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ABSTRACT
Traffic matricesarerequiredinputsfor many IP network manage-
menttasks:for instance,capacityplanning,traffic engineeringand
network reliability analysis.However, it is difficult to measurethese
matricesdirectly, andso therehasbeenrecentinterestin inferring
traffic matricesfrom link measurementsandothermoreeasilymea-
sureddata. Typically, this inferenceproblemis ill-posed,as it in-
volvessignificantlymoreunknownsthandata.Experiencein many
scientific and engineeringfields has shown that it is essentialto
approachsuchill-posedproblemsvia “regularization”. This paper
presentsanew approachto traffic matrixestimationusingaregular-
ization basedon “entropy penalization”. Our solutionchoosesthe
traffic matrix consistentwith themeasureddatathatis information-
theoreticallyclosestto amodelin whichsource/destinationpairsare
stochasticallyindependent.We usefastalgorithmsbasedon mod-
ernconvex optimizationtheoryto solve for our traffic matrices.We
evaluatethe algorithmwith real backbonetraffic androuting data,
anddemonstratethatit is fast,accurate,robust,andflexible.

Categoriesand SubjectDescriptors
C.2.3 [Computer-Communications Networks]: Network Opera-
tions—networkmonitoring; C.2.5[Computer-CommunicationsNet-
works]: LocalandWide-AreaNetworks—Internet

GeneralTerms
Measurement,Performance

Keywords
Traffic Matrix Estimation,Information Theory, Minimum Mutual
Information,Regularization,Traffic Engineering,SNMP.

1. INTRODUCTION
A point-to-pointtraffic matrixgivesthevolumeof traffic between

origin/destinationpairs in somenetwork. Traffic matricesare re-
quiredinputsfor many IP network managementtasks:for instance,
capacityplanning,traffic engineeringandnetwork reliability analy-
sis.However, it is difficult to measurethesematricesdirectly, andso
thereis interestin inferring traffic matricesfrom link loadstatistics
andothermoreeasilymeasureddata[24, 23,2, 16,28].

Traffic matricesmaybeestimatedor measuredat varying levels
of detail[15]: betweenPoints-of-Presence(PoPs)[16], routers[28],
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links, or evenIP prefixes[8]. Thefiner grainedtraffic matricesare
generallymoreuseful,for example,in theanalysisof thereliability
of a network undera componentfailure. During a failure,IP traffic
is reroutedto find thenew paththroughthenetwork, andonewishes
to testif this would causea link overloadanywherein thenetwork.
Failure of a link within a PoPmay causetraffic to reroutevia al-
ternatelinks within thePoPwithoutchangingtheinter-PoProuting.
Thusto understandfailure loadson the network we mustmeasure
traffic atarouter-to-routerlevel. In general,theinferenceproblemis
morechallengingatfiner levelsof detail,thefinestsofarconsidered
beingrouter-to-router.

The challengelies in the ill-posednatureof the problem: for a
network with

�
ingress/egresspointswe needto estimatethe

���
origin/destinationdemands.At a PoPlevel

�
is in the tens,at a

routerlevel
�

maybein thehundreds,ata link level
�

maybetens
of thousands,andat theprefix level

�
maybeof theorderof one

hundredthousand.However, the numberof piecesof information
available,the link measurements,remainsapproximatelyconstant.
Onecanseethedifficulty — for large

�
theproblembecomesmas-

sively underconstrained.
Thereis extensive experiencewith ill-posedlinear inverseprob-

lemsfrom fieldsasdiverseasseismology, astronomy, andmedical
imaging[1, 5, 17, 18, 26], all leadingto the conclusionthat some
sortof sideinformationmustbebroughtin, producingaresultwhich
may be goodor baddependingon the quality of this information.
All of the previous work on IP traffic matrix estimationhasincor-
poratedprior information: for instance,Vardi [24] andTebaldiand
West [23] assumea Poissontraffic model, Cao et al. [2] assume
a Gaussiantraffic model,Zhanget al. [28] assumean underlying
gravity model,andMedinaet al. [16] assumea logit-choicemodel.
Eachmethodis sensitive to theaccuracy of this prior: for instance,
[16] showed that the methodsin [24, 23, 2] weresensitive to their
prior assumptions,while [28] showed that their method’s perfor-
mancewasimproved if theprior (thesocalledgravity model)was
generalizedto moreaccuratelyreflectrealisticroutingrules.

In contrast,this paperstartsfrom a regularizationformulationof
theproblemdrawn from thefield of ill-posedproblems,andderives
a prior distribution that is most appropriateto this problem. Our
prior assumessource/destinationindependence,until provenother-
wiseby measurements.Themethodthenblendsmeasurementswith
prior information,producingthe reconstructionclosestto indepen-
dence,but consistentwith themeasureddata.Themethodproceeds
by solving an optimizationproblemthat is understandableandin-
tuitively appealing.This approachallows a convenientimplemen-
tation usingmodernoptimizationsoftware,with the resultthat the
algorithmis veryefficient.

We test the estimationalgorithmextensively on network traffic
and topology datafrom an operationalbackboneISP. The results
show thatthealgorithmis fast,andaccuratefor point-to-pointtraffic
matrix estimation.We alsotestthealgorithmon topologiesgener-
atedthroughthe Rocketfuel project[21, 14, 22] to resemblealter-
native ISPs,providing useful insight into wherethe algorithmwill



work well. Oneinterestingsideresultis that thereis a relationship
between� the network traffic and topology that is beneficialin this
estimationproblem. We also test the sensitivity of the algorithm
to measurementserrors,demonstratingthat thealgorithmis highly
robustto errors,andmissingdatain thetraffic measurements.

Ourapproachalsoallowsusto addresstheproblemof estimating
point-to-multipointdemandmatrices. As shown in [8], point-to-
point traffic matricesarenotalwaysenoughfor applications.Under
somefailuresthe traffic may actually changeits origin anddesti-
nation; its network entryandexit points. Thepoint-to-pointtraffic
matrix will bealtered,becausethepoint-to-pointtraffic matrix de-
scribesthe“carried” loadon thenetwork betweentwo points. The
demandmatrix, which describesthe “offered” load for an IP net-
work, is point-to-multipoint. To understandthis, considera packet
enteringa backboneISP througha customerlink, destinedfor an-
otherbackboneISP’s customer. Large North-Americanbackbone
providers typically areconnectedat multiple peeringpoints. Our
packet couldreachits final destinationthroughany of thesepeering
links; the actualdecisionis madethrougha combinationof Bor-
der Gateway Protocol(BGP) andInterior Gateway Protocol(IGP)
routingprotocols.If thenormalexit link fails, thentheroutingpro-
tocolswould choosea differentexit point. In a morecomplicated
scenario,the recipientof the packet might be multi-homed— that
is, connectedto morethanoneISP. In this casethepacket mayexit
thefirst ISPthroughmultiplesetsof peeringlinks. Finally, evensin-
gle homedcustomersmay sometimesbe reachedthroughmultiple
inter-AS (AutonomousSystem)paths.

Giventhecomplexity andill-posednatureof thepoint-to-multipoint
problem,oneis temptedto throw his armsin the air andsay: “we
cannotsolve the point-to-multipointproblemwith link level data;
we needbetterinformation(for instancefrom Netflow [8]).” This
papershows,however, thatby adoptingtheregularizationapproach
above it is possibleto make someprogresstowards solving this
problem. We cannotestimatedemandmatricesat the ideal level
of detail(prefix level), becausethedataat our disposal(SNMPlink
loads)cannotdistinguishprefixes. However, the operationalreali-
tiesof largenetworksmakeasimplificationto routerlevel practical,
and useful. Using thesesimplificationswe presenta methodfor
estimatingthepoint-to-multipointdemandmatrices,thoughin this
paperweonly testtheseimplicitly to make theresultsmoredirectly
comparableto previouswork.

An advantageof the approachusedin this paperis that it also
providessomeinsight into alternative algorithms.For instance,the
simplegravity modelof [28] is equivalentto completeindependence
of sourceanddestination,while thegeneralizedgravity modelcor-
respondsto independenceconditionalonsourceanddestinationlink
classes.Furthermore,thealgorithmof [28] is a first-orderapprox-
imation of the algorithmpresentedhere,explaining the successof
thatalgorithm,andsuggestingthat it alsocanbeextendedto mea-
surepoint-to-multipointdemandmatrices. Our methodopensup
furtheropportunitiesfor extensions,given thebetterunderstanding
of theimportanceof prior informationaboutnetwork traffic andhow
it canbeincorporatedinto theprocessof findingtraffic matrices.For
instance,anappealingalternativeprior generationprocedureis pro-
posedin [16] (this ideais suggestedin [16] but the mechanismto
do so is not explored). Alternatively, the Bayesianmethodof [23]
canbeplacedinto theoptimizationframework here,with adifferent
penaltyfunction,ascouldthemethodsof [24, 2].

Finally, weexaminesomealternativemeasurementstrategiesthat
couldbenefitour estimates.We examinetwo possibilities:thefirst
(suggestedin [16]) is to makedirectmeasurementsof somerowsof
the traffic matrix, thesecondis to measurelocal traffic matricesas
suggestedin [25]. Both result in improvementsin accuracy, how-
ever, wefoundin contrastto [16] thattheorderin whichrowsof the
traffic matrix areincludeddoesmatter— addingrows in orderof
thelargestrow sumfirst is betterthanrandomordering.

