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ABSTRACT
This paper considers the basic problem of “how accurate can we
make Internet performance measurements”. The answer is some-
what counter-intuitive in that there are bounds on the accuracy of
such measurements, no matter how many probes we can use in a
given time interval, and thus arises a type of Heisenberg inequal-
ity describing the bounds in our knowledge of the performance of a
network. The results stem from the fact that we cannot make inde-
pendent measurements of a system’s performance: all such measures
are correlated, and these correlations reduce the efficacy of measure-
ments. The degree of correlation is also strongly dependent on sys-
tem load. The result has important practical implications that reach
beyond the design of Internet measurement experiments, into the de-
sign of network protocols.

Categories and Subject Descriptors
C.2.3 [Computer-Communications Networks]: Network Opera-
tions—network monitoring

General Terms
Performance,Measurement

Keywords
Network performance, Internet measurement, load balancing, error
estimation, measurement planning.

1. INTRODUCTION
Network performance measurement is a topic of active current re-

search. Internet performance, in particular, has received much at-
tention, and is the topic of several Internet Engineering Task Force
RFC’s [1, 2, 3, 4, 5], and a major business of several companies (e.g.
Matrix NetSystems, Keynote, Niksun, Brix Networks, etc). The ba-
sic goal is to improve network performance through monitoring, and
this has to a large extent been a success. However, there is a gap in
the theoretical underpinnings of performance measurement. In par-
ticular, very little has been written about the important problem of
quantifying the accuracy of these measurements.

Quantifiable bounds on the accuracy of performance estimates are
obviously important for answering questions such as “how long should
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we measure the network?”, or “at what rate should we send mea-
surement probes?”. Such questions immediately arise in an network
operations context, both in terms of improving long term network
performance, and detecting performance problems. However, there
are many other places where answering such questions is important.
For instance, in the active queue management protocol RED (Ran-
dom Early Detection) [6], one uses an averaged version of the queue
length to obtain a measure of the current network performance. The
choice of the time scale at which to average (via an exponentially
weighted moving average) is an important parameter of this proto-
col. Likewise, in many load-sensitive routing schemes (for example,
that used in the early ARPANET [7], or such as proposed in [8]),
one wishes to obtain measures of the performance of various links
in the network to better distribute traffic across the network. Even in
TCP, one estimates the Round-Trip Time (RTT) in order that packet
timeouts can be adapted to network conditions.

In all of the above, one wishes to perform measurements over short
time periods, for instance to detect changes (performance problems)
as quickly as possible, or to allow the network to adapt more quickly
to traffic changes. On the other hand, there is often a cost involved
in the measurement process (in collecting the data, sending active
probes, or changing network routing), and so one does not wish to
perform such measurements frivolously. One wishes to ensure these
measurements have at least the accuracy required for the application
in question. Hence, obtaining bounds on accuracy for measurements
is an important topic that should receive more research.

This paper presents formulae for such bounds, though we only
have analytic results for a somewhat unrealistic model, and simula-
tion results for a more realistic system. The most important finding
of this paper is that there are fundamental bounds of the accuracy we
may achieve with network performance estimates. These bounds re-
semble in many ways the Heisenberg uncertainty bounds, and arise,
at least in part for the same reasons. Heisenberg’s inequality is

∆x ∆p ≥ h

2π

where ∆x and ∆p are the unknown errors in position and momen-
tum, respectively. It arises because, when one measures, say the lo-
cation of a particle, one must bounce a photon on the particle. The
impact of the photon changes the momentum of the particle by an
unknown amount. One can reduce the energy of the photon to re-
duce the range of uncertainty in this change in momentum, but only
by reducing the photon’s frequency, thereby reducing the accuracy
of the localization gained through the measurement. An alternative
version of Heisenberg’s inequality is

∆T ∆E ≥ h

2π

where ∆T and ∆E are the unknowns in time, and energy of an in-
teraction.

The essential dilemma underlying Heisenberg’s uncertainty prin-
ciple is that our own observations perturb the system, thereby reduc-



ing the accuracy of those same observations. In observing a queueing
system the same dilemma recurs. In this context, imagine a queue-
ing system with arriving traffic given some fixed (unknown) traffic
intensity. We could observe the average delay of packets through
this system by sending probe packets through the system and mea-
suring their delay. Such probe packets sample from the queue delay
distribution, and so we take their sample mean, and use this as a mea-
sure of the average network delay, though note that any such estimate
contains statistical error (apart from measurement errors). One might
assume that to improve the accuracy of one’s estimate, we need only
increase the rate of probe packets. This has the obviously deleteri-
ous impact of reducing performance for all packets, and so is not a
particularly practical solution to the problem, but it is often believed
that although impractical this solution can provide results of arbitrary
accuracy (after one corrects for the additional delays created by the
probe packets themselves). However this is not the case. One can-
not obtain arbitrary accuracy using probe packets. Further, we are
actually worse off in this case than in particle physics, because the
series of network performance measurements are strongly correlated,
reducing their incremental value in improving our measurements.

As one probes the system in question more rapidly, increasing the
load on the system, one increases the amount of correlation in the
probe measurements. Correlations in a series of measurements re-
duce their efficacy in measurement, and so, for high probe rates, one
actually reduces the accuracy of the resulting estimate. Thus, we end
up in the same situation where accuracy is reduced by the measure-
ments themselves. In this case, our inequality is not quite as simple
as Heisenberg’s, taking the form

∆T ∆W 2 ≥ f(ρ)

where ∆T is the observation time, and ∆W is the error in the esti-
mate of queueing delays, and ρ is the traffic intensity a normalized
measure of load (the system is stable for ρ < 1) at least for the
tractable problem considered here. Notice that we refer to the obser-
vation time as ∆T because this is the interval within which we cannot
localize our estimates of queueing delay any more finely, without a
loss of accuracy. The relation above is highly load sensitive, in par-
ticular, the average queue length for the system considered above is
ρ/(1 − ρ), but the function f(ρ) grows like (1 − ρ)−4, and so ac-
curacy becomes worse for heavily-loaded systems. In fact, the error
grows much more quickly than the queue length itself, as the system
becomes more heavily loaded. While, not as analytically tractable,
we extend these results to more realistic systems through simulation,
and find that similar results hold, however, we are in fact worse off,
as for an arrival process with Hurst parameter H ∈ (0.5, 1), the
asymptotic relation becomes

∆T 2−2H ∆W 2 ≥ g(ρ),

which requires us to collect more data to gain the same reduction in
estimate accuracy.

Apart from the fundamental bounds on the accuracy of perfor-
mance estimates, this paper also shows how one can use these bounds
to design Internet measurement experiments. Note that, although the
scenario describe above applies to active probe measurements, the
theory applies both to these, and to other forms of performance mea-
surements, including passive measurements of performance.

