], all leadingto the conclusionthat some
sortof sideinformationmustbe broughtin, producingareconstruc-
tion whichmaybegoodor baddependingn the quality of theprior
information. Many suchproposalssolve the minimizationproblem

min ||y — Ax|3 + X*J(x), (10)
wherewhere]|| - |2 denoteshe L, norm, A > 0 is a regulariza-
tion parameterand./(x) is a penalizatiorfunctional. Proposal®of
this kind have beenusedin a wide rangeof fields, with consider
ablepracticalandtheoreticakuccessvhenthedatamatchedheas-
sumptiondeadingto the method,andthe regularizationfunctional
matchedhe propertiesof the estimand.Thesearegenerallycalled
strategiesfor regularizationof ill-posedproblems(for a moregen-
eraldescriptionof regularizationsee[11]).

A generalapproachto deriving suchregularizationideasis the
Bayesianapproach(suchasusedin [23]), wherewe modelthe es-
timandx asbeingdravn at randomfrom a so-called'prior’ prob-
ability distribution with density=(x) andthe noisez is takenasa
Gaussiamwhite noisewith variances2. Thentheso-calledoosterior
probabilitydensityp(x|y) hasits maximumx atthe solutionof

min||y—AxH§ +2.0° log m(x). (11)
Comparingthis with (10) we seethat penalizedeast-squareprob-
lemsasgiving the mostlik ely reconstructionsindera given model.
Thusthemethodof regularizationhasa Bayesiarinterpretationas-
sumingGaussiamoiseandassuming/(x) = log w(x). We stress
thatthereshouldbe a goodmatchbetweenthe regularizationfunc-
tional J andthe propertiesof the estimand— thatis, agoodchoice
of prior distribution. The penalizatiorin (10) may be thoughtof as
expressinghefactthatreconstructionarevery implausibleif they
have largevaluesof J(-).

Reyularizationcan help us understandapproachesuch as that
of Vardi [24] and Cao et al. [2], which treatthis as a maximum
likelihood problemwherethe x areindependentandomvariables
following a particularmodel. In thesecaseghey usethe modelto
form apenaltyfunctionwhichmeasurethedistancdrom themodel
by considerinchigherordermomentf the distributions.

2.5 Shrinkage Estimation

An alternatve reasoningoehindregularizationis thatin estimat-
ing largenumberf parametergasin the problemabore), ‘shrink-
ing’ anotherwisevalid estimategowardsa specialpoint resultsin
substantialeductiongn mean-squaredrror. As asimpleexample,
supposeve havenoisydatay = x+z, wherey, x andz areall nx 1
vectors.We wish to recover the vectorx, wherez represent&aus-
sianwhite noise N (0, 1). Theraw datacomponentg; areunbiased
minimum varianceestimatorf the correspondingomponents:;
of the estimandx, soit is temptingto believe thaty is the optimal
estimateof x. In fact,if n is large, it is possibleto do substantially
betterthanusingy. We shouldinsteadsolve the penalizedoroblem

min |y — x|3 + A*x]3, (12)

where = W is ameasureof the datases sizein mean-square
2

(or ratherits reciprocal). The solutionis a compromisebetweerfi-
delity to themeasuredatay andclosenesso theorigin, andhasthe
simpleformx* = Hﬁy. Thisreconstructioris obtainedsimply by
‘shrinking’ theraw datay towardszero. It turnsoutthatfor largen
this shrunlenestimatotis alwaysbetterthanthe ‘obvious’ unbiased
estimatey, in thesenseahatit alwayshasalower mean-squaredr-
ror. This qualitative conclusionremainstrue if we shrink towards
someotherfixed point, thoughit is betterto shrinktowardsa point

closeto the x we aretrying to estimate.For a fuller discussiorof

shrinkageestimation seefor example[13, 6]. For now, simply note
that shrinkageof a very high-dimensionakstimandowardsa cho-

senpointcanbehelpful. Notethatno Bayesiarassumptioris being
madehere: whatever the underlyingestimandmay be, shrinkages

animprovementregardlesf our prior beliefsaboutwhich vectors
x areplausible.Thekey assumptions thatwe aretrying to estimate
avectorwith mary componentsall affectedby noise.

3. REGULARIZA TION OF THE TRAFFIC
ESTIMATION PROBLEM USING MINI-
MUM MUTUAL INFORMATION

The problemof inferenceof the end-to-endraffic matrixis mas-
sively ill-posedbecauseherearesomary moreroutesthanlinks in
anetwork. In this sectionwe developaregularizationapproachus-
ing a penaltythatseemawell-adaptedo the structureof actualtraf-
fic matrices,andwhich hassomeappealinginformation-theoretic
structure. Effectively, amongall traffic matricesagreeingwith the
link measurementsye choosethe one that minimizesthe mutual
informationbetweerthe sourceanddestinatiorrandomvariables.

Underthis criterion, absentary informationto the contrary we
assumehatthe conditionalprobability p(d|s) thata sources sends
traffic to adestinationd is the sameasp(d), the probabilitythatthe
network asa whole sendspacletsor bytesto destinationd. There
arestrongheuristicreasonsvhy thelargest-wlumelinks in the net-
work shouldobey thisprinciple— they aresohighly aggreyatedthat
they intuitively shouldbehae similarly to thenetwork asawhole.

Ontheotherhand asevidenceaccumulates thelink-level statis-
tics, the conditionalprobabilitiesare adaptedo be consistentwvith
thelink-level statisticsin sucha way asto minimize the mutualin-
formationbetweerthe sourceanddestinatiorrandomvariables.

ThisMinimum Mutual Information(MMI) criterionis well-suited
to efficient computation. It canbe implementedasa corvex opti-
mizationproblem;in effect one simply addsa minimum weighted
entropy termto the usualleast-squarekack of fit criterion. There
areseveralwidely-availablesoftwarepackages$or solvingthis opti-
mizationproblem,evenon very large scaleproblems;someof these
packagesantake advantage®f the sparsityof routingmatrices.