To summarize,this paperdemonstratesa specifictool thatworks
well on largescalepoint-to-pointtraffic matrix estimation,andcan

beextendedin a numberof ways,for instanceto computepoint-to-
multipoint demandmatrices.The resultsshow that it is important
to addappropriateprior information.Ourprior informationis based
on independence-until-proven-otherwise,which is plausible,com-
putationallyconvenient,andresultsin accurateestimates.

Thepaperbeginsin Section2 with somebackground:definitions
of terminologyanddescriptionsof thetypesof dataavailable.Sec-
tion 3 describesthe regularizationapproachusedhere,andour al-
gorithm, followed by Section4, the evaluationmethodology, and
Section5, which shows thealgorithm’s performanceon a largeset
of measurementsfrom an operationaltier-1 ISP. Section6 exam-
inesthealgorithm’s robustnessto errorsin its inputs,andSection7
shows the flexibility of the algorithmto incorporateadditionalin-
formation.Weconcludethepaperin Section8.

2. BACKGROUND

2.1 Network
An IP network is madeup of routersand adjacenciesbetween

thoserouters,within asingleAS or administrativedomain.It is nat-
ural to think of thenetwork asa setof nodesandlinks, associated
with the routersandadjacencies,asillustratedin Figure1. We re-
fer to routersand links that arewholly internal to the network as
BackboneRouters(BRs)andlinks, andrefer to theothersasEdge
Routers(ERs)andlinks.

One could computetraffic matriceswith different levels of ag-
gregation at the sourceanddestinationend-points,for instance,at
the level of PoPto PoP, or routerto router, or link to link [15]. In
this paper, we areprimarily interestedin computingrouterto router
traffic matrices,which areappropriatefor a numberof network and
traffic engineeringapplications,andcanbeusedto constructmore
highly aggregatedtraffic matrices(e.g.PoPto PoP)usingtopology
information [15]. We may further specify the traffic matrix to be
betweenBRs,by aggregatingup to this level.

Peer A

Peer B

Peering Links

Access Links

Peers

Customers

IP Network Backbone

Figure1: IP network componentsand terminology

In addition,it is helpful for IP networksmanagedby InternetSer-
vice Providers (ISPs)to further classify the edgelinks. We cate-
gorizethe edgelinks into accesslinks, connectingcustomers,and
peeringlinks,whichconnectother(non-customer)autonomoussys-
tems. A significantfractionof the traffic in an ISP is inter-domain
andis exchangedbetweencustomersandpeernetworks.Todaytraf-
fic to peernetworksis largely focusedondedicatedpeeringlinks, as
illustratedin Figure 1. Under the typical routing policies imple-
mentedby large ISPs,very little traffic will transit the backbone
from onepeerto another. Transittraffic betweenpeersmayreflect
a temporarystepin network consolidationfollowing anISPmerger
or acquisition,but shouldnotoccurundernormaloperations.

In large IP networks, distributed routing protocolsare usedto
build theforwardingtableswithin eachrouter. It is possibleto pre-
dict theresultsof thesedistributedcomputationsfrom datagathered
from routerconfigurationfiles, or a routemonitor suchas[19]. In
our investigation,we employ a routingsimulatorsuchasin [7] that



makesuseof this routing informationto computea routingmatrix.
Wealso� simulateloadbalancingacrossmultipleshortestpaths.

2.2 Traffic Data
In IP networks today, link load measurementsarereadily avail-

ablevia theSimpleNetwork ManagementProtocol(SNMP).SNMP
is uniquein that it is supportedby essentiallyevery device in anIP
network. The SNMP datathat is availableon a device is defined
in a abstractdatastructureknown as a ManagementInformation
Base(MIB). An SNMPpoller periodicallyrequeststheappropriate
SNMPMIB datafrom arouter(or otherdevice). Sinceevery router
maintainsacyclic counterof thenumberof bytestransmittedandre-
ceivedon eachof its interfaces,we canobtainbasictraffic statistics
for theentirenetwork with little additionalinfrastructure(apoller).

The propertiesof datagatheredvia SNMP areimportantfor the
implementationof a usefulalgorithm— SNMPdatahasmany lim-
itations. Datamay be lost in transit (SNMP usesunreliableUDP
transport;copying to our researcharchive mayalsointroduceloss).
Data may be incorrect (through poor router vendor implementa-
tions). The samplinginterval is coarse(in our case5 minutes).
Many of the typical problemsin SNMP datamay be mitigatedby
usinghourly traffic averages(of five minutedata),andwe shalluse
this approach.The problemswith the finer time-scaledatamake
time-seriesapproachesto traffic matrixestimationmoredifficult.

We useflow level datain this paperfor validationpurposes.This
datais collectedat therouterwhich aggregatestraffic by IP source
anddestinationaddress,andportnumbers.This level of granularity
is sufficient to obtaina realtraffic matrix [8], andin thefuturesuch
measurementmay provide direct traffic matrix measurements,but
at presentlimitations in vendorimplementationspreventcollection
of this datafrom theentirenetwork.

2.3 Inf ormation Theory
Informationtheoryis of courseastandardtool in communications

systems[12], but a brief review will setup our terminology. We
begin with basicprobabilisticnotation: we define ���	��

� to mean
the probability that a randomvariable � is equalto 
 . We shall
typically abuse this notation(where it is clear) and simply write����
��������	��

� . Supposefor sake of discussionthat � and � are
independentrandomvariables,then

����

������������
������������ (1)

i.e. thejoint distribution is theproductof its marginals.This canbe
equivalentlywrittenusingtheconditionalprobability

����

� ����������
��� (2)

In thispaperweshalltypically use,ratherthanthestandardrandom
variables� and � , ! and " , the source! andthe destination"
of a packet (or bit). Thus ����#��%$&� is theconditionalprobabilityof a
packet (bit) exiting the network at "'�(# , given that it enteredat!)�*$ , and �+��#�� is the unconditionalprobability of a packet (bit)
goingto "*��# .

We cannow definethe DiscreteShannonEntropy of a discrete
randomvariable� takingvalues
-, as. �������0/ , �+��
-,1�3254768�9�+��
-,1��� (3)

The entropy is a measureof the uncertaintyaboutthe outcomeof� . For instance,if �:��
<; with certainty, then
. �����=�?> , and. ����� takesits maximumvaluewhen� is uniformly distributed—

thatis, whentheuncertaintyaboutits valueis greatest.
Wecanalsodefinetheconditionalentropy of onerandomvariable� with respectto another� by. ���@� �����0/ AB����
-,�� , �+���C,D� 
-,��E2%476��F�����G,�� 
-,��H� (4)

where�����G,�� 
-,�� is theprobability that �I�J�G, conditionalon �K�
-, . . ���@� ��� canbethoughtof astheuncertaintyremainingabout� giventhatwe areinformedof theoutcomeof � . Noticethatthe
joint entropy of � and� canbeshown to be. ���L���M��� . �����8N . ���@� ���H (5)

WecanalsodefinetheShannoninformationO ���@� ����� . ���M�8/ . ���@� ����� (6)

whichthereforerepresentsthedecreasein uncertaintyabout� from
measurementof � , or the informationthat we gain about� from� . The informationis symmetric,

O ����� �M�P� O ���@� ��� andsowe
canrefer to this asthe mutual informationof � and � , andwrite
as
O ���L���M� . Notethat

O ���L���M�RQ�> , with equalityif andonly if �
and � areindependent— when � and � areindependent� gives
usnoadditionalinformationabout� .

Themutualinformationcanbewritten in a numberof ways,but
herewewrite itO ���L���M��� SUT VW����

�����E2%476 � ����

���������
���������� ��X����

SUT V �%� � SZY � V ��� (7)

whereX���[��5� \+�	� , [E,]25476���[&,D^_\`,�� is theKullback-Leiblerdiver-
genceof [ with respectto \ , a well-known measureof distance
betweenprobabilitydistributions.

DiscreteEntropy is frequentlyusedin codingbecausetheentropy. ����� givesa measureof the numberof bits requiredto codethe
valuesof � . That is, if we had a large number a of randomly-
generatedinstances�b;c��� � �d d d d�1�fe andneededto representthis
streamascompactlyaspossible,we couldrepresentthis streamus-
ing only a . ����� bits,usingentropy codingaspracticedfor example
in variousstandardcommercialcompressionschemes.

Entropy hasalso beenadvocatedas a tool in the estimationof
probabilities.Simplyput,themaximumentropyprinciplestatesthat
weshouldestimateanunknown probabilitydistributionby enumer-
atingall theconstraintsweknow it mustobey on‘physical’ grounds,
andsearchingfor theprobabilitydistributionthatmaximizestheen-
tropy subjectto thoseconstraints.It is well known that the proba-
bility distributionsoccurringin many physicalsituationscanbeob-
tainedby themaximumentropy principle. Heuristically, if we had
no prior information abouta randomvariable � , our uncertainty
about � is at its peak,andthereforewe shouldchoosea distribu-
tion for � which maximizesthis uncertainty, or theentropy. In the
casewherewedohaveinformationaboutthevariable,usuallyin the
form of somesetof mathematicalconstraintsg , thentheprinciple
statesthat we shouldmaximizethe entropy

. �����%gP� of � condi-
tional on consistency with theseconstraints.That is, we choosethe
solutionwhich maintainsthemostuncertaintywhile satisfyingthe
constraints.The principle canalsobe derived directly from some
simpleaxiomswhichwewish thesolutionto obey [20].