The results have implications for Internet protocols, as well as
measurements. For instance, the results suggest the TCP’s conser-
vative approach to congestion control is appropriate. TCP’s conges-
tion control kick’s in when packet loss is detected. However, such
performance problems occur when a queue is heavily-loaded. The
results presented in this paper suggest that estimates of congestion
are likely to be highly inaccurate, and so in reality severe congestion
could lie behind even a mild congestion indication such as a single
packet loss. The results also seem to suggest that TCP Vegas can-
not work well in competition with TCP Reno. Its RTT estimation,
which is based on relatively few samples, cannot hope to maintain an

accurate estimate of queue lengths when those queue lengths can be
long, as they would in the presence of competing TCP Reno connec-
tions (without additional active queue management). Similarly, load
balancing schemes that attempt to adapt quickly to large demands
will always have to face the fact that their estimates of delay will
be inaccurate, exactly when they desire the most accuracy (when the
system is under heavy load). Finally, Internet performance tomogra-
phy methods that rely on multiple packet measurements (as opposed
to methods using multicast packets), are dependent on the correlation
structure in the measurements they make, and these results should be
directly relevant to such studies.

The paper is organized as follows. In Section 2 we introduce the
background to this work, namely the technical basis for Internet per-
formance measurements. In Section 3 we present the fundamental
theory behind this work, largely drawn from the simulation litera-
ture, though extended to apply to Internet measurements. In particu-
lar, we present a new results concerning the accuracy of results drawn
from Poisson samples. In Section 4 we illustrate and expand on these
results, to both validate them, and make clearer their meaning to a
reader. In Section 5 we extend these results in a number of ways,
in particular, we note that the simple Markov model from which we
can gain analytic results is not adequate for accurate Internet mod-
eling, and we use simulation to study a more realistic Long-Range
Dependent (LRD) model. This shows that the Markovian bounds
are probably quite conservative in comparison to real network per-
formance measurement bounds. In Section 6 we consider an exam-
ple, once again to try to make the results more concrete to a reader,
and to bring home the practical scale of the measurement problem,
whose implications we then consider in Section 7. Finally we con-
clude the paper in Section 8. The key results of the paper appear in
(9), where we demonstrate the impact of Poisson sampling on per-
formance measurement results, and in (17), (19) and (20), where we
give the fundamental performance bounds for queue performance.

2. PERFORMANCE MEASUREMENT
TECHNOLOGIES

There are many measurements one may collect from a network, for
instance, traffic (via SNMP, Netflow, or packet monitors), topology
measurements (via traceroute studies, or router configuration collec-
tion), and direct performance measurements (via active probes of the
network). We will focus here on measurements that provide mea-
sures of network performance, though note that other supplemental
measures may be required (e.g. network topology) to make sense of
this data. Many examples of tools to perform such measurements
may be found at [9].

There are a number of ways in which one may collect data about
network performance:

• Direct measurements: it is quite possible for a router, or switch
to maintain information about its own performance. For instance,
to maintain data on the number of packets or bytes in buffers, or
the number of packets dropped for various reasons. Such informa-
tion can then be collected at regular intervals through a mechanism
such as SNMP [10, 11], and in fact there are several MIBS defined
for this purpose. In principle, such information could be at an ar-
bitrary level of detail, however, in practice there are limits on the
(fast) memory required to store such information, and also on the
rate at which it is collected (SNMP is not a particularly efficient
mechanism). Hence, such data might be collected typically every
five minutes, and despite its potential to be one of the best sources
of performance measurements available, it is actually one of the
worst. This is primarily a technological issue, however, and the
situation might be improved in the future.

• Passive traffic measurements: Passive traffic measurements can
be used to infer network performance through multiple measure-
ments of the same packet [12, 13]. By measuring the arrival time
of a packet (or its acknowledgement) at multiple points, we can



infer the delay between these points. This approach can also pro-
vide data of very fine detail, however, it also has limits. Firstly,
dedicated packet monitors are typically cheap, but involve non-
negligible installation and maintenance cost, and so are not usu-
ally installed everywhere. Hence, ones ability to perform such
measurements is limited to the locations of packet monitors. This
issue might be partially alleviated through the implementation of
packet sampling, a technology that allows the router to maintain
statistics (such as arrival times) for a sample of the packets that
traverse it. Such sampling also reduces problems that arise from
the very large volumes of data that would arise from storing data
regarding every packet on the network. However, such monitoring
requires precisely synchronized clocks12, which, while also tech-
nically feasible, requires additional hardware (e.g. GPS receivers)
whose installation adds to the difficulty of such measurements, re-
gardless of whether it is performed by packet sampling or a ded-
icated monitor. Finally, passive monitoring of this type can only
infer performance on paths that are used. If no data traffic arise
on a path, one cannot infer performance on this path, even though
individual components of that path may experience high loads due
to traffic from unmonitored paths.

• Active probes: The third method used to infer network perfor-
mance is the well developed approach of active probing, for in-
stance see [15, 16, 1, 2, 3, 4, 5]. In this approach, one deliberately
sends probe packets into the network with precisely controlled de-
parture times, and measures their arrival times elsewhere in the
network. Such probes have the same synchronization issues as
passive traffic measurements, and the probe boxes also require in-
stallation in a network, but these boxes are not as tightly coupled
into the network. For instance, a packet monitor typically requires
that an optical splitter be installed in the optical fibre of a net-
work, whereas a packet probe can be installed by any customer
of a network. There are also many different types of probes one
can mount, with different applications and functional attributes,
e.g. ICMP echo response times, TCP SYN/ACK response times,
DNS response times, HTTP page downloads, as well as dedicated
probe protocols. These factors have lead to active probing being
the most widely deployed form of IP network performance mea-
surement methodology.

For a practical comparison of some of the above techniques see [17].
Network performance can mean many things, for instance: reach-

ability, delay, loss, jitter, reordering, and bulk throughput. One can
also form more complex functions of these metrics to attain mea-
sures such as the subjective performance of an application, e.g. VoIP.
However, in this paper we will concentrate on the delay aspect of net-
work performance. It is likely that the results herein can be extended
to consider loss, and quite possibly other performance metrics such
as jitter, however, we concentrate on delay in this paper.

Packet delays are comprised of a number of components:

1. Packet processing delay is the delay to perform tasks such as
forwarding table lookup, and is very small in modern high
speed routers (e.g. � 1 ms).

2. Packet transmit time is the time from starting to send the first
bit of a packet onto the wire, until the last bit is finished being
transmitted, which is given by the packet size (including fram-
ing bits) divided by the link bandwidth. Note this is small for
high bandwidth links, e.g. ∼ 4.8µs for a 1500 byte packet on
a OC48 (2.5 Gbps) link.

1Precise synchronization is needed for measures of one-way delays.
It is not needed to measure loss, or for round-trip times, which can
be measured at the same location, and hence using the same clock.
However, Internet routing is fundamentally asymmetric, and so there
are many scenarios where one cares about the one-way delay.
2Note that there are also post-processing techniques intended to re-
move systematic inaccuracies introduced by clock skew [14].

3. Propagation delay is the delay a packet experiences on the
wire, and is given by the physical fibre (or wire) distance di-
vided by the speed of light in optical fibre (66% of speed in
air, 300,000 km per sec). e.g. ∼30 ms for a direct East to West
Coast transmission in North America.

4. Queueing delay is the time spent by a packet in queues, which
depends on load, and can be quite large, e.g. 0.2 seconds, even
on single OC48 line cards.