3.1 Traffic-Matrix Estimation

Let N (s, d) denotethetraffic volumegoingfrom sources to des-
tinationd in aunittime. Notethat N (s, d) is unknawvn to us; what
canbeknown is thetraffic 7'(1) onlink [. Let A(s, d; 1) denotethe
routing matrix, i.e. A(s, d;1) givesthe fraction of traffic from s to
d which crossedink [ (andwhich is zeroif thetraffic on this route
doesnotusethislink atall). Thelink-level traffic countsare

T(l)=> A(s.d:1)N(s,d), VI€L,
s,d

(13)

whereL is the setof backbondinks. We would like to recover the

traffic matrix N (s, d) from thelink measurement&'(1), but this is

the sameas solving the matrix equation(8), wherey is a vector
containingthetraffic countsI’(l), x is a vectorizationof the traffic

matrix, and A is theroutingmatrix. A is a matrixwhichis #L by

(#S x #D), wherethereare# L link measurements#S sources,
and# D destinations.

3.2 The IndependenceModel

We proposehinking aboutN (s, d) in probabilisticterms,sothat
if anetwork carriesNV end-to-engaclets(or bits) total within aunit
time thenthe numberof pacletssentfrom sources to destinationd,
N (s, d) say is arandomvariablewith meanN -p(s, d), with p(s, d)
thejoint probabilitythatarandomlychoseroneof the N paclets(or



bits) goesfrom s to d. We considerthe marginal probabilities

> p(s,d),
> p(s, ),

the chancethat a randomly-chosempaclet (bit) entersthe network
at s, andthe chancethata randomlychosenpaclet (bit) departsat
d, respectiely. We canexpandthis notationto measuresets:

psp(Qs,Qa) = > Y pls,d),

SEQs dEQy

ps(s) = (14)

pp(d)

(15)

(16)

for all setsof sourceanddestinatiorinks Q s, @4, andsimilarly for
themamginal probabilitiesps andpg.

We let S be the randomvariableobtainediooking at the source
of arandompaclet (or bit), andlet D denotethe destination.Sup-
posefor sale of discussiorthat S and D areindependentandom
variables. Then(2) meanghat,giventhata paclet (bit) originatesat
S = s, it isnomorelikely to goto D = d thanwould arandomly-
chosenpaclet (bit) originatinganywherein the network. For net-
works containinga few extremelyhigh volumelinks carryingvery
large fractionsof the paclets,the assumptior(2) shouldwork well
for the very largestcircuits, sincethey have beenso highly aggre-
gatedthat their behaior may be very similar to the network asa
whole.

Notethattheindependencef sourceanddestinatioris equivalent
to thesimplegravity modelwhich hasbeendiscussedh theInternet
measuremerdommunity;the modelhastheform

N(s,d) ~ ConstN (s)N(d) 17)

where N (s) is thetraffic enteringat s, and N (d) is the traffic ex-
iting atd. While thereis experiencewith the gravity modelabore
and somesuccessn its application,it is alsoknown thatit gives
resultsthatarenot asaccurateasmay be obtainedusingadditional
information[16, 28].

Section2 suggestshat regularizationis a way of usingprior in-
formation in conjunctionwith link measurementto help decide
which traffic matricesfrom the setsatisfying(8) aremoreplausible.
We proposeusinga regularizationfunctionalthatusestheindepen-
dence/graity model as a point of departure but which considers
othermodelsaswell. Recallfrom our discussionof information
theorythatindependencef sourceanddestinatioris tantamounto
the statementhat the mutualinformationvanishes:1 (S, D) = 0.
RecallalsothatI(.S, D) > 0. It follows thatthe penaltyfunctional
ontraffic matricesp(s, d), givenby

J(p) = I(S, D),

hasJ(T) > 0 with equalityif andonlyif S andD areindependent.

This functional hasan interpretationin termsof the compress-
ibility of addressem IP headersSupposeve have alarge number
of IP headers— abstractedo be simply source/destinatioaddress
pairs(s;,d;),i = 1,..., N. Wewantto know: whatis theminimal
numberof bits required(per header}o representhe sourcedesti-
nationpair. It turnsoutthatthisis just H(S) + H(D) — I(S, D).
Now if we simply appliedentrogy compressiorto the .S; and D;
streamsseparatelywe would pay H(S) + H(D) bits per header
to representieaders.Hencethe functional I(S, D) measureshe
numberof bits of additionalcompressiompossiblebeyondthe sepa-
ratecompressiorof sourceanddestinationbasedon traditionalen-
tropy compression.This extra compressions possiblebecausef
specialdependenciethat make IP messagesnore likely to go in
certainsource/destinatiopairsthanwe would have expectedby in-
dependence.In fact measurementef H(S) and H(D) (on real
datasetslescribedbelon) aretypically around5, while I(S, D) is
very small, typically around0.1. This suggestghat the indepen-
denceassumptions a reasonabléit to therealdata,at leaston av-

erage. Theremay be somelinks for which it is not, but the MMI
methodspecificallyallows for correctionto these(seebelow).

Supposewve adopta Bayesianviewpoint, assigningan a priori
probabilityr (p) to thetraffic matrix p thatis proportionako 2=/ ®.
Thenwe are sayingwe regard asa priori implausiblethosetraffic
matriceswheremuchhighercompressioiis possiblebasedon joint
source-destinatiopairsascomparedo compressiomf sourceand
destinationsseparately Eachbit saved reducesour a priori likeli-
hoodby aboutafactor1/2.

3.3 Regularization Method

We proposenow to reconstructraffic matricesby adoptingthe
regularizationprescription(10) with the regularizationfunctional
J(p) = I(S, D). Translating(10) into traffic-matrix notation,we
seekto solve

2

minimize Y~ | T(1) = Ny A(s, d; 1)p(s, d) | + A\*I(S, D),
l s,d

(18)

Recalling the Bayesianinterpretationof regularization,we are

sayingthat we want a traffic matrix which is a tradeof between

matchingtheobseredlink traffic countsandhaving a priori plausi-

bility, whereour measuref plausibility, asjust explained,involves

the ‘anomalouscompressibility’ of source-destinatiopairs. The

traffic matrix obtainedasthe solutionto this optimizationwill bea

compromisebetweentwo termsbasedon the sizeof A, whichis a
proxy for thenoiselevel in our measurementdotethat

B Cp(s,d)
I(S.D) = dzsjp(s, d) log OO K(p(s,d)||p(s)p(d)), (19)

whereK (-||-) again denoteghe Kullback-Leiblerdivergence Here
p(s)p(d) representshe gravity model,and K (+||-) canbe seeasa
distancebetweenprobability distributions, so that we cansee(18)
ashaving an explicit tradeof betweenfidelity to the dataand de-
viation from the independence/gvity model. Note also that the
Kullback-Leiblerdivergenceis the negative of the relative entrory
of p(s, d) with respecto p(s)p(d), andsothis methodalsohasan
interpretatiorasa maximumentrogy algorithm.