2.4 Ill-P osedLinear InverseProblems
Many scientificandengineeringproblemshaveto solveinference

problemswhich canbeposedasfollows. We observe data h which
arethoughtto follow asystemof linearequations

hi��jlk�� (8)

wherethe a by 1 vector h containsthedata,andthe � by m vectork containsunknowns to be estimated.The matrix j is an a by �
matrix. In many casesof interest�Lnoa , andsothereis no unique
solutionto theequations.Suchproblemsarecalledill-posedlinear
inverseproblems. In addition,frequentlythedataarenoisy, sothat
it is moreaccurateto write

hi��jpkqN�rC (9)

In thatcaseany reconstructionprocedureneedsto remainstableun-
derperturbationsof theobservations.In our case,h aretheSNMP



link measurements,k is thetraffic matrixwrittenasavector, andj
is the� routingmatrix.

Thereis extensive experiencewith ill-posedlinear inverseprob-
lemsfrom fieldsasdiverseasseismology, astronomy, andmedical
imaging[1, 5, 17, 18, 26], all leadingto the conclusionthat some
sortof sideinformationmustbebroughtin, producingareconstruc-
tion whichmaybegoodor baddependingonthequalityof theprior
information.Many suchproposalssolve theminimizationproblemsut%vwyx hM/zjpk x �� N|{ �&} �Dk-��� (10)

wherewhere xp~�x � denotesthe � � norm, {0n�> is a regulariza-
tion parameter, and

} �Dk-� is a penalizationfunctional. Proposalsof
this kind have beenusedin a wide rangeof fields, with consider-
ablepracticalandtheoreticalsuccesswhenthedatamatchedtheas-
sumptionsleadingto themethod,andthe regularizationfunctional
matchedthepropertiesof theestimand.Thesearegenerallycalled
strategiesfor regularizationof ill-posedproblems(for a moregen-
eraldescriptionof regularizationsee[11]).

A generalapproachto deriving suchregularizationideasis the
Bayesianapproach(suchasusedin [23]), wherewe modelthees-
timand k asbeingdrawn at randomfrom a so-called‘prior’ prob-
ability distribution with density�<�Dk-� andthe noise r is taken asa
Gaussianwhitenoisewith variance� � . Thentheso-calledposterior
probabilitydensity�+��k�� h
� hasits maximum �k at thesolutionofsZt%vwyx hM/zjpk x �� N�� ~ � � 25476W�<�Dk-�H (11)

Comparingthis with (10) we seethatpenalizedleast-squaresprob-
lemsasgiving themostlikely reconstructionsundera givenmodel.
Thusthemethodof regularizationhasaBayesianinterpretation,as-
sumingGaussiannoiseandassuming

} �Dk-���o25476W�<�Dk-� . We stress
that thereshouldbea goodmatchbetweentheregularizationfunc-
tional

}
andthepropertiesof theestimand— thatis, agoodchoice

of prior distribution. Thepenalizationin (10) maybethoughtof as
expressingthefact thatreconstructionsarevery implausibleif they
have largevaluesof

} � ~ � .
Regularizationcan help us understandapproachessuchas that

of Vardi [24] and Cao et al. [2], which treat this as a maximum
likelihoodproblemwherethe k areindependentrandomvariables
following a particularmodel. In thesecasesthey usethe modelto
form apenaltyfunctionwhichmeasuresthedistancefrom themodel
by consideringhigherordermomentsof thedistributions.

2.5 ShrinkageEstimation
An alternative reasoningbehindregularizationis that in estimat-

ing largenumbersof parameters(asin theproblemabove), ‘shrink-
ing’ anotherwisevalid estimatestowardsa specialpoint resultsin
substantialreductionsin mean-squarederror. As a simpleexample,
supposewehavenoisydatahi�Bk
NPr , whereh , k andr areall a Y m
vectors.We wish to recover thevector k , wherer representsGaus-
sianwhitenoise

� ��>��]m7� . Theraw datacomponents�G, areunbiased
minimumvarianceestimatorsof thecorrespondingcomponents
-,
of theestimandk , so it is temptingto believe that h is theoptimal
estimateof k . In fact,if a is large,it is possibleto do substantially
betterthanusing h . Weshouldinsteadsolve thepenalizedproblemsut%vw x h�/�k x �� N �{ � x k x �� � (12)

where �{L� e�D�F���� is a measureof thedataset’s sizein mean-square

(or ratherits reciprocal).Thesolutionis a compromisebetweenfi-
delity to themeasureddatah andclosenessto theorigin,andhasthe
simpleform �k��p� ;;D�8� h . This reconstructionis obtainedsimplyby
‘shrinking’ theraw datah towardszero.It turnsout thatfor large a
thisshrunkenestimatoris alwaysbetterthanthe‘obvious’ unbiased
estimateh , in thesensethatit alwayshasa lower mean-squareder-
ror. This qualitative conclusionremainstrue if we shrink towards
someotherfixedpoint, thoughit is betterto shrinktowardsa point

closeto the k we aretrying to estimate.For a fuller discussionof
shrinkageestimation,seefor example[13, 6]. For now, simplynote
thatshrinkageof a very high-dimensionalestimandtowardsa cho-
senpointcanbehelpful. NotethatnoBayesianassumptionis being
madehere:whatever theunderlyingestimandmaybe,shrinkageis
animprovement,regardlessof ourprior beliefsaboutwhichvectorsk areplausible.Thekey assumptionis thatwearetrying to estimate
avectorwith many components,all affectedby noise.

3. REGULARIZA TION OF THE TRAFFIC
ESTIMATION PROBLEM USING MINI-
MUM MUTUAL INFORMA TION

Theproblemof inferenceof theend-to-endtraffic matrix is mas-
sively ill-posedbecausetherearesomany moreroutesthanlinks in
anetwork. In thissection,wedevelopa regularizationapproachus-
ing a penaltythatseemswell-adaptedto thestructureof actualtraf-
fic matrices,and which hassomeappealinginformation-theoretic
structure.Effectively, amongall traffic matricesagreeingwith the
link measurements,we choosethe one that minimizesthe mutual
informationbetweenthesourceanddestinationrandomvariables.

Underthis criterion, absentany informationto the contrary, we
assumethattheconditionalprobability ����#��5$&� thata source$ sends
traffic to a destination# is thesameas����#�� , theprobabilitythatthe
network asa whole sendspacketsor bytesto destination# . There
arestrongheuristicreasonswhy thelargest-volumelinks in thenet-
workshouldobey thisprinciple— they aresohighlyaggregatedthat
they intuitively shouldbehavesimilarly to thenetwork asawhole.

Ontheotherhand,asevidenceaccumulatesin thelink-level statis-
tics, the conditionalprobabilitiesareadaptedto be consistentwith
the link-level statisticsin sucha way asto minimizethemutualin-
formationbetweenthesourceanddestinationrandomvariables.

ThisMinimumMutualInformation(MMI) criterioniswell-suited
to efficient computation.It canbe implementedasa convex opti-
mizationproblem;in effect onesimply addsa minimum weighted
entropy term to the usualleast-squareslack of fit criterion. There
areseveralwidely-availablesoftwarepackagesfor solvingthisopti-
mizationproblem,evenonvery largescaleproblems;someof these
packagescantakeadvantagesof thesparsityof routingmatrices.

3.1 Traffic-Matrix Estimation
Let
� ��$E��#+� denotethetraffic volumegoingfrom source$ to des-

tination # in a unit time. Notethat
� ��$E��#+� is unknown to us;what

canbeknown is thetraffic �p���H� on link � . Let jZ��$E��#+�D�H� denotethe
routingmatrix, i.e. jZ��$E��#��D�H� givesthe fractionof traffic from $ to# which crosseslink � (andwhich is zeroif thetraffic on this route
doesnotusethis link atall). Thelink-level traffic countsare

�p���H��� � T � jZ��$E��#��D�H� � ��$&��#������C�<���	� (13)

where� is thesetof backbonelinks. We would like to recover the
traffic matrix

� ��$E��#�� from the link measurements�����H� , but this is
the sameas solving the matrix equation(8), where h is a vector
containingthetraffic counts�p���H� , k is a vectorizationof thetraffic
matrix, and j is theroutingmatrix. j is a matrix which is �	� by
( �q! Y �	" ), wherethereare �	� link measurements,�q! sources,
and �	" destinations.