The two components that are significant, and therefore of primary
interest in most networks are propagation delay, and queueing delay.
Propagation delay is determined by network topology and routing,
and for the purpose of this paper we shall consider it to be a con-
stant (see [18] for a more realistic view), which is derivable from
other network data (the topology and routing information collected
elsewhere), or from long-term measurements of the network. Hence,
within the context of this paper, the goal is to measure the queueing
delays. These delays may be seen as drawn from a random distri-
bution, and the goal of this paper is to estimate parameters of this
distribution, in particular the mean (which is one of the most basic
and important parameters of the distribution).

In addition to statistical variations in queueing delays, there are
measurement errors. We have noted above that one-way delay mea-
surements require precisely synchronized clocks. Without such, one
would have errors in measurements. Another example is TCP’s mea-
sure of RTT (gained from packet acknowledgements), which also
contained (in the past) large errors because of a coarse clock res-
olution (at one point standard implementations of TCP used 500ms
clocks). Similarly, any set of performance measurements contains er-
rors and artifacts. Apart from clock errors, these arise from processes
that we do not wish to measure, for instance, delays in time-stamping
a packet once it is received at a monitor. Such errors are unavoid-
able (though one can go to significant efforts to reduce them) and so
we shall include the fact of measurement errors in our work, though
note this is not what we are referring to in talking about estimation
accuracy, which refers to the accuracy of estimates of distributional
parameters such as the mean.

In the case of active probes, we have a choice in how we can send
these probes. A naive approach, sending these at equal spaced inter-
vals can result in problems if, per chance, these aligned with some pe-
riodic behaviour in the network in question. There is a more appeal-
ing alternative advocated in the RFCs [1, 2, 3, 4, 5], namely Poisson
sampling; packets are sent at the epochs of a Poisson process. The
elegant Poisson Arrivals See Time Averages (PASTA) theorem [19],
guarantees (under mild conditions) that such Poisson sampled pack-
ets see the true averaged behaviour of the network, and so we may
use these probes to avoid synchronization issues. Poisson streams
are actually quite tractable given the new results presented here, re-
garding Poisson sampled measurements, and so we shall concentrate
on Poisson sampled traffic measurements.

The above discussion focusses on packet delays, but the analysis
in this paper could equally be applied to measurements of server per-
formance, in which case there are additional measurements available
to us, for instance, log files, proxy logs, and client instrumentation
logs. In principle, any system that can be modelled as a queueing
system is susceptible to this type of analysis, though some approxi-
mation may be required to make the analysis tractable.

3. THEORY
The theory we shall apply in this paper derives from theoretical

concerns regarding discrete event simulation of queueing systems.
Simulation is useful, for instance where the system is not mathe-
matically tractable, or to provide a check on complex mathematical
results. However, in the early days of queueing simulation, com-
puting power was orders of magnitude less than it is today, and an
ever present issue was how long to run a simulation, or even whether



a meaningful simulation could be run at all. There were many pa-
pers, for instance see [20, 21, 22, 23, 24, 25] that considered the
issue in detail (drawing on past results found in [26, 27, 28, 29, 30]).
This work began with methods to analyse simulation results [20, 21,
22], and using this analysis determine whether the simulation need
be continued, but later developed detailed formulae for computing a
priori how long a simulation need be run, a fact of crucial interest in
the decision of whether a set of simulations would be of value [23,
24, 25]. It is this theory that we shall draw directly from here, as
there are direct parallels between the requirements of simulation and
measurement. In fact, the simulation problem is very similar to the
measurement problem, albeit without the technical difficulties in col-
lecting the data that exist in real measurement systems. Hence, we
shall follow the formalism of [24] very closely.

3.1 Measurement
The underlying assumption of most performance measurement is

that there is a stationary stochastic process, of which we wish to mea-
sure some parameter. For instance, we might assume that the network
in question is a queueing system in equilibrium, and that our mea-
surements are intended to characterize the performance of this sys-
tem. We shall define our stochastic process of interest X(t) for t ≥ 0
to be wide-sense stationary, which means that its mean, variance and
auto-covariance are all constant with respect to t for all t ≥ 0,
and can consequently be written E[X(t)] = X̄ , Var (X(t)) =
Var (X(0)), and Cov(X(t), X(t + s)) = R(s), respectively.

In simulation we can guarantee our system is stationary (modulo
initialization impacts), but in reality, we cannot assume any network-
ing system is truly stationary. This fact is critical to the problem we
consider here. We wish to measure our system over periods where
stationarity is a reasonable approximation, i.e. t ∈ [0, T ] such that
the conditions of stationarity above are a reasonable approximation.
If T is small (say < 1ms), this is very likely to be the case, whereas if
T is large (say > 6 hours) it is unlikely to be true (given the daily cy-
cles in Internet traffic). Thus, the shorter the interval over which we
conduct our measurements, the better placed we are with respect to
our assumption of stationarity. Further, shorter time intervals allow
us better localization of performance in time. However, as we shall
see, measurements over a shorter time interval will be less accurate.
Hence, there is a tradeoff between the accuracy loss through short
time interval measurements, and the accuracy loss because the un-
derlying process is not stationary (i.e. its parameters change during
the interval of measurement).

It is important to note that, although it is not stated explicitly, many
measurement studies implicitly make this assumption of stationarity.
Without such an assumption, many reported results are meaningless.
For instance, consider the result of estimating the delay in a network
over a 24 hour cycle, in which the network experiences poor perfor-
mance during the busy hour. An average measure over the day could
quite easily indicate reasonable performance, even though users dur-
ing the peak hour will experience poor performance.

However, with an assumption of approximate stationarity, we now
have to choose the optimal point for T . This is our point of departure
from simulation design. In simulation design the limiting factor (for
T ) is the computation required to simulate the system in question for
this interval of time. Given the large increases in computing power
available now, it is rare for this to be the limiting factor in a simula-
tion. However, in our case, there is a practical limit on T imposed by
the nature of stationarity in the real system under observation. Fur-
thermore, if our goal is to detect changes in the system (for instance
performance problems), then temporal localization of performance
estimates is important, because this directly impacts the time to de-
tect these changes.

The first approach (for example see [31, 32]) to designing mea-
surement experiments is to apply a simple form of the Central Limit
Theorem (CLT). For instance, take a set of independent identically
distributed measurements Xi for i = 1, . . . , N , with mean X̄ and

variance σ2
X < ∞, and sample mean

X̂N =
1

N

N
X

i=1

Xi, (1)

then the sample mean converges (in distribution) as
√

N
“

X̂N − X̄
”

→ N(0, σ2
X), (2)

where N(0, σ2) denotes a normal distribution with zero mean, and
variance σ2. The theorem shows that the sample mean converges to
the true mean, and that the variance of the sample mean about the true
mean decreases in proportion to N . From this, one can compute (at
least approximately) how many data points are required to achieve a
given accuracy. There is no dependence on the time of these samples,
and so, one could increase N either by extending T , the measurement
interval, or by increasing the rate at which measurements are made.