Both termsin the above tradeof are corvex functionalsof the
traffic matrix p. Hence,for eachgiven A, they canbe rewritten in
constrainedptimizationform:

minimize K (p(s, d)||p(s)p(d)) subjectto
YT = N, 4 Als, d:Dp(s,d))* < x*.

Here x> = x*(\) is chosenappropriatelyso that the solution of
this problemandthe previous one arethe same at the given value
of A\. The problemis saying:amongall traffic matricesadequately
accountingfor the obsered link counts,find the oneclosestto the
gravity model. It canalsobe viewed assaying: shrink awvay from
theobsenredlink countstowardsthe gravity model.

Thinking heuristically we aretrying to estimateaverylargenum-
berof unknavns,soshrinkageowardsthe gravity modelcanbe ex-
pectedo be errorreducing providing it is performedappropriately
(ashere). Basedon the experienceof statisticianswith shrinkage
estimation,it seemsthat we can expectthis procedureto provide
at leastsomeimprovementin mean-squaredrror even thoughthe
gravity modelassumptiormaynotbevalid.

If the noiselevel in the datais small, of course,thenthe solu-
tion will not be allowed to be very closeto the gravity model. In
thelimit, asthe noiselevel goesto zero,we obtainthe solutionby
minimizing K (p(s, d)||p(s)p(d)) subjectto theconstraintg13). In
effect we are looking for the most nearly independentersion of
p(s, d) subjectto generatinghe obseredtraffic statistics.

(20)



Notethatin all theseoptimizationproblemsthereareadditional
constraintgon ary probability distribution) suchasnon-ngativity,
normalizationand(14) and(15). We leave all theseimplicit.

3.4 Algorithm

The problemwe attackin this paperis the BR-to-BR traffic ma-
trix. While this problemis an order of magnitudemore comple
thana PoP-to-PoRraffic matrix, a routerto-routertraffic matrix is
absolutelynecessaryor mary network engineeringasks. A PoP-

to-PoPtraffic matrixis usefulwhendesigninganetwork from scratch,

but typically, in a realnetwork changesreincrementalandsowe
needto seehow thesechangesffect traffic at the routerlevel. We
usetechniquedgrom [28] to reducethe sizeof the probleminitially,
by remaving redundaninformation, and a large numberof traffic
matrix elementghatwe know to be zerofrom routinginformation.
This processingloesnotimprove accurag, but doesspeedup later
computations.
To malke the exactformulationexplicit, we define

ziy = N(si,ds), (21)
y; = traffic counts = T'(l;), (22)
gi = N(si)N(di), (23)
where
N = totaltraffic in network (24)
N(s;) = totaltraffic originatingats; (25)
N(d;) = totaltraffic departingatd; (26)

andwe definethe columnvectorsx, andy with elementse; andy;,

(A g/L>0

min, < ||y — Ax|[]? + \®
27)

subjectto z; > 0.

Notethatg; = 0 if andonly if thetraffic atthe sourceor destination
is zero,andsoz; = 0. Theadditionalconstraintson the maiginal
distributionsaresatisfiedby supplementinghe routing matrix, and
measurement® ensurethatthey includetheseconstraints.

This penalizedeast-squareformulation hasbeenusedin solv-
ing mary otherill-posedproblemsandsothereexist publicly avail-
able softwarein Matlab (suchasroutine MaxEntin Per Christian
Hansers InverseProblemsToolbox [9, 10]) to solve small-scale
variantsof suchproblems Ourproblemsare,however, largein scale
andnot suitedto suchbasicimplementationsThe problemof solv-
ing suchlarge-scaléraffic matricess only possiblaf we canexploit
oneof themain propertiesof routing matrices:they arevery sparse
— the proportionof exact zeroentriesin eachcolumnandrow is
overwhelming.Accordingly, we usePDSCQO[4], aMATLAB pack-
agedevelopedby Michael Saunderof StanfordUniversity, which
hasbeenhighly optimizedto solve problemswith sparsematrices
A. PDSCOhasbeenused(seee.g. [4]) to solve problemsof the
order16,000by 256,000efficiently. We have foundthatits perfor
manceis very good(takingno morethanafew secondsgvenonthe
largestproblemswe considerere.

In principle, the choiceof A dependson the noiselevel in the
measurement$ut in our resultsbelov we shav thattheresultsare
insensitve to this parametgrandsoits exactchoiceisn’t important.

An interestingpoint is thatif onewereto have additionalinfor-
mation suchas usedin the choice model of [16] then this could
alsobe incorporatedby conditioningthe initial model Ps,p (s, d)
on this information (for an exampleof this type seeSection3.5).
Thiswould amountto akind of shrinkagethis time nottowardsthe
gravity model,but insteadtowardsa modelincorporatingmoreside
information. Alternatively, suchinformation could be includedin
the constraintainderlyingthe optimization(asshavn in Section7).

3.5 Inter-domain Routing

3.5.1 Zemw TransitTraffic

The above algorithm assumeghat independencef sourceand
destinatioris areasonablstartingmodel. However, therearegood
reasonsve may wantto modify this startingmodel. In real back-
bonelSPs,routing is typically asymmetricdueto hot-potatorout-
ing — traffic from the customeredgeto peerswill be sentto the
“nearest”exit point, while traffic in peernetworkswill do likewise
resultingin a differentpatternfor traffic from peeringto customers.
Also thereshouldbe no traffic transitingthe network from peerto
peer[28]. Both thesefactorsdemanddeparturesrom the grav-
ity/independencenodel.

Supposeve assumehereis zerotransittraffic. We suggesthat
conditionalindependencef sourceanddestinationgivenappropri-
atesideinformation will bemoreaccuratehanpureindependence.
More specifically supposewe have available as side information,
the sourceanddestinatiorclass(acces®r peering).We would then
model the probabilitiesof a paclet (bit) arriving at s and depart-
ing atd asconditionallyindependengiventhe classof arrival and
destinationlink. In AppendixA we shav thatthis resultsin thefol-
lowing model,assuming4 and P arethe setsof accesandpeering
links, respectiely.

sl 2pA(1 — pg(P) - pn(P)),
for seA,de A,
ps,p(s,d) = { ps(s)E2{G, forse Pde A, (28)
PS((A)) p(d), forse A,de P,
0, fors € P,d € P.

to which we cannaturallyadaptthe algorithmabove (by modifying
g:). We note that the algorithm is then ‘shrinking’ the obsened
datain the direction, not of a pure gravity model, but a realistic
modificationof it.