3.2 The IndependenceModel
Weproposethinkingabout

� �H$E��#�� in probabilisticterms,sothat
if anetwork carries

�
end-to-endpackets(or bits)totalwithin aunit

timethenthenumberof packetssentfrom source$ to destination# ,� �H$E��#�� say, is arandomvariablewith mean
� ~ ����$E��#+� , with ����$E��#+�

thejoint probabilitythatarandomlychosenoneof the
�

packets(or



bits)goesfrom $ to # . Weconsiderthemarginalprobabilities

���G��$&��� � ����$E��#��H� (14)

���R��#���� � ����$E��#��H� (15)

the chancethat a randomly-chosenpacket (bit) entersthe network
at $ , andthechancethata randomlychosenpacket (bit) departsat# , respectively. Wecanexpandthis notationto measuresets:

�+� T ����� � �d� � �:� ���9�-� � �9�- F����$E��#+��� (16)

for all setsof sourceanddestinationlinks � � �d� � , andsimilarly for
themarginalprobabilities� � and� � .

We let ! be the randomvariableobtainedlooking at the source
of a randompacket (or bit), andlet " denotethedestination.Sup-
posefor sake of discussionthat ! and " areindependentrandom
variables.Then(2) meansthat,giventhatapacket(bit) originatesat!¡��$ , it is no morelikely to go to "I�|# thanwould a randomly-
chosenpacket (bit) originatinganywherein the network. For net-
workscontaininga few extremelyhigh volumelinks carryingvery
largefractionsof thepackets,theassumption(2) shouldwork well
for the very largestcircuits, sincethey have beenso highly aggre-
gatedthat their behavior may be very similar to the network asa
whole.

Notethattheindependenceof sourceanddestinationis equivalent
to thesimplegravitymodelwhichhasbeendiscussedin theInternet
measurementcommunity;themodelhastheform� ��$E��#���¢ Const

� �H$&� � ��#�� (17)

where
� ��$&� is the traffic enteringat $ , and

� ��#�� is the traffic ex-
iting at # . While thereis experiencewith the gravity modelabove
andsomesuccessin its application,it is alsoknown that it gives
resultsthatarenot asaccurateasmaybeobtainedusingadditional
information[16, 28].

Section2 suggeststhat regularizationis a way of usingprior in-
formation in conjunctionwith link measurementsto help decide
which traffic matricesfrom thesetsatisfying(8) aremoreplausible.
We proposeusinga regularizationfunctionalthatusestheindepen-
dence/gravity model as a point of departure,but which considers
other modelsas well. Recall from our discussionof information
theorythatindependenceof sourceanddestinationis tantamountto
the statementthat the mutual informationvanishes:

O ��!���"L���?> .
Recallalsothat

O ��!���"L�RQ�> . It follows that thepenaltyfunctional
on traffic matrices�+��$&��#�� , givenby} ���+��£ O �H!8��"i���
has
} ���p��Q¤> with equalityif andonly if ! and" areindependent.

This functional hasan interpretationin termsof the compress-
ibility of addressesin IP headers.Supposewe have a largenumber
of IP headers— abstractedto besimply source/destinationaddress
pairs ��$d,���#+,�� , ¥W�0m¦�d d d d� � . Wewantto know: whatis theminimal
numberof bits required(per header)to representthe sourcedesti-
nationpair. It turnsout that this is just

. ��!��-N . ��"L��/ O ��!���"L� .
Now if we simply appliedentropy compressionto the !+, and "@,
streamsseparately, we would pay

. ��!
�<N . ��"L� bits per header
to representheaders.Hencethe functional

O ��!���"L� measuresthe
numberof bitsof additionalcompressionpossiblebeyondthesepa-
ratecompressionof sourceanddestinationbasedon traditionalen-
tropy compression.This extra compressionis possiblebecauseof
specialdependenciesthat make IP messagesmore likely to go in
certainsource/destinationpairsthanwewouldhaveexpectedby in-
dependence.In fact measurementsof

. �H!�� and
. ��"L� (on real

datasetsdescribedbelow) aretypically around5, while
O �H!8��"i� is

very small, typically around0.1. This suggeststhat the indepen-
denceassumptionis a reasonablefit to therealdata,at leaston av-

erage. Theremay be somelinks for which it is not, but the MMI
methodspecificallyallows for correctionto these(seebelow).

Supposewe adopta Bayesianviewpoint, assigningan a priori
probability �<����� to thetraffic matrix � thatis proportionalto �F§8¨9© ª&« .
Thenwe aresayingwe regard asa priori implausiblethosetraffic
matriceswheremuchhighercompressionis possiblebasedon joint
source-destinationpairsascomparedto compressionof sourcesand
destinationsseparately. Eachbit saved reducesour a priori likeli-
hoodby abouta factor m9^U� .
3.3 Regularization Method

We proposenow to reconstructtraffic matricesby adoptingthe
regularizationprescription(10) with the regularizationfunctional} ���+��� O �H!8��"i� . Translating(10) into traffic-matrix notation,we
seekto solve

minimize ¬ �����H�8/ � � T � jZ��$E��#+�D�H������$E��#��
�
N­{ � O ��!���"L���

(18)
Recalling the Bayesianinterpretationof regularization,we are

sayingthat we want a traffic matrix which is a tradeoff between
matchingtheobservedlink traffic countsandhaving a priori plausi-
bility, whereour measureof plausibility, asjust explained,involves
the ‘anomalouscompressibility’of source-destinationpairs. The
traffic matrix obtainedasthesolutionto this optimizationwill bea
compromisebetweentwo termsbasedon the sizeof { , which is a
proxy for thenoiselevel in ourmeasurements.Notethat

O ��!���"L��� �]T � ����$E��#+�325476 ����$E��#+�����$&������#�� ��X�������$E��#+���%� �+�H$&������#��H��� (19)

whereX�� ~ �5� ~ � again denotestheKullback-Leiblerdivergence.Here����$&������#�� representsthegravity model,and X�� ~ �%� ~ � canbeseeasa
distancebetweenprobability distributions,so that we cansee(18)
ashaving an explicit tradeoff betweenfidelity to the dataandde-
viation from the independence/gravity model. Note also that the
Kullback-Leiblerdivergenceis the negative of the relative entropy
of �+��$&��#�� with respectto ����$&���+��#+� , andsothis methodalsohasan
interpretationasamaximumentropy algorithm.

Both termsin the above tradeoff are convex functionalsof the
traffic matrix � . Hence,for eachgiven { , they canbe rewritten in
constrainedoptimizationform:

minimize X�������$E��#��H�%� ����$&���+��#��H� subjectto¬ �������H�-/ � � T � jZ��$E��#��D�H���+��$&��#��H� ��®¤¯��  (20)

Here
¯R� � ¯�� ��{�� is chosenappropriatelyso that the solutionof

this problemandthepreviousonearethesame,at thegivenvalue
of { . Theproblemis saying:amongall traffic matricesadequately
accountingfor theobserved link counts,find theoneclosestto the
gravity model. It canalsobe viewed assaying: shrink away from
theobservedlink countstowardsthegravity model.

Thinkingheuristically, wearetrying to estimateaverylargenum-
berof unknowns,soshrinkagetowardsthegravity modelcanbeex-
pectedto beerror-reducing,providing it is performedappropriately
(ashere). Basedon the experienceof statisticianswith shrinkage
estimation,it seemsthat we can expect this procedureto provide
at leastsomeimprovementin mean-squarederror even thoughthe
gravity modelassumptionmaynotbevalid.

If the noiselevel in the datais small, of course,then the solu-
tion will not be allowed to be very closeto the gravity model. In
the limit, asthenoiselevel goesto zero,we obtainthesolutionby
minimizing X����+�H$E��#����5� ����$&������#��°� subjectto theconstraints(13). In
effect we are looking for the most nearly independentversionof����$E��#�� subjectto generatingtheobservedtraffic statistics.



Notethat in all theseoptimizationproblems,thereareadditional
constraints± (on any probabilitydistribution) suchasnon-negativity,
normalization,and(14)and(15). We leaveall theseimplicit.

3.4 Algorithm
Theproblemwe attackin this paperis theBR-to-BRtraffic ma-

trix. While this problemis an orderof magnitudemorecomplex
thana PoP-to-PoPtraffic matrix, a router-to-routertraffic matrix is
absolutelynecessaryfor many network engineeringtasks. A PoP-
to-PoPtraffic matrixisusefulwhendesigninganetwork fromscratch,
but typically, in a realnetwork changesareincremental,andsowe
needto seehow thesechangesaffect traffic at the routerlevel. We
usetechniquesfrom [28] to reducethesizeof theprobleminitially,
by removing redundantinformation,anda large numberof traffic
matrix elementsthatwe know to bezerofrom routinginformation.
This processingdoesnot improve accuracy, but doesspeedup later
computations.

To make theexactformulationexplicit, wedefine


�,K� � �H$d,D��#+,1��� (21)� A � traffic counts ���p��� A ��� (22)\`,K� � �H$d,�� � ��#+,1��� (23)

where � � total traffic in network (24)� ��$d,1�:� total traffic originatingat $d, (25)� ��#+,1�:� total traffic departingat #�, (26)

andwedefinethecolumnvectorsk , and h with elements
-, and�G, ,
respectively. Our formulationis

min
S �%� hM/zjlk��5� � N|{ � ,�²]³�´Dµ+¶


-,��2%476 
-,\`,
subjectto 
-,�Q¤>� 

(27)

Notethat \`,��¤> if andonly if thetraffic at thesourceor destination
is zero,andso 
-,��J> . Theadditionalconstraintson themarginal
distributionsaresatisfiedby supplementingtheroutingmatrix, and
measurementsto ensurethatthey includetheseconstraints.