The CLT (as described above) only applies to independent mea-
surements Xi. What happens if the measurements are correlated in
some fashion? In this case, we can replace the above results with the
following CLT3. Given Xi, which are drawn from a stationary pro-
cess with mean X̄ , and auto-covariance R(s), then the sample mean
converges as follows

√
N
“

X̂N − X̄
”

→ N(0, s2
X̂). (3)

Note that this is identical to the simple CLT results, except that σ2
X

has been replaced with s2
X̂

which is referred to (see [24]) as the
asymptotic variance of the process X , which is defined by the above
relationships to be

s2
X̂ ≡ lim

N→∞

N Var
“

X̂N

”

(4)

One may compute the asymptotic variance using the following rela-
tionship (from [21]),

s2
X̂ = σ2

X + 2

∞
X

i=1

R(i), (5)

where R(i) = E[XjXj+i] − E[Xj ]
2 is the auto-covariance func-

tion. Notice that the correlations increase the asymptotic variance
s2

X̂
dramatically compared to σ2

X , with an equivalent reduction in
the accuracy of estimates.

In the context of a continuous time process X(t) being sampled
at times ti for i = 1, . . . , N , to give Xi = X(ti), we can see that
faster sampling does not grant the same improvements as sampling
over a longer interval. For instance, consider uniform sampling times
ti = i∆t for a process with exponential auto-covariance function
R(t) = exp(−βt), then

s2
X̂(∆t) = σ2 + 2

∞
X

i=1

R(i∆t)

= σ2 + 2
∞
X

i=1

exp(−β∆t)i

= σ2 + 2
exp(−β∆t)

1 − exp(−β∆t)
. (6)

Given a fixed time interval of measurement T , then the number of
samples available will be approximately N ' T/∆t, and so the vari-
ance of the estimator will be

Var
“

X̂T/∆t

”

=
∆tσ2

T
+

2∆te−β∆t

T (1 − e−β∆t)
. (7)

3Under conditions discussed in Section 5.



which converges to 2
βT

as ∆t → 0. Hence we see that we cannot
achieve arbitrary accuracy by more rapid sampling, as we can by
increasing T , or if the correlation function R(s) = σ2δ(s) (where
δ(·) is the Dirac-delta function). Notice that the above could also
have been derived directly from the continuous version of the above
results, i.e.

lim
T→∞

T Var
“

X̂T

”

= 2

Z

∞

0

R(u)du, (8)

because, quite obviously, samples from a continuous process cannot
give us more information than continuous observations of that pro-
cess. However, given that most Internet measurements are a discrete-
time in nature, we shall primarily consider measurements that are
formed via discrete samples from a continuous-time process. Hence,
in the following we shall assume that we have measurements Xi =
X(ti), for some set of sample points ti.

Note that PASTA implies that Poisson samples (i.e. where the
ti are given by a Poisson process) will see the true time-averaged
behaviour of the system4, so Poisson sampling is valid in this context,
but note that N(T ) will be a Poisson random variable. In asymptotic
results, however, we shall substitute its expected value E[N(T )] =
λT . In Appendix A, Theorem A.2 we prove the following result
(given Poisson sampled measurements with rate λ),

lim
N→∞

N Var
“

X̂N

”

= σ2
X + 2λ

Z

∞

0

R(u)du, (9)

where the integral is finite.
As noted above, N ∼ λT (for large N ), so

lim
T→∞

T Var
“

X̂N

”

→ σ2
X

λ
+ 2

Z

∞

0

R(u)du. (10)

The result makes a great deal of sense. For very high sampling rates,
i.e. λ → ∞, this tends to the continuous measurement result (8),
whereas, if we reduce the sampling rate λ, while extending the mea-
surement time T , so that N remains constant, and then taking the
limit as N → ∞, we get

lim
N→∞

lim
λ→0

N Var
“

X̂N

”

→ σ2
X , (11)

which is to be expected, because samples will be at least several mul-
tiples of the correlation scale apart, so that the correlations will be
negligible, and so the simple CLT result applies.

Note that if one thins Poisson measurements, for instance by drop-
ping measurements, independently with probability 1 − p, then the
resulting sampling process is still a Poisson process (with rate re-
duced by a factor of p), and the results above still hold, though with
new arrival rate λp, and of course, one must on average observe the
system for time T = N/(λp) to obtain N measurement.

Note that the above results are asymptotic approximations for large
N . For the purposes of this paper, this suffices. We primarily con-
sider fundamental limits here, and these occur for large numbers
measurements where the above limits are quite accurate. However, if
one were concerned with making more accurate estimates for small
N , one could apply the Gauss-Markov theorem to obtain the Best
Linear Unbiased Estimator (BLUE) for X̄ . The BLUE is not a prac-
tical estimator here, however, because it requires pre-knowledge of
the auto-covariance of the process (which we see later is dependent
on load), and so we will not consider this directly here. Note also that
[23] presented more efficient estimators than those considered here,
but once again these are impractical, though in this case because they
require direct measurement of the length of the busy period, which
we do not have access to in most Internet measurements, and would

4There are obvious implications for Poisson vs deterministic sam-
pling, when estimating spectra, or correlation functions, but these do
not concern us here.

not, in any case help with non-regenerative systems such as those
exhibiting LRD.

Notice also that in all of the above results, we assume that the
measurements themselves contain no errors. In fact, it is easy to
incorporate independent errors into the results, as the variance of the
sum of independent random variables is the sum of the variances
thereof. Hence, unbiased errors with variance σ2

E will add σ2
E to the

asymptotic variance.

3.2 Queueing delays
The importance of the above results lies in the fact that packet

delays are not independent. Theoretical consideration of the way
queueing occurs leads to correlations (see below), and measurements
of packet delays have shown correlations in practice [33]. Hence,
when considering the accuracy of mean packet delay estimates, one
should incorporate correlations into the model. We can do this in
an analytic fashion in some simple queues, leading to simple results
describing the accuracy of queueing delay estimates.

Another way to understand these results is to consider that many
queueing systems are regenerative when the system is empty. That
is, the ends of busy periods form renewal points. In order to mea-
sure properties of such a queue, one should observe the system over
several of these renewals, i.e. for several busy periods. Note though,
that the length of the busy period grows as load increases, leading to
longer observations times. Morse [26] describes this same phenom-
ena in terms of relaxation times. In this terminology, when the queue
experiences higher loads, it not only has a longer (average) queue
length (it grows as (1− ρ)−1), but also larger excursions around this
queue length, which grow as (1 − ρ)−2. This can also been seen as
an increase in the correlation scale of the process, which is directly
related to the length of the busy period. Hence there is a require-
ment that measurements be further apart to compensate. However,
the formulation above, in terms of the auto-covariance function of
the waiting times allows us to make analytic statements about the
variance of the estimators, given N measurements.