3.5.2 Pointto Multipoint

As notedin theintroductiona point-to-pointtraffic matrix is not
suitablefor all applications. Sometimesve needa point-to-multipoint
demandmatrix, for instance,whenwe want to answerquestions
abouttheimpactof link failuresoutsidethe backbonege.g. “would
apeeringlink failure causeanoverloadon ary backbondinks?” In
this case traffic would rerouteto an alternateexit point, changing
the point-to-pointtraffic matrix in anunknavn way. However, the
point-to-multipointdemandmatrix would remainconstant.

Ideally sucha matrix would be at the prefix level, but a number
of operationatealitiesmalke anapproximatiorto routerlevel useful
for mary engineeringasks. The first suchreality is thatbackbone
networks that exchangearge traffic volumesare connectedy pri-
vatepeeringlinks asopposedo InternetExchangdPoints. This al-
lows usto seethe proportionof traffic goingto eachindividual peer
usingonly SNMPlink measurementspowe canpartitiontraffic per
peer The secondsuchreality is thatthe BGP policiesacrossa set
of peeringlinks to a singlepeeraretypically the same.Therefore,
thedecisionasto which peeringlink to useastheexit pointis made
on the basisof shortestiGP distance. This distanceis computed
atthelink level, asopposedo BGP policies,which canactat the
prefix level. While we cannottestthatthis propertyis true for all
large ISPs(andin generalit is not alwaystrue evenon the network
from which we have measurementsjhe methodologyabove does
not needthis, becaus¢he algorithmabove only usesthis asa prior,
to becorrectedhroughthe useof link (andother)information.

The steprequiredto generatea point-to-multipointdemandma-
trix requiresconsideratiorof thecontrollSPshave overinterdomain
routing. Interdomainrouting givesan ISP little control over where
traffic enterstheir network, so we shall not make ary changego
(28) for access-to-accesandpeering-to-accedsaffic. However, a
provider hasconsiderableontrol over wheretraffic will leave their
network acrossthe peeringedge. Traffic destinedfor a particular



peermaybesenton ary of thelinks to thatpeer

Theresultis thatwe mustmodify (28) for access-to-pedraffic.
We do so by not specifyingwhich link d in the setof links to peer
i (i.e. B;) is usedfor traffic leaving the network to peeri. We can
dothis formally by not specifyingps,p (s, d) for s € A,d € P but
ratherps, p(s, P;) for all peersi. This simple point-to-multipoint
modelcanthenbe usedin the estimationthroughusing

_ ps(s)
ps(A)

for s € A, in placeof the access-to-peeringquationfrom (28).
We do not determinethe exit pointin the estimatesThe algorithm
canthenproceedby minimizing the mutualinformationof thefinal
distribution with respectto (28) and (29). The exit pointsareim-
plicit in theroutingmatrix usedin the optimization(27), but areleft
undeterminedn the estimateandcanthereforebefixed only when
appliedto a particularproblem.

We shouldalsonotethatthisis a quite generakxtension.We use
it hereon setsof peeringlinks P;, but in a network with different
policies,we canpartition the peeringlinks in somedifferentfash-
ion (eventhrougha non-disjointpartition)to reflectsomeparticular
idiosyncrasiesn routingpolicy.

pS,D(Sﬂp’i) pD(Pi), (29)

3.6 Relationshipto Previous Algorithms

Thework in this papempresentsageneraframavork, within which
we canplaceanumberof alternatve methodgor estimatingP traf-
fic matrices. For instance by taking a linear approximatiorto the
log functionin the Kullback-Leiblerinformationdistancenforma-
tion andexploiting thefactthat) " [f(x) — g(=)] = 0 weget

1@ =90 N0 oo
> st | HEEIE] - Sisw) ot

S [f(w) —g<x>r

= g(x)

K(fll9)

Q

(30)

Fromthis we canseethatthe MMI solutionmay be approximated
by usinga quadraticdistancemetric (with squareroot weights)as

wasappliedin [28]. This explainsthe succes®f thatapproachas

well asthe needto usesquareroot weightsfor bestperformance.
Theconditionalindependencef Section3.5 explainsthe useof the

generalizedyravity modelasaninitial conditionin [28].

The quadraticoptimizationis corvenient,becausét canbe sim-
ply solved using the Singular Value Decomposition(SVD) [28],
with non-ngativity enforcedby a secondstepusing Iterative Pro-
portionalFitting (IPF)[2]. In this papemwe will comparetheperfor
manceof the pureMMI approachits quadraticapproximationand
the previous method(referredto hereasSVD-IPF),andwe seethat
theapproximationrworkswell in the casesonsideredWe deferthe
comparisorwith maximumlikelihood approacheg[24, 2, 16]) to
future work, becausescalingthesemethodsto the size of problem
describedhererequiresadditionaltechniquedfor instancesee[3,
27]) thathave only recentlybeendeveloped.

The point of interesthereis thatthe MMI principle above pro-
duces(an approximatiorof) the algorithmpreviously derived from
aninitial gravity modelsolution. However in the caseof the MMI
solution, the principle precedegpractice— thatis, the decisionto
regularizewith respecto a prior is not an arbitrarydecision,but a
standardstepin ill-posedestimationproblems. The closeapproxi-
mationhasa practicalimpactin thatwe canusethefactthat[28] al-
readydemonstratethattheconditionalindependencef Section3.5
to be a betterprior than completeindependenceWe usethis fact
hereby using(28) and(29) in theremainderof the paper

4. EVALUATION METHODOLOGY

In this paper we apply the traffic matrix benchmarkingnethod-
ology developedin [28] to real Internetdatato validate different

algorithms.Onemajoradwantageof the methodologyin [28] is that
it canprovide a consistentlatasetthatis asrealisticaspractically
possible.Below we provide an overview of this methodologyfol-

lowed by a summaryof the performancenetricswe use.

4.1 Validation Methodology

Theapproachof [28] usedsamplediow level data,andtopology
androuting informationasderived from [7]. Flow level datacon-
tains detailsof numbersof paclets and bytestransferrecbetween
sourceanddestinationP addressesndalsogivesinformationsuch
astheinterfaceatwhichthetraffic enterecour network. Combining
thesedataset®nemayderive atraffic matrix [8].