This penalizedleast-squaresformulationhasbeenusedin solv-
ing many otherill-posedproblems,andsothereexist publicly avail-
ablesoftware in Matlab (suchasroutineMaxEnt in PerChristian
Hansen’s InverseProblemsToolbox [9, 10]) to solve small-scale
variantsof suchproblems.Ourproblemsare,however, largein scale
andnot suitedto suchbasicimplementations.Theproblemof solv-
ing suchlarge-scaletraffic matricesis only possibleif wecanexploit
oneof themainpropertiesof routingmatrices:they arevery sparse
— the proportionof exact zeroentriesin eachcolumnandrow is
overwhelming.Accordingly, weusePDSCO[4], aMATLAB pack-
agedevelopedby Michael Saundersof StanfordUniversity, which
hasbeenhighly optimizedto solve problemswith sparsematricesj . PDSCOhasbeenused(seee.g. [4]) to solve problemsof the
order16,000by 256,000efficiently. We have foundthat its perfor-
manceis verygood(takingnomorethanafew seconds)evenonthe
largestproblemsweconsiderhere.

In principle, the choiceof { dependson the noiselevel in the
measurements,but in our resultsbelow we show thattheresultsare
insensitive to thisparameter, andsoits exactchoiceisn’t important.

An interestingpoint is that if onewereto have additionalinfor-
mation suchas usedin the choicemodel of [16] then this could
alsobe incorporatedby conditioningthe initial model ·�� T ���H$E��#��
on this information (for an exampleof this type seeSection3.5).
Thiswouldamountto akind of shrinkage,this timenot towardsthe
gravity model,but insteadtowardsamodelincorporatingmoreside
information. Alternatively, suchinformationcould be includedin
theconstraintsunderlyingtheoptimization(asshown in Section7).

3.5 Inter -domain Routing
3.5.1 Zero TransitTraffic

The above algorithm assumesthat independenceof sourceand
destinationis a reasonablestartingmodel.However, therearegood
reasonswe may want to modify this startingmodel. In real back-
boneISPs,routing is typically asymmetricdueto hot-potatorout-
ing — traffic from the customeredgeto peerswill be sentto the
“nearest”exit point, while traffic in peernetworkswill do likewise
resultingin a differentpatternfor traffic from peeringto customers.
Also thereshouldbe no traffic transitingthe network from peerto
peer [28]. Both thesefactorsdemanddeparturesfrom the grav-
ity/independencemodel.

Supposewe assumethereis zerotransittraffic. We suggestthat
conditionalindependenceof sourceanddestination,givenappropri-
atesideinformation, will bemoreaccuratethanpureindependence.
More specifically, supposewe have availableasside information,
thesourceanddestinationclass(accessor peering).We would then
model the probabilitiesof a packet (bit) arriving at $ and depart-
ing at # asconditionallyindependentgiventheclassof arrival and
destinationlink. In AppendixA weshow thatthis resultsin thefol-
lowing model,assumingj and· arethesetsof accessandpeering
links, respectively.

��� T �R��$E��#����
ª3¸G©
�
«ª ¸ ©5¹�« ªEºW©

�
«ª º ©5¹�« �Hm»/z�+�G��·��8/z���R��·��°���for $¼��ju��#M��jq����G��$&� ª º ©
�
«ª3ºW©5¹�« � for $¼��·¼��#@��ju�ª ¸ ©

�
«ª ¸ ©5¹�« ���R��#���� for $¼��ju��#M��·	�>�� for $¼��·¼��#@��·¼ 

(28)

to which we cannaturallyadaptthealgorithmabove (by modifying\`, ). We note that the algorithm is then ‘shrinking’ the observed
data in the direction, not of a pure gravity model, but a realistic
modificationof it.

3.5.2 Point to Multipoint
As notedin the introductiona point-to-pointtraffic matrix is not

suitablefor all applications.Sometimesweneedapoint-to-multipoint
demandmatrix, for instance,when we want to answerquestions
abouttheimpactof link failuresoutsidethebackbone,e.g. “would
a peeringlink failurecauseanoverloadon any backbonelinks?” In
this case,traffic would rerouteto an alternateexit point, changing
the point-to-pointtraffic matrix in an unknown way. However, the
point-to-multipointdemandmatrixwould remainconstant.

Ideally sucha matrix would be at the prefix level, but a number
of operationalrealitiesmakeanapproximationto routerlevel useful
for many engineeringtasks.Thefirst suchreality is thatbackbone
networks thatexchangelarge traffic volumesareconnectedby pri-
vatepeeringlinks asopposedto InternetExchangePoints.This al-
lowsusto seetheproportionof traffic goingto eachindividualpeer
usingonly SNMPlink measurements,sowecanpartitiontraffic per
peer. The secondsuchreality is that theBGP policiesacrossa set
of peeringlinks to a singlepeeraretypically thesame.Therefore,
thedecisionasto whichpeeringlink to useastheexit point is made
on the basisof shortestIGP distance. This distanceis computed
at the link level, asopposedto BGP policies,which canact at the
prefix level. While we cannottest that this propertyis true for all
largeISPs(andin generalit is not alwaystrueevenon thenetwork
from which we have measurements),the methodologyabove does
not needthis,becausethealgorithmabove only usesthis asa prior,
to becorrectedthroughtheuseof link (andother)information.

The steprequiredto generatea point-to-multipointdemandma-
trix requiresconsiderationof thecontrolISPshaveoverinterdomain
routing. Interdomainroutinggivesan ISP little controlover where
traffic enterstheir network, so we shall not make any changesto
(28) for access-to-access,andpeering-to-accesstraffic. However, a
provider hasconsiderablecontrolover wheretraffic will leave their
network acrossthe peeringedge. Traffic destinedfor a particular



peermaybesentonany of thelinks to thatpeer.
The½ resultis thatwe mustmodify (28) for access-to-peertraffic.

We do soby not specifyingwhich link # in thesetof links to peer¥ (i.e. ·R, ) is usedfor traffic leaving thenetwork to peer¥ . We can
do this formally by not specifying�+� T ����$&��#�� for $	�Mju��#f�M· but
rather ��� T �R��$E��·R,1� for all peers¥ . This simplepoint-to-multipoint
modelcanthenbeusedin theestimationthroughusing

��� T ���H$E��·R,���� ���G��$&����G��jZ� �+����·R,���� (29)

for $¤�?j , in placeof the access-to-peeringequationfrom (28).
We do not determinetheexit point in theestimates.Thealgorithm
canthenproceedby minimizing themutualinformationof thefinal
distribution with respectto (28) and(29). The exit pointsare im-
plicit in theroutingmatrixusedin theoptimization(27),but areleft
undeterminedin theestimate,andcanthereforebefixedonly when
appliedto aparticularproblem.

Weshouldalsonotethatthis is aquitegeneralextension.Weuse
it hereon setsof peeringlinks ·R, , but in a network with different
policies,we canpartition the peeringlinks in somedifferentfash-
ion (eventhroughanon-disjointpartition)to reflectsomeparticular
idiosyncrasiesin routingpolicy.

3.6 Relationship to Previous Algorithms
Thework in thispaperpresentsageneralframework,within which

wecanplaceanumberof alternativemethodsfor estimatingIP traf-
fic matrices.For instance,by taking a linear approximationto the
log function in theKullback-Leiblerinformationdistanceinforma-
tion andexploiting thefactthat

S7¾ [���
��-/z\+��
���¿��¤> weget

X��H[��5� \+�À¢ S [���
�� [���
��-/z\+��
��\���

� / S ¾ [���
��-/z\+��
���¿
� S [+��
��8/z\+��
��\+��
��

�
 (30)

Fromthis we canseethat theMMI solutionmaybeapproximated
by usinga quadraticdistancemetric (with squareroot weights)as
wasappliedin [28]. This explainsthesuccessof thatapproach,as
well as the needto usesquareroot weightsfor bestperformance.
Theconditionalindependenceof Section3.5explainstheuseof the
generalizedgravity modelasaninitial conditionin [28].

Thequadraticoptimizationis convenient,becauseit canbesim-
ply solved using the Singular Value Decomposition(SVD) [28],
with non-negativity enforcedby a secondstepusingIterative Pro-
portionalFitting (IPF) [2]. In thispaperwewill comparetheperfor-
manceof thepureMMI approach,its quadraticapproximation,and
thepreviousmethod(referredto hereasSVD-IPF),andwe seethat
theapproximationworkswell in thecasesconsidered.Wedeferthe
comparisonwith maximumlikelihoodapproaches([24, 2, 16]) to
future work, becausescalingthesemethodsto the sizeof problem
describedhererequiresadditionaltechniques(for instancesee[3,
27]) thathaveonly recentlybeendeveloped.

The point of interesthereis that the MMI principle above pro-
duces(anapproximationof) thealgorithmpreviously derivedfrom
an initial gravity modelsolution. However in thecaseof theMMI
solution,the principle precedespractice— that is, the decisionto
regularizewith respectto a prior is not anarbitrarydecision,but a
standardstepin ill-posedestimationproblems.Thecloseapproxi-
mationhasapracticalimpactin thatwecanusethefactthat[28] al-
readydemonstratedthattheconditionalindependenceof Section3.5
to be a betterprior thancompleteindependence.We usethis fact
hereby using(28)and(29) in theremainderof thepaper.