There are many results describing the transient behaviour of sim-
ple queueing systems, and thence their auto-covariance functions.
We will present the most simple here for the purpose of exposition
as even these may become fairly complex, but note that many gener-
alizations are possible. The system we consider is the M/M/1 queue,
i.e. a queue with a Poisson arrival process (of rate λ) of packets
whose service times are exponential (with mean 1/µ). We denote
the traffic intensity ρ = λ/µ and note that the queue is stable in the
sense that it is positive recurrent for ρ ≤ 1, but that the expected
length of the busy period is infinite for ρ = 1 (because the distribu-
tion of the length of the busy period has a heavy-tail in the critical
transition between stability and instability), and so we only consider
queues with ρ < 1. The M/M/1 queue is very well studied, with
many text book results, e.g. see [34]. For instance, the mean and
variance of the number of packets in the system are

N̄ =
ρ

1 − ρ
, Var (N) =

ρ

(1 − ρ)2
.

The mean and variance of the number of packets in the buffer (not
counting the packet in service) are

B̄ =
ρ2

1 − ρ
, Var (B) =

ρ2

(1 − ρ)2
.

The mean and variance of the waiting time are

W̄ =
1

µ
E[N ] , Var (W ) =

1

µ2
(E[N ] + Var (N)) .

and the mean time spent in the system (by a packet) is

T̄ =

1
µ

1 − ρ
.



Note that W̄ may be what we are interested in measuring, but that T̄
is what is actually measured by an active probe, and includes both the
queueing delay, and the packet transmission and processing times.

The M/M/1 auto-covariance results are not as simple, because of
their dependence on the transient behaviour of the M/M/1 queue (of-
ten represented in terms of Bessel functions). However, one can
find the auto-covariance of this queue in [26, 20], where the auto-
covariance for the number of packets in the system is given as

R(s) =
λµ(µ − λ)

π

Z 2π

0

sin2 θ
e−ws

w3
dθ, (12)

where

w = λ + µ − 2
p

λµ cos θ, (13)

Morse [26] gives the integral of the auto-covariance R(s) over s to
be

Z

∞

0

R(u)du =
λµ(λ + µ)

(µ − λ)4
, (14)

which we can simplify by dividing numerator and denominator by
µ4 to get

s2
N̂ = 2

Z

∞

0

R(u)du =
2ρ(1 + ρ)

(1 − ρ)4
1

µ
, (15)

which is the asymptotic variance for the estimates of the number of
packets in the system. See also [24, (22)], where the additional factor
of 1/µ in the above result comes from the fact that in [24] time is
scaled so that 1/µ = 1. Given such a scaling, the observation time
is given in units of number of (average) service times, whereas in
(15) observation time is given in absolute units (e.g. seconds). We
shall consider here estimates of two quantities, the mean queueing
delay and the mean number of packets in the buffer, denoted by W̄
and B̄, respectively. The latter is not suitable for measurement by
active packet probes, but can be measured using other methods such
as statistics collected by a router. The auto-covariance is different
for different quantities such as W̄ and B̄. Examples are presented in
[23, 24] where the following results appear

s2
B̂

= 2ρ2(1+4ρ−4ρ2+ρ3)

(1−ρ)4
1
µ

' 4ρ2

(1−ρ)4
1
µ
,

s2
Ŵ

= ρ(2+5ρ−4ρ2+ρ3)

(1−ρ)4
1
µ

' 4ρ
(1−ρ)4

1
µ
,

(16)

where once again the factor of 1/µ arises because of the different
time scale from [24].

The above results assume continuous measurement of the system
delays, which we cannot do here. Imagine that we can measure delay
for all departing packets, then we would in fact have a Poisson sam-
pling with rate λ (the arrival rate of packets to the system). In many
cases we might sample from the set of packets traversing the system,
and hence sample at rate λs = pλ. Similarly, when using Poisson
probes, we have a probe rate λs, though in this case the total traffic
rate to the system would be the sum of probes and real traffic. Given
such samples from the arriving traffic, equation (9) gives

s2
B̂

(p, λ, µ) ' ρ2

(1−ρ)2
+ p 4ρ3

(1−ρ)4

s2
Ŵ

(p, λ, µ) ' 1
µ2

ρ(2−ρ)

(1−ρ)2
+ p 4ρ2

(1−ρ)4
,

(17)

where the asymptotic variance is with respect to the number of mea-
surements N , not the time interval T , which would involve dividing
the above formulae by λs = pλ, with the best case bound (with re-
spect to T ) occurring for p = 1, i.e. where every packet is sampled.

3.3 Errors
In Whitt [24] the author considers both relative and absolute errors,

as either may be more important in a particular context. In the Inter-
net measurements under consideration there is a significant constant
component (the propagation delay), which we assume here we can

measure with minimal errors over the long term. Hence, if relative
errors were considered, they should be relative to the queueing delay
plus the propagation delay. It is therefore more reasonable to con-
sider absolute errors here, given that the propagation delay may vary
for different sets of measurements, independently from the queueing
delay.

Given that there is enough data for the asymptotic normal distri-
bution to be a reasonable approximation over the body of the data,
we can use Gaussian confidence intervals to estimate the potential
errors in an estimate. For instance, if we wish to assess the (1−β)th
percent confidence intervals for the estimate of the waiting time (no-
tionally the region which we believe the true value to fall, (1 − β)%
of the time, given the estimate) then these are

Ŵ ± zβ/2

s

s2
Ŵ

(p, λ, µ)

T
(18)

where zβ/2 are such that i.e. p(−zβ/2 < N(0, 1) < zβ/2) = 1− β.
For example, z2.5 = 1.96, so the 95th percent confidence intervals

would be Ŵ ± 1.96
q

s2
Ŵ

/T .

Writing this another way, we consider the time interval over which
the measurements were conducted to be the unknown in time (the
most accurate extent to which we can localize our estimate) ∆T , and
the (1−β) confidence interval for Ŵ to be the unknown error in that

quantity ∆W = zβ/2

q

s2
Ŵ

/∆T . Then we can write

∆T ∆W 2 ≥ z2
β/2 s2

Ŵ (p, λ, µ), (19)

and likewise

∆T ∆B2 ≥ z2
β/2 s2

B̂(p, λ, µ). (20)

4. NUMERICAL RESULTS
The work on simulations has long been known. However, its im-

plications, in terms of bounds to the accuracy of network perfor-
mance estimates has not been fully explored (to the author’s knowl-
edge). In our first results we consider fundamental bounds where we
assume that we have precise measurements of the quantity of interest
for all packets. These measurements could be obtained through care-
ful passive monitoring of all traffic entering and exiting the system
in question. There is no additional information available to improve
these results regardless of how cleverly one collects data, and these
measurements do not distort the system under observation.

We shall present some examples of these results through a com-
parison of the theoretical results with simulation experiments. The
initial simulations are of the M/M/1 queue, and we perform these
simulations for 100,000 arrivals, discarding the first half of the simu-
lation to reduce bias from the non-equilibrium initialization (we ini-
tialize the system as empty). For each set of parameters we run 30
simulations, and use the ensemble to estimate the variance of estima-
tors (for varying N ), and thence the 95th percent confidence inter-
vals for the data. Figure 1 presents log-log graphs for the magnitude
of the confidence intervals bounds 1.96sX̂ (both theoretical as de-
rived above, and as derived from the simulations) for the inter-arrival
time distribution, the waiting times, and the number of packets in
the buffer with respect to the number of measurements N . Note that
the error bounds from simulation and theory are close in each case.
The error bounds for estimating the inter-arrival times are orders of
magnitude lower than those for the queue, because the inter-arrival
time variance is smaller, and there are no correlations in these mea-
surements. For another comparison, Figure 1 (b) and (c) show the
error bounds that would result from using the system variance σX ,
which does not incorporate correlations, rather than the asymptotic
variance sX̂ . One can see that this results in larger errors than for the
inter-arrival times, but would underestimate the true errors by order
of magnitude, because it does not include the impact of correlations
in the measurements.
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(c) Packets in the buffer.