Theresultingtraffic matrixin our experimentcoversaround80%
of the real network traffic (including all the peeringtraffic) on the
real topology of a large operationatier-1 ISP Following [28], we
computethe traffic matriceson one hour time scalesto deal with
somelimitations of the measurementsGiventhesetraffic matrices
andthe network topologyandrouting information,we only needa
consistensetof link load measurement® proceed.

[28] solvesthe problemof providing a consistentset of traffic,
topologyandlink measuremerdataasfollows. Simulatethe net-
work routing usingthe availabletopologyandrouting information.
From this we may computea routing matrix A, andthenderive a
setof link measurementg from (8). Thusthetraffic matrix x, the
routing matrix A andthe measuredink loadsy areall consistent.
We canthen performthe estimationprocedureto computex, the
traffic matrix estimate.

Part of the goal of this paperis to extend understandingf pre-
vious methods,and so we apply the pre-eisting methodologyfor
testingtraffic matrices. However, this methoddoesnot explicitly
validatepoint-to-multipointtraffic matrices.We computethe point-
to-multipointtraffic matrix, andthencollapsethis down to a point-
to-point traffic matrix for comparisorwith the real traffic matrix.
Theresultis animplicit validationof the multipoint estimates.

The validation approachallows us to work with a problemfor
which we know the “groundtruth” — therealtraffic matrix. It can
alsobe extendedin several differentways. For example,it allows
oneto take atraffic matrixandapplyit on anarbitrarytopology for
instancea simulatechetwork suchasa star or ameasuredopology
suchasthoseproducedby Roclketfuel [21, 14]. Thuswe cangain
insight into the effect of differenttopologieson the performance
of the algorithm. We may alsointroducecontrolledmeasurement
errorsto assesshe algorithm’s robustnesspr simulatealternatve
measurement® seetheirimpactin arigorousmanner

4.2 PerformanceMetrics

In this papemwe usetwo basicmethoddor assessingndcompar
ing theresults.Thefirst methodis to estimateherelative error (that
is, the averageof the absolutevalue of the errors, relative to the
averagetraffic matrix element). The secondmethodis to plot the
Cumulatie Distribution Function(CDF) of theerrorsrelative to the
averagetraffic matrix elementHowever, mary elementof arouter
to routertraffic matrix arezerodueto routing constraintsandthese
constrainecelementsare easyto estimate. This resultsin a large
numberof entriesto thetraffic matrix with nearzeroerror To more
accuratelyindicatethe errorson the positive elementsve separate
thezeroandnon-zercelementsandcomputetheir errorsseparately
The errorson the zeroelementsare very small (99% of the errors
arebelov 1%), and so we shall not display theseseparatelyhere.
We shallreporttherelative errorsof the positive elements.

5. PERFORMANCE

In this section,we first examinethe algorithm’s sensitvity to the
choiceof A\, andthencomparethe accuray of differentalgorithms.

5.1 Sensitvity to the Choiceof A

The choiceof the parameter\ determineshov muchweightis
given to independenceversusthe routing constraintequations.In
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Figure 2: The relative errors for the quadratic and MMI algorithms for a given value of A.

our experiments,we find that the algorithm’s performances not
sensitve to the choiceof A. Figure2 shovs therelative errorin the
estimatedor varying . Figure2 (a) and(b) shav theresultsfor the
guadraticand MMI algorithmsrespectrely, for a single-hourdata
set given differentlevels of error in the input measurementésee
below for detailsof theintroducedneasuremergrrors).Figure2 (c)
and(d) shav the averageresultsover amonthof data.

Most notably in eachgraphthereis a distinct region wherethe
curvesareall quite flat, andthatthis region is largely the samere-
gardlesof theerrorlevel. Thusthe choiceof ) is insensitve to the
level of noisein the measurementsndit is easyto choosea good
value. We choosea valuefrom the middle of theinsensitve range,
A = 0.01 throughoutthe restof the paper asthis performedwell,
notjustin theaveragg(which onecanseefrom Figure2 (c) and(d)),
but alsoin theworstcase.Theimpactof choosinga singlevalueof
A, ratherthanthe optimal valuefor eachcaseis shavn in Table 1.
The table shaws for varying levels of error (or noise)in the input
measurementhe reductionin accuray dueto the useof afixed A
ratherthanthe optimalvalue. Thetablepresentdwo measuresthe
maximumandaverageaccurayg reductionover all of thedatasets.

Notethatin theworstcasethe MMI algorithmis only a few per
centworsefor notusingthe optimalvalueof A andtypically is very
closeto optimal. The quadraticalgorithmis maginally moresensi-
tive to the correctchoiceof .

accurag reduction
algorithm | noise A | maximum | average
MMI 0% | 0.01 1.6% 0.3%
MMI 1% | 0.01 1.6% 0.3%
MMI 5% | 0.01 1.4% 0.3%
MMI 10% | 0.01 2.9% 1.5%
quadratic| 0% | 0.01 1.9% 0.4%
quadratic| 1% | 0.01 1.7% 0.4%
quadratic| 5% | 0.01 1.9% 0.3%
quadratic| 10% | 0.01 3.7% 1.7%

Table 1: Impact of choosinga fixed value of A rather than the
optimal value. The table shavsfor the two algorithms, and vari-
ouslevelsof noisein the measurements the impact of choosinga
fixed value of A comparedto the optimal value. The table shows
the worst caseand the averagereductionin accuracy.

5.2 Comparison of Algorithms

We now applythethreealgorithmsdescribecabore (MMI, quad-
ratic optimization,and SVD-IPF) to the problemof computinga
BR-to-BRtraffic matrix,in orderto compareheirperformanceThe
resultsbelon arebasedon 506 datasetsfrom the ISP in question,

representinghe majority of June2002,andcoveringall daysof the
week, andtimes of day Figure 3 shavs the CDF of the relative
errorsfor the threemethods.We canseethat their performances
almostidentical. The meanrelative erroris 11.3%. Furthermore,
notethat morethan80% of the traffic matrix elementshave errors
lessthan20%. The CDFsfor individual datasetsarevery similar,
but generallylesssmooth.All threealgorithmsareremarkablyfast,
deliveringthetraffic matrix in undersix secondsThe fastestalgo-
rithm is SVD-IPF, whichis abouttwice asfastasMMI, theslowest
one. We alsocomparethe threealgorithmsfor robustnessThere-
sultsarevery similar, andareomittedherein theinterestof brevity.