4. EVALUATION METHODOLOGY
In this paper, we apply the traffic matrix benchmarkingmethod-

ology developedin [28] to real Internetdatato validatedifferent

algorithms.Onemajoradvantageof themethodologyin [28] is that
it canprovide a consistentdatasetthat is asrealisticaspractically
possible.Below we provide anoverview of this methodology, fol-
lowedby asummaryof theperformancemetricsweuse.

4.1 Validation Methodology
Theapproachof [28] usedsampledflow level data,andtopology

androuting informationasderived from [7]. Flow level datacon-
tainsdetailsof numbersof packetsandbytestransferredbetween
sourceanddestinationIP addresses,andalsogivesinformationsuch
astheinterfaceatwhich thetraffic enteredournetwork. Combining
thesedatasetsonemayderivea traffic matrix [8].

Theresultingtraffic matrixin ourexperimentscoversaround80%
of the real network traffic (including all the peeringtraffic) on the
real topologyof a large operationaltier-1 ISP. Following [28], we
computethe traffic matriceson onehour time scalesto dealwith
somelimitationsof themeasurements.Giventhesetraffic matrices
andthenetwork topologyandrouting information,we only needa
consistentsetof link loadmeasurementsto proceed.

[28] solves the problemof providing a consistentsetof traffic,
topologyandlink measurementdataasfollows. Simulatethe net-
work routingusingtheavailabletopologyandrouting information.
From this we may computea routing matrix Á , andthenderive a
setof link measurementsh from (8). Thusthetraffic matrix k , the
routingmatrix Á andthemeasuredlink loads h areall consistent.
We can thenperform the estimationprocedureto compute �k , the
traffic matrixestimate.

Part of the goal of this paperis to extendunderstandingof pre-
vious methods,andso we apply the pre-existing methodologyfor
testingtraffic matrices. However, this methoddoesnot explicitly
validatepoint-to-multipointtraffic matrices.We computethepoint-
to-multipoint traffic matrix, andthencollapsethis down to a point-
to-point traffic matrix for comparisonwith the real traffic matrix.
Theresultis animplicit validationof themultipointestimates.

The validation approachallows us to work with a problemfor
which we know the“groundtruth” — thereal traffic matrix. It can
alsobe extendedin several differentways. For example,it allows
oneto takea traffic matrixandapplyit onanarbitrarytopology, for
instanceasimulatednetwork suchasastar, or ameasuredtopology
suchasthoseproducedby Rocketfuel [21, 14]. Thuswe cangain
insight into the effect of different topologieson the performance
of the algorithm. We may also introducecontrolledmeasurement
errorsto assessthe algorithm’s robustness,or simulatealternative
measurementsto seetheir impactin a rigorousmanner.

4.2 PerformanceMetrics
In thispaperweusetwo basicmethodsfor assessingandcompar-

ing theresults.Thefirst methodis to estimatetherelativeerror(that
is, the averageof the absolutevalue of the errors, relative to the
averagetraffic matrix element). The secondmethodis to plot the
CumulativeDistributionFunction(CDF)of theerrorsrelative to the
averagetraffic matrixelement.However, many elementsof a router
to routertraffic matrixarezerodueto routingconstraints,andthese
constrainedelementsareeasyto estimate. This resultsin a large
numberof entriesto thetraffic matrixwith nearzeroerror. To more
accuratelyindicatethe errorson the positive elementswe separate
thezeroandnon-zeroelementsandcomputetheirerrorsseparately.
The errorson the zeroelementsarevery small (99% of the errors
arebelow 1%), andso we shall not display theseseparatelyhere.
Weshallreporttherelativeerrorsof thepositiveelements.

5. PERFORMANCE
In this section,we first examinethealgorithm’s sensitivity to the

choiceof { , andthencomparetheaccuracy of differentalgorithms.

5.1 Sensitivity to the Choiceof {
The choiceof the parameter{ determineshow muchweight is

given to independence,versusthe routing constraintequations.In
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(a) quadratic optimization (specific case)
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(b) MMI (specific case)

error= 0%
error= 1%
error= 5%
error=10%

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

0

10

20

30

40

50

60

70

lambda

re
la

tiv
e 

er
ro

r 
(%

)

(c) quadratic optimization (average over all data)
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Figure2: The relative errors for the quadratic and MMI algorithms for a givenvalueof { .
our experiments,we find that the algorithm’s performanceis not
sensitive to thechoiceof { . Figure2 shows therelative error in the
estimatesfor varying { . Figure2 (a)and(b) show theresultsfor the
quadraticandMMI algorithmsrespectively, for a single-hourdata
set given different levels of error in the input measurements(see
below for detailsof theintroducedmeasurementerrors).Figure2 (c)
and(d) show theaverageresultsoveramonthof data.

Most notably, in eachgraphthereis a distinct region wherethe
curvesareall quiteflat, andthat this region is largely thesamere-
gardlessof theerrorlevel. Thusthechoiceof { is insensitive to the
level of noisein themeasurements,andit is easyto choosea good
value. We choosea valuefrom themiddleof the insensitive range,{b�)>� >�m throughoutthe restof thepaper, asthis performedwell,
not just in theaverage(whichonecanseefrom Figure2 (c) and(d)),
but alsoin theworstcase.Theimpactof choosinga singlevalueof{ , ratherthantheoptimal valuefor eachcaseis shown in Table1.
The tableshows for varying levels of error (or noise)in the input
measurementsthereductionin accuracy dueto theuseof a fixed {
ratherthantheoptimalvalue.Thetablepresentstwo measures:the
maximumandaverageaccuracy reductionoverall of thedatasets.

Notethat in theworstcasetheMMI algorithmis only a few per-
centworsefor notusingtheoptimalvalueof { andtypically is very
closeto optimal.Thequadraticalgorithmis marginally moresensi-
tive to thecorrectchoiceof { .

accuracy reduction
algorithm noise { maximum average
MMI 0% 0.01 1.6% 0.3%
MMI 1% 0.01 1.6% 0.3%
MMI 5% 0.01 1.4% 0.3%
MMI 10% 0.01 2.9% 1.5%
quadratic 0% 0.01 1.9% 0.4%
quadratic 1% 0.01 1.7% 0.4%
quadratic 5% 0.01 1.9% 0.3%
quadratic 10% 0.01 3.7% 1.7%

Table 1: Impact of choosinga fixed value of { rather than the
optimal value. The table showsfor the two algorithms, and vari-
ouslevelsof noisein the measurements,the impact of choosinga
fixed valueof { compared to the optimal value. The table shows
the worst caseand the averagereduction in accuracy.

5.2 Comparisonof Algorithms
Wenow applythethreealgorithmsdescribedabove(MMI, quad-

ratic optimization,and SVD-IPF) to the problemof computinga
BR-to-BRtraffic matrix,in orderto comparetheirperformance.The
resultsbelow arebasedon 506 datasetsfrom the ISP in question,

representingthemajorityof June2002,andcoveringall daysof the
week, and times of day. Figure 3 shows the CDF of the relative
errorsfor the threemethods.We canseethat their performanceis
almostidentical. The meanrelative error is 11.3%. Furthermore,
notethat morethan80% of the traffic matrix elementshave errors
lessthan20%. TheCDFsfor individual datasetsarevery similar,
but generallylesssmooth.All threealgorithmsareremarkablyfast,
delivering thetraffic matrix in undersix seconds.Thefastestalgo-
rithm is SVD-IPF, which is abouttwice asfastasMMI, theslowest
one. We alsocomparethe threealgorithmsfor robustness.There-
sultsareverysimilar, andareomittedherein theinterestof brevity.

Note alsothat [28] showed a numberof additionalperformance
metricsfor theSVD-IPFalgorithm(whichwecanseehasverysim-
ilar performanceto theMMI andquadraticalgorithms).Thosere-
sultsindicatedthatnot only aretheerrorson theflows reasonable,
but alsothat the errorson the largestflows aresmall, andthat the
errorsarestableover time (animportantfeatureif theresultsareto
beusedto detectnetwork events).
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Figure3: A comparisonof the relativeerrors for the methods.

5.3 TopologicalImpact
In this section,we investigatethe impactof differenttopologies

ontheperformanceof thealgorithm.WeusetheISPmapscollected
by Rocketfuel [21, 14, 22]. Sincewe alsoneedIGP weights,we
usethemapsfor threeNorthAmericannetworks(Sprint,Abovenet,
and Exodus),for which the IGP weightshave beenestimatedby
Rocketfuel. Notethat thesearenot realweightsfrom thenetworks
of interest,but asetconsistentwith observedrouting.



TheRocketfueldatado not containthepeeringrelationshipsof a
network,Â andsowe arelimited to usingthesameinitial conditional
independenceassumptionsin our explorationof topology. This is
not a problemherebecausewe are primarily concernedwith the
impactof theinternalnetwork topologyon theestimates.

Theapproachfor testingtheimpactof topologyis asfollows. We
map locations(origins anddestinationin the original network) to
locations(in theRocketfuelnetwork) at thePoPlevel, andmap(28)
and(29) to this new network, assumingthesamepeeringrelation-
ships,thusremoving dependenceondatawedon’t haveaccessto.