Figure 1: Error bound measurements for the M/M/1 queue with ρ = 0.8.

Figure 1 shows results for one value of traffic intensity, ρ = 0.8.
In Figure 2 we compare the empirical error bounds (derived from
simulation) over a range of parameters, by varying the arrival rate of
the system to alter ρ. Note that, as we vary the arrival rate, we change
the variance of the inter-arrival times, and so this has a minor impact
on our estimates of the inter-arrival times. However, in contrast, the
arrival rate has a strong impact on the errors for the waiting time
and packets in the buffer measurements. This impact arises because
increasing the load on the system increases the correlations in the
measurements, and makes them less accurate. In extreme cases (e.g.
ρ > 0.9) the results do not even converge to the asymptotic results
until a significant number of measurements have been made (of the
order of 10000 arrivals).

4.1 Active probing bounds
The bounds above assumed that we had perfect measurements of

the system in question. Of course, in reality, most measurements
are based on some kind of sampling. Where such sampling involves
passive measurements, either uniform, or Poisson, the previously re-
ported results apply. However, if one applies active probing, then
the active probes themselves impact the performance of the system
in question. One could also imagine dropping arrivals to help con-
trol some system’s performance through active queue management
schemes. Although both of these activities may be detrimental to the
system in question, a natural question, is “what are the fundamental
bounds on estimator accuracy, whatever one does?”

Consider a system with arrival rate λA to which we add probes
at rate λS , then the total arrival rate of traffic will be λ = λA +
λS . In most measurements, it is desirable for probes to have the
same service time distribution as normal requests/packets, because
if they may be otherwise distinguished, it can lead to gaming of the
measurement traffic to artificially improve performance results by
giving preferential treatment to probe packets. Hence we take µS =
µA = µ, and hence ρ = ρA + ρS . In this scenario, p = λS/λ,
and therefore ρ = ρA/(1 − p). The result, from (17) is shown in
Figure 3 (a) which shows the impact of sampling rate p. The three
solid curves show the empirical results, and the three dashed curves
show the theoretical results. Note that the value of N is the number of
sampled measurements, which decreases as p decreases, so for small
p we would not have as many sample measurements on which to
draw, in any one simulation. If the critical issue were the time of the
measurements, the curves for small p would be displaced to the right,
to lie much closer together. This is an indication that sampling hurts
less in these situations where there are strong correlations. We loose
relatively little information by dropping some of the closer together,
and hence more highly correlated measurements.

Our objective is to determine how much better we could do by
sending more probe packets. Intuitively, the previous argument should
suggest to a reader that fast probing does not necessarily help, par-
ticularly given that it increases the load on the system in question.

However, we can formally assess this by minimizing s2
Ŵ

(p, λ, µ),
over all possible values of p for which the system remains stable. We
can rewrite s2

Ŵ
as a function of p, λA, and µA. The result, derived

from (17), is a rational function of polynomials (in p), which we can
minimize (in our case numerically), to get the results charted in Fig-
ure 3 (b) and (c). Figure (b) shows the optimal active probe rates λS ,
normalized by average service time with respect to ρA. Note that the
optimal rate for probe packets is small for low ρA, because in this
case the asymptotic variance is small in any case, and more prob-
ing is unnecessary, whereas, the optimal probe rate for high loads
is of a necessity low because the load induced by the probes them-
selves worsens the performance of the measurements by increasing
the load, and thence the asymptotic variance.

Figure 3 (c) shows the resulting square root of the asymptotic vari-
ances for the optimal active probe rate, and the square root of the
asymptotic variance given passive measurements of all packets. No-
tice that the optimal active probe measurements have a substantially
higher error than the passive measurements, in fact worse by more
than a factor of 2 over a wide range of values of ρA.

This substantial performance reduction for the optimal active prob-
ing fits our analogy to Heisenberg’s uncertainty principle rather nicely.
Probing more rapidly increase the system load, and creates more
variance in the results than the additional measurements can reduce,
principally through inducing a longer correlation scale on the mea-
surements. There are no fundamental barriers to converting these
results into analytic formulae, though the resulting formulae would
be rather complex, and we have preferred here to notate this limit by
f(ρA), and illustrate the result with the graphs.

5. EXTENSIONS
It is not the contention of this paper that the M/M/1 model is a

good model for Internet systems — it clearly is not. Despite the
inaccuracy of the M/M/1 model, we can learn a great deal from this
simple case. Most importantly, that there are bounds in the accuracy
of a finite set of measurements, and these bounds are both larger
than one might expect (given the variance of the queueing process)
and highly dependent of the load on the queue. These qualitative
facts seem to be true in all of the extensions observed by this author
(see below). Further, although they may not be particularly accurate,
it is to be hoped that the above results might be useful for “back of
the envelope” type calculations for estimating measurement rates and
durations for some Internet studies. However, it would be desirable
to have more accurate results.

Unfortunately, it is not practical to estimate the covariances of a
real trace, and thereby estimate the asymptotic variance of an esti-
mator, because the covariance estimates themselves will contain er-
rors with magnitude larger than the asymptotic variance we wish to
estimate. Hence, given the current results, we need to start with a
model. Within this limitation, there are many possible models, some
of which are more appropriate for Internet systems. Many already
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Figure 2: Error bound measurements for the M/M/1 queue for various values of ρ.
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Figure 3: Results of sampled probing.

have known results developed in the literature. For a start, although
we only consider the M/M/1 queue above, results already exist for
M/G/1 systems. For the M/G/1 queue (with finite variance service
times) [24]

B̄ =
ρ2(c2

S + 1)

2(1 − ρ)
, s2

B̂ ' ρ2(c2
S + 1)3

2(1 − ρ)4
. (21)

where c2
s = (m2 − m2

1)/m2
1 is the squared coefficient of variation

of the service times (mi denotes the ith moment of the service time
distribution). e.g. for the exponential distribution, cS = 1, for the
deterministic distribution cS = 0. Note that the average queue length

for this system is E[Q(0)] =
ρ2(c2

S
+1)

2(1−ρ)
, so these results are similar

in nature to those above, though cS has a large impact on the results,
as one might expect. Similarly results exist for arbitrary Markov pro-
cesses [25], networks of queues [24], and queues with multiple types
of customers [24], as well as Reflecting Brownian Motion (RBM),
which can be used to model other queueing systems [24].