Note alsothat[28] shoved a numberof additionalperformance
metricsfor the SVD-IPFalgorithm(whichwe canseehasvery sim-
ilar performanceo the MMI andquadraticalgorithms). Thosere-
sultsindicatedthatnot only arethe errorson the flows reasonable,
but alsothatthe errorson the largestflows are small, andthat the
errorsarestableover time (animportantfeatureif theresultsareto
beusedto detectnetwork events).
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Figure 3: A comparisonof the relative errors for the methods.

5.3 Topologicallmpact

In this section,we investicate the impactof differenttopologies
ontheperformancef thealgorithm.We usethelSPmapscollected
by Rocletfuel [21, 14, 22]. Sincewe also needIGP weights,we
usethemapsfor threeNorth Americannetworks (Sprint,Abovenet,
and Exodus),for which the IGP weightshave beenestimatedby
Rocletfuel. Note thatthesearenot real weightsfrom the networks
of interest but a setconsistentvith obseredrouting.



TheRocketfueldatado not containthe peeringrelationshipsof a
network, andsowe arelimited to usingthe sameinitial conditional
independencassumptionsn our exploration of topology This is
not a problemherebecausewne are primarily concernedwith the
impactof theinternalnetwork topologyon the estimates.

TheapproacHor testingtheimpactof topologyis asfollows. We
map locations(origins and destinationin the original network) to
locations(in the Rocletfuelnetwork) atthe PoPlevel, andmap(28)
and(29) to this newv network, assuminghe samepeeringrelation-
ships,thusremaving dependencen datawe don't have accesgo.

More specifically let M : A — B denotea mappingfrom the
original setof locationsi € A to a setof Rocketfuellocations; €
B. Thenthe mappingof demanddrom one network to anotheris
accomplishedby

B __ A
T = T,

M (i)=j

Vj € B, (31)

andwe mapthe g; from (23) similarly. We considertwo mappings,
the first basedon geographicalocation, which is provided in the
Rocletfuel datasetGeographicainformationdoesnot provide ary

way of mappingfrom routerto routerin the new network, sowe

performour mappingat the PoPlevel, andthereforealso perform
the estimationat this level). The secondmappingis arandomper

mutationthat destrgs the dependeng betweenthe traffic andthe
network topology

5.3.1 Resultdasedon geagraphicalmapping
Figure4 (a) shavs the resultsof applyingthe MMI algorithmto
thethreeRocketfuel networks, wherethe mappingfrom locationto
locationis doneon the basisof nearesigeographicakquivalent.
Thatis, our mappingis givenby

M(i) = j, whered(i, j) < d(i, k) Vk € B,

whered(i, j) is thegeographidistancebetweenPoPsi andj. The
figure alsoshaws the PoPlevel resultsfor the original ISP (the re-
sultsabove werefor BR-to-BRtraffic matrices).Onecanseevary-
ing levels of performancdor the differenttopologies but it is gen-
erally similarto or betterthanthe performancave seein Figure3?.

Ouraim hereis to understanavhatfeaturef thetopologyhave
impacton the estimationalgorithm,andto this endwe canconsider
two illustrative examples:simple20 nodestarandcliquetopologies.
In thestar all PoPsareconnectedy asinglehub,andin theclique,
all PoPshave direct connectiongo eachother We intentionally
male thesecontrol casesvery simplesothatwe know exactly what
is goingon. Theresultsareshovn in Figure4 (b). Theperformance
on the startopologyis poor, while on the clique the performance
is almostperfect. The resultsstemfrom the factthatin the clique
topologythe link datagivesus the traffic matrix. In this case the
initial MMI estimateof thetraffic matrixis almostcompletelyover
ridden by the informationfrom link data. In the caseof the star,
thereis no additionalinformationcontritutedby thelink data,and
sowe seehow well the independencassumptiorperformson the
inputtraffic matrix.

Table 2 provides a comparisorbetweenthe different networks.
Thetableshaws, for eachnetwork, the numberof North American
PoPs(excluding the degree one nodes),and the numberof inter
PoPlogical links (note that multiple physical links are mappedto
a singlelogical link herebecauseheserepresentedundaninfor-
mation). The table also shawvs the resultingnumberof unknavns
(traffic matrix elementgo be estimatedyelative to the numberof
measurement®r links), andaverageestimationerrors.Clearlywe

When performingthe PoPlevel mappingwe excludenodesof degreeone
astheseareoftenminor regionalnodes.

2Theunknavnsin the Rocketfuel data,andthelack of traffic datafrom the
othernetworks meanthatthe convenientlabelsSprint,Exodus,or Abovenet
shouldnotbeinterpretedassayingthatwe have testedhealgorithmonthose
networksdirectly.

canseeadirectrelationshipbetweertheratio of unknovnsto mea-
surementsandthe performancef thealgorithm.

This illustratesthe basisfor the MMI method. It will work best
whereeitherthe conditionallyindependengéstimateis goodto start
with, or the topology hassuficiently diverselinks to allow for the
resultsto beaccuratelyrefined. The networks measuredby Rocket-
fuel appeato have suchdiversity.

unknawvnsper error (%)
Network | PoPs links | measurement geo.| rand.
Exodus 17 58 4.69| 12.58| 20.07
Sprint 19 100 3.42| 8.06| 18.93
Abovenet 11 48 229| 3.76| 11.74
Star N | 2(N-1) N/2 =10 | 24.02| 24.02
Clique N | N(N-1) 1] 0.18| 0.18
ISP - - 3.54-3.97| 10.55 -

Table 2: The table shaws, for the thr ee Rocketfuel PoP level
topologies: the number of PoPs (excluding degree one PoPs),
inter-PoP links (parallel links aggregated),and the number of
unknowns per link measuement. The table also shows the val-
uesfor Star and Clique topologieswith N nodes(N = 20 in
the examples),and for the original ISP. The final two columns
of the table give the performance (relative mean error) of the
MMI algorithm on eachtopology for the geographicand ran-
dom mappings. Note that the results for the ISP are at PoP
level, obtained by aggregationfrom BR-BR traffic matrices, so
the random mapping is not available.