More specifically, let Ã Ä�jÆÅÈÇ denotea mappingfrom the
original setof locations¥P�ij to a setof Rocketfuel locationsÉ@�Ç . Thenthe mappingof demandsfrom onenetwork to anotheris
accomplishedby
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andwe mapthe \`, from (23) similarly. We considertwo mappings,
the first basedon geographicallocation,which is provided in the
Rocketfueldataset.Geographicalinformationdoesnot provide any
way of mappingfrom router to router in the new network, so we
performour mappingat the PoPlevel, andthereforealsoperform
theestimationat this level). Thesecondmappingis a randomper-
mutationthat destroys the dependency betweenthe traffic andthe
network topology.

5.3.1 Resultsbasedongeographicalmapping
Figure4 (a) shows theresultsof applyingtheMMI algorithmto

thethreeRocketfuelnetworks,wherethemappingfrom locationto
location is doneon the basisof nearestgeographicalequivalent1.
Thatis, ourmappingis givenby

Ãy��¥c����É7� where#���¥]��É`� ® #���¥c�&ÍF����ÍZ��Ç@�
where#���¥c��É`� is thegeographicdistancebetweenPoPs¥ andÉ . The
figurealsoshows thePoPlevel resultsfor theoriginal ISP(the re-
sultsabove werefor BR-to-BRtraffic matrices).Onecanseevary-
ing levelsof performancefor thedifferenttopologies,but it is gen-
erally similar to or betterthantheperformanceweseein Figure32.

Our aim hereis to understandwhatfeaturesof thetopologyhave
impacton theestimationalgorithm,andto thisendwecanconsider
two illustrativeexamples:simple20nodestarandcliquetopologies.
In thestar, all PoPsareconnectedby asinglehub,andin theclique,
all PoPshave direct connectionsto eachother. We intentionally
make thesecontrolcasesvery simplesothatwe know exactly what
is goingon. Theresultsareshown in Figure4 (b). Theperformance
on the star topology is poor, while on the clique the performance
is almostperfect. The resultsstemfrom the fact that in the clique
topologythe link datagivesus the traffic matrix. In this case,the
initial MMI estimateof thetraffic matrix is almostcompletelyover-
riddenby the information from link data. In the caseof the star,
thereis no additionalinformationcontributedby the link data,and
so we seehow well the independenceassumptionperformson the
input traffic matrix.

Table2 providesa comparisonbetweenthe differentnetworks.
Thetableshows, for eachnetwork, thenumberof North American
PoPs(excluding the degreeone nodes),and the numberof inter-
PoPlogical links (note that multiple physical links aremappedto
a single logical link herebecausetheserepresentredundantinfor-
mation). The tablealsoshows the resultingnumberof unknowns
(traffic matrix elementsto be estimated)relative to the numberof
measurements(or links), andaverageestimationerrors.Clearlywe;

WhenperformingthePoPlevel mappingwe excludenodesof degreeone
astheseareoftenminor regionalnodes.�

Theunknownsin theRocketfueldata,andthelack of traffic datafrom the
othernetworksmeanthattheconvenientlabelsSprint,Exodus,or Abovenet
shouldnotbeinterpretedassayingthatwehavetestedthealgorithmonthose
networksdirectly.

canseea directrelationshipbetweentheratio of unknownsto mea-
surements,andtheperformanceof thealgorithm.

This illustratesthebasisfor theMMI method. It will work best
whereeithertheconditionallyindependentestimateis goodto start
with, or the topologyhassufficiently diverselinks to allow for the
resultsto beaccuratelyrefined.Thenetworksmeasuredby Rocket-
fuel appearto havesuchdiversity.

unknownsper error(%)
Network PoPs links measurement geo. rand.
Exodus 17 58 4.69 12.58 20.07
Sprint 19 100 3.42 8.06 18.93
Abovenet 11 48 2.29 3.76 11.74
Star

� Î`Ï%Ð(ÑzÒEÓ Ð»ÔdÎpÕ�ÒDÖ
24.02 24.02

Clique
� Ð@Ï%Ð(ÑzÒEÓ m 0.18 0.18

ISP - - 3.54–3.97 10.55 -

Table 2: The table shows, for the thr ee Rocketfuel PoP level
topologies: the number of PoPs (excluding degree one PoPs),
inter-PoP links (parallel links aggregated),and the number of
unknowns per link measurement. The table alsoshows the val-
ues for Star and Clique topologieswith

�
nodes(

� �y�_> in
the examples),and for the original ISP. The final two columns
of the table give the performance (relative mean error) of the
MMI algorithm on eachtopology for the geographicand ran-
dom mappings. Note that the results for the ISP are at PoP
level, obtained by aggregation fr om BR-BR traffic matrices, so
the random mapping is not available.

5.3.2 Resultsbasedon randommapping
However, thereis more to the problemthan this. In fact it ap-

pearsthatthereis arelationshipbetweenthenetwork traffic, andthe
network topology that benefitsthe performanceof the algorithm.
Figure4 (b) alsoshows the resultof mappingthe locationsin the
original ISPto theRocketfuelISPsusingarandompermutation(the
figure is basedon 100 randompermutationsof 24 datasetsdrawn
from oneday in June).Theperformanceundera randommapping
is worsethanundera geographicalmapping. The last columnof
Table2 confirmsthis finding.

This is interestingbecause,typically in largenetworks,regionsof
thenetwork with higherdemandtendto have moreconnectionsto
theotherPoPs(in themeasurednetwork thecorrelationcoefficient
betweennodedegreeandtraffic volumewas0.7). A higherdegree
at a noderesultsin moreinformationaboutthecorrespondingrow
of thetraffic matrix, andthencea betterestimateof this row. Good
estimatesof thelargerelementsmake it easierto estimateotherele-
mentselsewherein thenetwork,andsowegetabetteroverallresult.
Thisnaturallyleadsto betterestimateswhenthetraffic is correlated
to thenetwork degree,but whenwe performthe randommapping,
thecorrelationno longerholds.We shallseelaterthatthis property
hasanimpacton thedesignof network measurementinfrastructure
to further improve traffic matrix estimates:it is betterto put mea-
surementinfrastructurein thenodeswith thelargesttraffic volume.

Also interestingis thefactthatthis finding addscredibility to the
choicemodelideapresentedin [16]. Thechoicemodelassertsthat
featuresof thenetwork (suchasthenumberof links) arecorrelated
with the attractivenessof that nodeas a destination,and we can
confirmthatfindinghere,atleastwith respectto thenumberof links.

6. ROBUSTNESS
A critical requirementfor any algorithmthat will be appliedto

real network datais robustness.In generalthis refersto the sensi-
tivity of an algorithmto violationsof the algorithm’s assumptions
(implicit andexplicit). In the MMI method,the only assumptions
arethat theMMI criteria is a reasonableapproach(verifiedabove)
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Figure4: Resultson Rocketfuel, and simulated topologies.

and that the input dataare correct. Network dataare often error
prone,andtherecanbemissingdata,andsowe mustconsiderhow
robust thealgorithmis to sucherrors. In thefollowing sectionswe
considerthe impactof incorrector missinglink data,andincorrect
routingdataontheMMI algorithm.Only thelatterform of incorrect
inputdatahasanimportantimpacton theresultsof thealgorithm.

6.1 Incorr ectLink Data
Like any measurements,SNMP link datacontainerrors. There-

fore, we shall introducea rangeof errors,andstudy their impact.
Comparisonswith flow level datahave shown that errorsin either
sourcearenot generallylarge, andthe sourcesof sucherrorslead
oneto believe that they will not be stronglycorrelated.Hencewe
shall introduceindependentGaussianerrorsto themeasurementsh
andcomparewith thezeroerrorcase.Morespecifically, take theer-
ror in themeasurementof link ¥ to be ×F,�Ø � ��>������ , where

� ��>����<�
is thenormaldistributionwith mean0 andstandarddeviation � . We
vary � from 0 to 0.1, with the latter correspondingto quite large
relative errorsin themeasurements(rememberthe95thpercentiles
of thenormaldistribution lie at ÙPm¦ ÛÚ7Üc� .)

Also notethaterrorson accessandpeeringlinks will have min-
imal impact on a BR to BR traffic matrix becausethe datafrom
accesslinks is aggregatedacrossmany links (to form thetraffic vol-
umesenteringandexiting the network at a router)andso we only
considerhereerrorsin thebackbone-linktraffic measurements.

Figure5 showstheCDFof theresultsgivendifferentnoiselevels.
Clearlynoiseimpactstheresults,but notethat theadditionalerrors
in the measurementsare actually smaller(for the most part) than
the introducederrors in the measurements.This is likely due to
theredundantlink constraints,which provide anaveragingeffect to
reducetheimpactof individualerrors.Table3 presentsasummary.

noiselevel (� ) 0 0.01 0.05 0.10
relativeerrors 11.26% 11.63% 14.00% 18.01%

Table3: The relativeerrors given a particular noiselevel.