Despite the power of the results above, it is highly noteworthy that
the systems for which we have valid approximations do not include
systems which exhibit infinite variance, or Long-Range Dependence
(LRD). It is now widely accepted that packet network traffic is self
similar over a wide range of timescales, and exhibits LRD [35, 36].
Further, heavy-tailed distributions (often exhibiting infinite variance)
are the norm. The above queueing scenarios were all Short-Range
Dependent (SRD), and so their accuracy should be questioned. Un-
fortunately, even the more complex form of the CLT does not hold in
these cases — for a start, for a LRD system the integral

R T

0
R(u)du

does not converge as T → ∞. However, it seems quite likely that
one can extend these results using the generalized CLT to allow ac-
curate characterization of errors for these systems.

In more detail, for a discrete time, stationary process with auto-

covariance function R(k), LRD refers (under our definition) to the
property that

P

∞

k=0 R(k) diverges [37]. As such, we obviously can-
not apply the standard CLT. Likewise, the CLT depends on finite
second moments for the distributions involved. Fortunately, an al-
ternative theorem does exist for LRD data (the generalized CLT)5.
It states that a stationary LRD process XH, with a slow, power-law
decrease in the auto-covariance function for large lags (i.e. R(k) ∼
cγ |k|2H−2 as k → ∞, H ∈ (0.5, 1).) has, as N → ∞

Var
“

X̂H

”

→ cγN2H−2

H(2H − 1)
. (22)

In contrast to the standard CLT, the variance decreases much more
slowly with N . In fact the rate of decrease in the variance is now
a function of H (typically referred to as the Hurst parameter). Fig-
ure 4 (a) shows the errors in the estimate X̄ as a function of the
number of data N on a log-log plot. Note that the case H = 0.5 cor-
responds to white Gaussian noise where the data is uncorrelated and
therefore (17) applies. As H increases (corresponding to increasing
LRD), the variance decreases more slowly, until in the extreme case
H → 1 the variance would not decrease no matter how much data
we collect. Note that similar results have been seen in the context of
simulation of systems involving heavy-tailed distributions [38, 39].
In these cases, the authors noted much slower convergence of esti-
mates such as the sample mean of the queue length. The correspond-

5A version of the CLT also exists for heavy-tailed random variables,
but we do not consider this here, as for heavy-tailed distributions
the deviation from the standard CLT arises through individual events
that are many times larger than the average, rather than correlations
in the data. It seems likely that such distributions play a smaller part
in performance measurement than in traffic measurements.
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Figure 4: Error bound measurements for a queue with LRD inputs. The traffic arrival process is FGN with H = 0.8 for a server
with unit capacity.

ing Heisenberg like relationship is of the form

∆T 2−2H ∆W 2 ≥ z2
β/2

cγ

H(2H − 1)
. (23)

Some asymptotic results exist that suggest that given LRD inputs to
a queue, the correlation structure of the queueing process will also
be LRD (which stands to reason), with the same parameter H . The
limiting factor in the analysis here is that we do not not have closed
forms for the correlation function of queues driven by LRD input
traffic. The magnitude of the correlations, cγ will vary dependent
on the system load, as well as other parameters of the input arrival
process, such as the Hurst parameter H and the processes variance,
but we do not have a closed form for cγ(ρ, σ2

X , H).
Given the lack of theoretical results to provide an analytically form

of the asymptotic variance of a queue with LRD inputs, we use sim-
ulation to derive such. In this case we simulate a queueing process
with input traffic given by discrete-time samples from a Fractional
Gaussian Noise (FGN) process. We generate approximate FGN se-
quences using the spectral synthesis method used also in [40], and
then vary the average rate, and variance or this arrival process by
simple additive, and multiplicative factors. We perform 100 simu-
lations for each parameter value, each of 221 time intervals, again
dropping the first half of the measurements to avoid initial transients
in the system.

Figure 4 (a) shows the empirical error bounds that result from this
simulation (the solid curves, with noted markers). The figure shows,
for a process with fixed standard deviation (stdev= 0.3), and Hurst
parameter (H = 0.8, which is a fairly typical value for traffic data),
the impact of varying ρ. We can see in this case, that the insight
from the M/M/1 queue applies, only more strongly. That is, for finite
length data we have fundamental limits on the accuracy with which
we can know the average queueing delay, and these limits decrease
more slowly for LRD dependent data.

Figure 4 (a) also shows lines (with slope 1−H) fitted to the empir-
ical data as a method for estimating cγ . We perform this fitting over
a wider range of parameters, and display the results in Figure 4 (b).
Clearly, the parameter cγ is highly dependent of the parameters of
the arrival process. However, interestingly, the ratio of this parame-
ter to the average queue length, shown in Figure 4 (c), appears less
sensitive to the input process parameters than for the M/M/1 queue.

6. AN EXAMPLE
In this section we attempt to provide some additional insight by

considering a concrete example. Consider, for instance, a queue be-
ing fed by 1500 byte packets (1500 is the MTU for Ethernet pack-
ets, and so a common packet size) which arrive in a Poisson stream.

Given such arrivals, we can treat this as a M/D/1 queue, whose asymp-
totic variance is one eighth that of the M/M/1 queue as a result of
(21), and the fact that c2

S = 0 for deterministic service times. Given
(17), we can see that the asymptotic variance with respect to the mea-
surement time T is

s2
Ŵ (p, λ, µ) ' 1

pµ3

ρ(2 − ρ)

2(1 − ρ)2
+

ρ

2(1 − ρ)4
1

µ
, (24)

where we note that λs = pλ, and the measurement interval is long
enough that the approximations hold. Given a desired error ε the
duration of measurements required to achieve this will be

T =
1.962s2

Ŵ
(p, λ, µ)

ε2
. (25)

Given a fast link, e.g. an OC48 (2.48 Gbps) link, for which packet
transmission times are 4.8 µs, and the link can carry roughly 200,000
packets per second, we can see that the first term in s2

Ŵ
(p, λ, µ) is

very small, and so the asymptotic variance is almost independent
of sampling rate. However, also note that the measurement interval
must be long enough that T = λN , is a reasonable approximation,
which would not be the case for N < 10. Hence there is a second
bound imposed on the measurement time by this restriction.

Figure 5 shows such a set of results, for a reasonable range of
values of ρ. Notice, as we would expect from (24) the asymptotic
variance bounds are nearly independent of p, except for very small
sampling rates p and low ρ. In fact, these bounds suggests that one
is much better off sampling at a very low rate. However, there is a
point at which the time required to collect enough samples becomes
the primary limitation, for instance, when p = 10−9 we can see that
we need to observe the system for around 106 seconds (for low traffic
ρ) in order to observe around 10 packets. Given this tradeoff, and the
plotted results, one might deduce that a sampling rate of p = 10−9

was not unreasonable. We could easily make the sampling rate en-
tirely time dependent, so we sample x packets per second regardless
of the traffic rate ρ. Given the results insensitivity to p, the a sample
rate of a packet every 1000 seconds would be adequate to produce
results as accurate as the asymptotic variance would allow.