5.3.2 Resultdbasedonrandommapping

However, thereis moreto the problemthanthis. In factit ap-
pearghatthereis arelationshipbetweerthenetwork traffic, andthe
network topology that benefitsthe performanceof the algorithm.
Figure4 (b) alsoshaws the resultof mappingthe locationsin the
original ISPto theRoclketfuell[SPsusingarandompermutatior(the
figure is basedon 100 randompermutationf 24 datasetsdravn
from onedayin June). The performancaindera randommapping
is worsethan undera geographicamapping. The last column of
Table2 confirmsthis finding.

Thisis interestingoecausetypically in largenetworks, regionsof
the network with higherdemandtendto have moreconnectiongo
the otherPoPs(in the measureahetwork the correlationcoeficient
betweemodedegreeandtraffic volumewas0.7). A higherdegree
at a noderesultsin moreinformationaboutthe correspondingow
of thetraffic matrix, andthencea betterestimateof this row. Good
estimate®f thelargerelementsnalke it easielto estimateotherele-
mentselsavherein thenetwork, andsowe getabetteroverallresult.
This naturallyleadsto betterestimatesvhenthetraffic is correlated
to the network degree,but whenwe performthe randommapping,
thecorrelationno longerholds. We shallseelaterthatthis property
hasanimpacton the designof network measuremerihfrastructure
to furtherimprove traffic matrix estimates:it is betterto put mea-
surementnfrastructuran thenodeswith thelargesttraffic volume.

Also interestings the factthatthis finding addscredibility to the
choicemodelideapresentedn [16]. The choicemodelassertshat
featuresof the network (suchasthe numberof links) arecorrelated
with the attractvenessof that node as a destination,and we can
confirmthatfinding here atleastwith respecto thenumberof links.

6. ROBUSTNESS

A critical requirementor ary algorithmthatwill be appliedto
real network datais robustness.In generatthis refersto the sensi-
tivity of an algorithmto violations of the algorithm’s assumptions
(implicit andexplicit). In the MMI method,the only assumptions
arethatthe MMI criteriais a reasonabl@approachverified abose)
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Figure 4: Resultson Rocketfuel, and simulated topologies.

and that the input dataare correct. Network dataare often error
prone,andtherecanbe missingdata,andsowe mustconsidethow
robustthe algorithmis to sucherrors. In the following sectionswe
considertheimpactof incorrector missinglink data,andincorrect
routingdataonthe MMI algorithm.Only thelatterform of incorrect
inputdatahasanimportantimpacton theresultsof thealgorithm.

6.1 IncorrectLink Data

Like any measurement§NMP link datacontainerrors. There-
fore, we shallintroducea rangeof errors,and study their impact.
Comparisonswith flow level datahave shovn thaterrorsin either
sourceare not generallylarge, andthe sourcesof sucherrorslead
oneto believe thatthey will not be strongly correlated.Hencewe
shallintroduceindependenGaussiarerrorsto the measurementg
andcomparewith thezeroerrorcase More specifically take theer-
ror in themeasuremertf link ¢ to bes; ~ N (0, o), whereN (0, o)
is thenormaldistribution with mean0 andstandardieviationo. We
vary o from 0 to 0.1, with the latter correspondingo quite large
relative errorsin the measurement§emembethe 95th percentiles
of thenormaldistribution lie at+1.960.)

Also notethaterrorson accessandpeeringlinks will have min-
imal impacton a BR to BR traffic matrix becausehe datafrom
accesdinks is aggrgjatedacrosamary links (to form thetraffic vol-
umesenteringandexiting the network at a router)and so we only
considerthereerrorsin the backbone-linkraffic measurements.

Figure5 shavsthe CDF of theresultsgivendifferentnoiselevels.
Clearly noiseimpactsthe results but notethatthe additionalerrors
in the measurementare actually smaller (for the most part) than
the introducederrorsin the measurements.This is likely due to
theredundantink constraintswhich provide anaveragingeffectto
reducetheimpactof individual errors.Table3 present& summary

0.01
11.63%

0.05
14.00%

0.10
18.01%

noiselevel (o) 0
relatve errors | 11.26%

Table 3: The relative errors given a particular noiselevel.

6.2 Missing Link Data

We next consideitheimpactof missingdata,for instancemissing
becausealink wasnotpolledoveranextendednterval. A few miss-
ing datapointscanbereplacedusinginterpolation;tradingmissing
datafor datawith someerror. FurthermoreERsaretypically con-
nectedvery simply to the backbongtypically by setsof redundant
links), andalmostall (> 99%) of ER traffic is betweenthe back-
boneandtheedge.Thusif dataaremissingfrom a singleedgelink
we may estimatethe correspondingraffic using measurementef
the traffic betweenthe ER andthe backbone.Thus, exceptin the
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Figure 5: Relative errors for MMI given measuementnoise.

rarecasewherewe missmultiple edgelinks, we needonly consider
missingbackbondink data.

Figure 6 shavs the effect of missingthetop N backbondinks
(ratedin termsof traffic on thoselinks). The resultsare shavn for
the 24 datasetsfrom eachof threedaysin June. The resultsshav
thatdespiteloosingthelinks with the largesttraffic, the resultsare
hardlyimpactedatall (thoughthe stepappeardecauseneof these
links is actually important). This suggestghat thereis generally
enoughredundantnformationin the network to compensatéor the
missinglinks (exceptin onecase).

6.3 Incorr ectRouting Data

A third sourceof datain which we may find errorsis the rout-
ing matrix. Errorsin this matrix can have a large impacton the
performanceof estimationmethodspecausef we have errorsin a
significantnumberof routes this correspond$o changingmary el-
ementf thematrix from 1 (in theabsencef loadsharing)to zero
and visa versa. However, asin all otherreportson traffic matrix
estimationwe assumeheroutingmatrix inputis accurateThis as-
sumptionis reasonabl®ecausé¢herearegoodmethoddor reliably
obtainingroutinginformation(for instancesee[19]).

7. ADDITION AL INFORMATION

Onemajorbenefitof adoptingtheinformationtheoreticapproach
describehereis thatit providesa naturalframework for including
additionalinformation. In this section,we examinethe impact of
two sourcesof information: (i) flow level dataat somelocations,
and(ii) thelocaltraffic matrix atarouter[25].
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7.1 Flow Level Data

In this sectionwe considettheimpactof having flow level dataat
somelocations,which givesthe rows of thetraffic matrix for those
locations.Thisinclusionwasexploredin [16] in asimulation.They
shavedthatthemethodf [23, 2] providedimprovementdo traffic
matrix estimatesoughlyin proportionto the numberof rows mea-
sured but thatit did not matterwhetheroneselectedherowsto be
measuredandomly or in orderof largestrow sum.