6.2 Missing Link Data
Wenext considertheimpactof missingdata,for instancemissing

becausealink wasnotpolledoveranextendedinterval. A few miss-
ing datapointscanbereplacedusinginterpolation;tradingmissing
datafor datawith someerror. Furthermore,ERsaretypically con-
nectedvery simply to thebackbone(typically by setsof redundant
links), andalmostall ( n�Ú7Ú %) of ER traffic is betweenthe back-
boneandtheedge.Thusif dataaremissingfrom a singleedgelink
we may estimatethe correspondingtraffic usingmeasurementsof
the traffic betweenthe ER andthe backbone.Thus,except in the
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Figure5: Relative errors for MMI given measurementnoise.

rarecasewherewemissmultipleedgelinks, weneedonly consider
missingbackbonelink data.

Figure6 shows the effect of missingthe top
�

backbonelinks
(ratedin termsof traffic on thoselinks). Theresultsareshown for
the24 datasetsfrom eachof threedaysin June.Theresultsshow
thatdespiteloosingthe links with the largesttraffic, theresultsare
hardlyimpactedatall (thoughthestepappearsbecauseoneof these
links is actually important). This suggeststhat thereis generally
enoughredundantinformationin thenetwork to compensatefor the
missinglinks (exceptin onecase).

6.3 Incorr ectRouting Data
A third sourceof datain which we may find errorsis the rout-

ing matrix. Errors in this matrix can have a large impact on the
performanceof estimationmethods,becauseif we have errorsin a
significantnumberof routes,this correspondsto changingmany el-
ementsof thematrix from 1 (in theabsenceof loadsharing)to zero
and visa versa. However, as in all other reportson traffic matrix
estimation,weassumetheroutingmatrix input is accurate.Thisas-
sumptionis reasonablebecausetherearegoodmethodsfor reliably
obtainingroutinginformation(for instancesee[19]).

7. ADDITION AL INFORMA TION
Onemajorbenefitof adoptingtheinformationtheoreticapproach

describehereis that it providesa naturalframework for including
additionalinformation. In this section,we examinethe impactof
two sourcesof information: (i) flow level dataat somelocations,
and(ii) thelocal traffic matrixata router[25].
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Figure 6: The impact of missingdata on the relative errors for
thr eedays(eachcomprising 24data sets).

7.1 Flow Level Data
In thissectionweconsidertheimpactof having flow level dataat

somelocations,which givestherows of thetraffic matrix for those
locations.This inclusionwasexploredin [16] in asimulation.They
showedthatthemethodsof [23, 2] providedimprovementsto traffic
matrix estimatesroughly in proportionto thenumberof rows mea-
sured,but that it did not matterwhetheroneselectedtherows to be
measuredrandomly, or in orderof largestrow sum.

Flow level informationcanbeincludedin our algorithmby sim-
ply includingadditionalconstraintequations.Resultsarepresented
for threeseparatedaysof data,eachconsistingof twentyfour, one-
hour datasets. We comparethe error in the estimatesas we in-
cludea variablenumberof known rows of the traffic matrix, both
in row sumorder, andrandomly. Figure7 shows theresults.In the
random-orderingcase,weseeanapproximatelylinearimprovement
asadditionalinformationis included,but in contrastto the results
of [16] row sumorderis significantlybetter. In fact,once10 rows
areincluded,theerrorfor therow sumcaseis abouthalf thatof the
randomorderedcase,andthisratio improvesuntil wehaveincluded
aroundhalf of the rows, when the error for the row sum ordered
casebecomesnegligible. Onepossiblereasonwhy theseresultsdo
notagreewith [16] is thatthetraffic matricesusedin thesimulation
werenotasskewedasthoseobservedin realnetworks.
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Figure 7: Effect of addition of known traffic matrix rows.
Dashed lines show largest row sum ordering, and solid show
random order. Thereareover 60 rows in the traffic matrix.

Theresultis a clearwin for measuringflow, or packet level data.
Suchdataon a fraction of the network may provide a dispropor-

tionateimprovementin theestimates.Theresultsweresimilareven
whenerrorswereaddedto theflow level measurements,andsosam-
pledflowsmayalsoprovidepracticalimprovements.

7.2 Local Traffic Matrices
Another appealingalternative to collect additional information

with minimal cost is to collect local router traffic matrices. That
is, for the routerto keepa tableof traffic from in-interfaceto out-
interface. As shown in [25], thecollectionof local traffic matrices
only requiresminimal changesto routerhardware,andcanbe in-
cludedin our algorithm as constraints. Figure 8 shows the CDF
including local traffic matrices,and Table4 shows a summaryof
theresultsin comparisonto thosewithout local traffic information.
Noticethattheresultswith a local traffic matrix,arenotonly better,
but alsolesssensitive to measurementerrors.
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Figure8: The resultof including local traffic matrices,for vary-
ing error levels. Also included as a baselineis the zero noise,
links measurementcasefr om Figure3.

noiselevel (� ) 0 0.01 0.05 0.10
with localTM 3.06% 3.40% 5.04% 7.3%
w/o localTM 11.26% 11.63% 14.00% 18.01%

Table 4: The relative errors given a particular noiselevel, with
and without local traffic matrix data.

The startopologyillustrateswhy a local traffic matrix helps. In
thatcase,a local traffic matrix at thehubrouterprovidesthetraffic
matrixdirectly. In reality thenetwork is notastar, soalargeamount
of additionalinformationis redundant.In our problem,thenumber
of constraintsis of theorderof a factorof 20 timesthesimplelink
measurementconstraints,but thenumberof independentconstraints
is only roughly doubled. However, this redundantinformation is
still usefulbecauseit makesthe algorithmmorerobust to noisein
themeasurements,asseenin Table4.

Theseresultsshow that it is quitepracticalto improve thetraffic
matrix estimatesaboveby incorporatingadditionalinformation.

8. CONCLUSION
To summarize,we presenta new approachto traffic matrix es-

timation for IP networks. We demonstrateon real data that the
methodhasniceproperties:it is fast,accurate,flexible, androbust.
In addition, this paperprovides someinsight into the problemof
traffic matrix estimationitself. In particular, by testingthemethod
onRocketfueltopologiesweprovidesomemeasureof whataspects
of a network make theproblemeasieror harder:estimateson more
highly meshednetworksweremoreaccurate.Further, wefoundthat
therelationshipbetweenthetraffic volumesandthetopologyplayed



a significantrole in theaccuracy of theestimates.Apart from this,
the methodÝ also provides additionalinsight into a broadrangeof
approachesto traffic matrixestimation.

Thereis still considerablework to do in this area: for instance,
the choiceof priors is interesting. It is known that regularization
and shrinkageapproachesimprove estimateseven when the prior
to which we shrink is arbitrary. However, it is alsoknown that a
betterprior resultsin a betterestimate.While the prior usedhere
seemsadequate,onemaybeableto dobetter(for instanceby using
[16]). Otherareasof future work include,understandingwhy the
methodsaresoinsensitive to thevalueof { , andperformingfurther
validationsof themethod,onalternatedatasets(includingdifferent
traffic patterns),anddirectpoint-to-multipointvalidation.
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APPENDIX
A. CONDITION AL INDEPENDENCE

In Section3.5 we presenta resultbasedon conditionalindepen-
dence,ratherthansimpleindependence.Zero transittraffic makes
it is morereasonableto adopta conditionallyindependentmodelin
which theprobabilitiesof a packet (bit) arriving at $ anddeparting
at # giventheclassof arrival anddestinationlink (peeringor access)
areindependent:

�+� T �R��$E��#��5!b�bg � ��"Þ�bg � ������G��$E�5!b�bg � ��"Þ�bg � �G�+����#��%!b�bg � ��"I�bg � ��� (32)

where g � , and g � arethesourcethedestination’s link class,respec-
tively. Weknow

��� T ���H$E��#������+� T ����$&��#��%!b�bg � ��"Þ�bg � �C�+� T �R��g � �dg � � (33)

The sourceand destinationlinks only dependon the classof the
sourceanddestinationrespectively, so

�+�G��$E�%!b�bg � �1"I�bg � ��� �+�G��$E�%!b�bg � ��� (34)�+����#��%!b�bg � �1"I�bg � ��� �+����#�� "Þ�bg � �� (35)

Furthermore,from thedefinitionof conditionalprobability

���G��$E�5!b�bg � �:� �+���H$&�
^
�+����g � ��� (36)�+����#�� "Þ�bg � �:� �+����#+�
^
���R��g � ��� (37)

with theresult

��� T �R��$E��#���� �+����$d��+�G��g � � ���R��#���+���Hg � � ���
T �R��g � �dg � � (38)

If theclassof sourceanddestinationwereindependent,then(38)
would resultin the independentmodel �+� T ����$&��#��P�)�+����$&�����R��#�� .
However, notingthatall traffic from peeringmustgo to access,and
likewise,all traffic to peeringlinks comesfrom access,andfurther
thatthefour probabilitiesmustaddto one,weget.

�+� T ����·	��·q�:� >�+� T �R��·¼��jZ�:� �+��#@��ju�5$¼��·��C�+����·��ß�à�+����·q��+� T ����ju��·q�:� �+�H$¼��ju� #M��·��C�+����·q�ß�à���R��·����� T �R��ju��jZ�:� m»/z�+����·��8/i�+�R��·��� 
Substitutinginto (38)weget(28).