The problem is that the observations times are long. The correla-
tions in the results imply observation times of the order of one million
seconds (10 to 12 days). Such observation times are clearly unre-
alistic given the limitations on stationarity in these measurements,
and the desire to rapidly detect changes. Notice that the critical
component of the asymptotic variance contains a factor of 1/µ, so
the situation scales with link speed, meaning that for different link
speeds, similar observation times are required. Also note, that while
the M/D/1 queue is not realistic, this is almost the easiest possible
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Figure 5: Estimated measurement times to reach 1ms accuracy
on the M/M/1 queue, with sampling rate p, traffic intensity ρ and
mean service time 4.8 µs. The solid lines are the error bounds
predicted by the sample variance, while the dotted lines are the
corresponding bound implied by T = λN for N at least 10.

case, and any changes made (for instance by introducing LRD into
the arrival process, or increased variance in the service times) would
make the situation worse.

We might improve the situation by loosening the accuracy bounds,
to say ±100 ms. This decreases the time requirements by a factor of
10,000, bringing measurement times down to the order of 100 sec-
onds. However, note that this hardly produces results of the accuracy
most measurement studies wish to obtain.

The important intuition that one needs to take away is that, if the
queue is run at moderate to high loads, the measurement intervals
required to estimate queueing delay with any reasonable accuracy
are very long. Too long, in fact, for reasonable measures to be made.

7. DISCUSSION
We have seen two important results above
• finite (large) bounds on the accuracy of performance measure-

ments, and
• these bounds are quite load sensitive.

Despite quite varied models, we see this two features in all of the
models studied, and their origin in the length of busy periods, and
hence the correlations in the process under study, suggest that we are
likely to see such impacts in many other systems. Other papers seek-
ing to provide quantifiable bounds to measurement accuracy such as
[31, 32], have also reached similar conclusions, though not as dra-
matic, given that these papers did not explicitly include the impact of
correlations.

The results have implications for a range of applications. Obvi-
ously, these results impact the design of measurement experiments.
Primarily, it seems less important to collect fine grained data than
one might naively guess. Correlations in the data reduce the utility
of the additional measurements. However, this is not the only way
in which these results might impact networks. There are many other
places where such measurements are used: for instance in TCP RTT
estimation algorithm, active queue management, and load-balancing
algorithms. Considering the latter example, in particular, we see that
the above results are particularly undesirables.

Load-balancing algorithms make measurements of current network
loads and performance, and use these to assign load in such a way so
as to balance it across network elements, thereby utilizing resources
more efficiently, and improving performance. However, we have
now seen that measures of performance will degrade in accuracy at
exactly that time when a load-balancing algorithm is needed most
(when a system is heavily loaded). Hence, we may expect to seen

some instability in such algorithms, and in fact, early load-balancing
routing algorithms used in the early ARPANET did indeed display
unstable oscillations [7, 41].

7.1 How can we do better
The results above are bad. In particular, they suggest that a mea-

surement system designed to rapidly detect link performance prob-
lems would have great difficulties, however, such systems are critical
to high reliability networks, where problems must be rapidly detected
and diagnosed.

There are a number of approaches we can use to help mitigate
this problem. Firstly, often significant problems are not single link
problems. A single link failure is not a big issue in most large back-
bones as they have redundant paths, and excess capacity for carry-
ing rerouted traffic from a link failure. Important problems, such as
might arise from a network wide DoS attack, or a network miscon-
figuration often impact multiple links. Where there are multiple link
measurements available, one is back to the simulation case where we
may effectively use an ensemble average rather than a time average.
To repeat, with less technical jargon, we may get better results by
using multiple measurements from different locations.

Secondly, if we had precise traffic monitoring and modeling, we
may assess performance through traffic measurements directly. For
instance, as noted above, it is much easier to measure the arrival
rate to the M/M/1 queue, than to measure the queue itself. From
such measurements we may directly estimate the queue. The limi-
tation here is that adequate measurement infrastructure is not widely
enough deployed in most large networks, and is unlikely to be so de-
ployed in the near future, and the current Internet traffic models still
need considerable practical verification for such networks.

Thirdly, we can continue to run such networks at low loads. Most
large backbones are currently run at low levels of utilization. Under
such loads, we can expect considerably more accurate performance
estimates.

Finally, one method for reducing the correlations in data is to ex-
amine differences. These contain weaker correlations, and hence suf-
fer less from the above impacts. Hence, the difference process would
be more appropriate when one was performing tasks like anomaly
detection which must be fairly rapid.

8. CONCLUSION
The results presented in this paper are important both from a prac-

tical, and a theoretical point of view. From the theoretical point of
view, we have seen that there are fundamental bounds to our knowl-
edge of Internet performance. In some respects these bounds are
similar to Heisenberg’s uncertainty bounds in physics. The results
generalize results from simulation theory to consider Poisson sam-
pled measurements such as are obtainable in Internet measurements.

Of equal importance are the practical results of this paper that even
for a conservative model (the M/D/1 queue), we are not in a good sit-
uation with respect to measurement accuracy. Measurement intervals
must be long to achieve accurate measurements, and this has impacts
on many facets of network design, for instance the design of load
balancing mechanisms, or congestion control protocols.

There are many interesting possibilities for continuing this work.
For instance, the models above should be verified with real Internet
data. Further, the implications of these results should be investigated
in a range of applications such as load-balancing applications to de-
termine the extent to which this is a problem for these applications.

Finally, note that we have concentrated here on average network
delay measurements. These results seem to also apply to a range of
other network performance measurements, for instance server per-
formance measurement, and a range of other statistics of those mea-
surements, such as the median, percentiles, and even transforms such
as the Fourier transform of the data. Further, the results should be ex-
tendable to other types of measurements, such as loss, and perhaps
even packet reordering metrics.
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APPENDIX

A. PROOFS

LEMMA A.1. For a symmetric function f(·) the following holds
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where the latter sum converges.

PROOF.
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where the sum converges.

THEOREM A.1. Take a wide-sense stationary process X(t), with
mean µX , variance σ2

X , and auto-covariance function R(s) = E[X(t)X(t + s)]−
µ2. Form the discrete-time series Xi by sampling at time points
ti = i, then the sample mean X̂N = 1/N

PN
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µ, we can apply Lemma A.1 to get
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where the sum is finite.

THEOREM A.2. Take a wide-sense stationary process X(t), with
mean µX , variance σ2

X , and auto-covariance function R(s). Form
the discrete-time series Xi by sampling at time points ti, drawn
from a Poisson process with rate λ, then the sample mean X̂N =

1/N
PN

i=1 Xi has asymptotic variance
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N→∞

N Var
“

X̂N

”

= σ2
X + 2λ

Z

∞

0

R(u)du,

where the integral is finite.

PROOF. The mean µX of the process can be extracted much as
above, so for simplicity we prove the result for a mean zero process
µX = 0, and leave the generalization to the reader. Now imagine
that our sample times ti are a Poisson process with rate λ, then, as
above
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where f(k) = E[Xi+kXi]. Note that (for i > j) the time interval
between ti and tj is a sum of i − j exponential random variables,
which is an Erlang distribution, with density function

p(t)dt = prob {ti − tj ∈ [t, t + dt)}

= λ
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e−λtdt.

The expected value E[XiXj ] can be expanded (using the theorem
of total probability) to give
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