Flow level informationcanbe includedin our algorithmby sim-
ply includingadditionalconstraintequations Resultsarepresented
for threeseparatelaysof data,eachconsistingof twentyfour, one-
hour datasets. We comparethe error in the estimatesas we in-
cludea variablenumberof known rows of the traffic matrix, both
in row sumorder andrandomly Figure7 shaws theresults.In the
random-orderingase we seeanapproximateljlinearimprovement
asadditionalinformationis included,but in contrastto the results
of [16] row sumorderis significantlybetter In fact,oncel0 rows
areincluded,theerrorfor therow sumcaseis abouthalf thatof the
randomorderedcase andthisratioimprovesuntil we have included
aroundhalf of the rows, whenthe error for the row sum ordered
casebecomesiggligible. Onepossiblereasonwvhy theseresultsdo
notagreewith [16] is thatthetraffic matricesusedin the simulation
werenotasskewedasthoseobseredin realnetworks.
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Figure 7: Effect of addition of known traffic matrix rows.
Dashedlines show largestrow sum ordering, and solid shov
random order. There are over 60rowsin the traffic matrix.

Theresultis a clearwin for measuringlow, or pacletlevel data.
Suchdataon a fraction of the network may provide a dispropor

tionateimprovementin the estimatesTheresultsweresimilar even
whenerrorswereaddedo theflow level measurementandsosam-
pledflows mayalsoprovide practicalimprovements.

7.2 Local Traffic Matrices

Another appealingalternatve to collect additionalinformation
with minimal costis to collect local router traffic matrices. That
is, for the routerto keepa table of traffic from in-interfaceto out-
interface. As shavn in [25], the collectionof local traffic matrices
only requiresminimal changesdo router hardware,andcanbe in-
cludedin our algorithm as constraints. Figure 8 shovs the CDF
including local traffic matrices,and Table 4 shavs a summaryof
theresultsin comparisorto thosewithout local traffic information.
Noticethattheresultswith alocaltraffic matrix, arenotonly better
but alsolesssensitve to measuremergrrors.
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Figure 8: Theresultof including local traffic matrices, for vary-
ing error levels. Also included as a baselineis the zero noise,
links measurementcasefrom Figure 3.

noiselevel (o) 0 0.01 0.05 0.10
with localTM | 3.06% | 3.40% | 5.04% 7.3%
w/olocalTM | 11.26% | 11.63% | 14.00% | 18.01%

Table 4: The relative errors given a particular noiselevel, with
and without local traffic matrix data.

The startopologyillustrateswhy a local traffic matrix helps. In
thatcasea local traffic matrix at the hubrouterprovidesthe traffic
matrix directly. In realitythenetwork is notastar soalargeamount
of additionalinformationis redundantin our problem,the number
of constraintgs of the orderof afactorof 20 timesthe simplelink
measuremerdonstraintsbut thenumberof independentonstraints
is only roughly doubled. However, this redundantinformationis
still usefulbecauset makesthe algorithmmorerobustto noisein
themeasurementgsseenin Table4.

Theseresultsshaw thatit is quite practicalto improve the traffic
matrix estimatesbove by incorporatingadditionalinformation.

8. CONCLUSION

To summarizewe presenta nev approachto traffic matrix es-
timation for IP networks. We demonstrateon real datathat the
methodhasnice propertiesiit is fast,accurateflexible, androbust.
In addition, this paperprovides someinsight into the problem of
traffic matrix estimationitself. In particular by testingthe method
on Rocletfueltopologieswe provide somemeasuref whataspects
of anetwork make the problemeasieror harder:estimate®on more
highly meshedetworksweremoreaccurate Further we foundthat
therelationshipbetweerthetraffic volumesandthetopologyplayed



a significantrole in the accurag of the estimates Apart from this,
the methodalso provides additionalinsight into a broadrangeof
approacheto traffic matrix estimation.

Thereis still considerablavork to do in this area: for instance,

the choiceof priorsis interesting. It is known that regularization
and shrinkageapproachesmprove estimateseven when the prior
to which we shrink is arbitrary However, it is alsoknown that a
betterprior resultsin a betterestimate. While the prior usedhere
seemsadequatepnemaybeableto do better(for instanceby using
[16]). Otherareasof future work include, understandingvhy the
methodsaresoinsensite to thevalueof A\, andperformingfurther
validationsof the method on alternatedatasets(including different
traffic patterns)anddirectpoint-to-multipointvalidation.
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APPENDIX
A. CONDITION AL INDEPENDENCE

In Section3.5 we presenta resultbasedon conditionalindepen-
dence ratherthansimpleindependenceZero transittraffic makes
it is morereasonabl¢o adopta conditionallyindependentmodelin
which the probabilitiesof a paclet (bit) arriving at s anddeparting
atd giventheclassof arrival anddestinatiorink (peeringor access)
areindependent:

ps,p(s,d|S € Cs,D € Cq) =
ps(s|S € Cs,D € Ca) pp(d|S € Cs, D € Cq), (32)

whereC, andCy arethe sourcethedestinatiors link classrespec-
tively. We know

ps,p(s,d) = ps,p(s,d|S € Cs, D € Cyq) ps,p(Cs,Ca)  (33)

The sourceand destinationlinks only dependon the classof the
sourceanddestinatiorrespectiely, so

ps(s|S€Ca,DECa) = ps(s|SE€C:),  (34)
pD(d|S e Cs,D € Cd) = pD(d|D € Cd). (35)

Furthermorefrom the definition of conditionalprobability
ps(s|S € Cs) = ps(s) /ps(Cs), (36)
po(d|D € Ca) = pp(d)/pp(Ca). @37

with theresult
: d

psnsd) = L2 o e (e

ps(Cs) pp(Ca)

If theclassof sourceanddestinationvereindependentthen(38)
would resultin theindependentodelps,p (s, d) = ps(s)pp(d).
However, notingthatall traffic from peeringmustgo to accessand
likewise, all traffic to peeringlinks comesfrom accessandfurther
thatthefour probabilitiesmustaddto one,we get.

ps,;p(P,P) = 0

ps,p(P,A) = p(deAlse€ P)ps(P) = ps(P)
ps,p(A,P) = p(s€ Alde P)pp(P) = pp(P)
ps,p(A,A) = 1-ps(P)—pp(P).

Substitutingnto (38) we get(28).



