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Abstract—The rate of discovery of vulnerabilities keeps in-
creasing, creating a problem for first responders who need to
triage vulnerabilities quickly to decide where to focus their
defensive efforts. One of the bottlenecks in this triaging process
is the assessment of severity of vulnerabilities and the assignment
of the Common Vulnerability Scoring System (CVSS) scores.

In this work we study the statistical properties of the vulner-
ability disclosure process and make two important observations.
First, we find that the time series of the number of vulnerability
disclosures exhibits a long range dependence, meaning that strong
correlations persist over long time periods. Such time series have
high variation, high burstiness and slow convergence towards
conventional estimators, such as the mean.

Our second observation is that the burstiness of the vulnerabil-
ity disclosure process causes delays in the analysis of vulnerabili-
ties and as a result triaging over 40% of the vulnerabilities takes
longer than the median exploit time. Hence, by the time they are
analysed and assigned a CVSS score, many vulnerabilities are
already being exploited.

We propose techniques for modelling and analysing the vul-
nerability disclosure time series. We further propose reversing
the order of triaging vulnerabilities and show, via simulation,
that this significantly increases timely triaging of vulnerabilities,
reducing the percentage of delayed assessments to 4%.

Index Terms—long-range dependence, time series analysis,
queueing theory

I. INTRODUCTION

Security vulnerabilities are currently disclosed at the rate of
around 15,000 per year [46], the time series of vulnerability
disclosures is shown in Figure 1. This creates a difficult
problem for those trying to manage the risk of exploitation
of vulnerabilities. However, processing of vulnerabilities takes
time for NIST analysts and our simulation shows since 2017
there is an over 40% probability of not being processed before
the median exploit time.

This raises the question can we improve this process?,
particularly over the short term until more resources can
be assigned to this task. We answer this question in the
affirmative, showing how the median time until vulnerabilities

are processed is improved through a very simple, easy to
implement mechanism.

We study the statistical properties of the Common Vulnera-
bility and Exposures (CVE) disclosure process and show that
the arrival process of disclosures is highly-variable and long-
range dependent. These two (often associated) properties lead
to undesirable workloads. This causes the queue of disclosures
awaiting analysis to back up and increases the time until
technical information about vulnerabilities is available for use
by managers to prioritise their work.

Long-range dependence (LRD) was originally discovered
by Hurst in the context of Nile river flooding [19], [39]. He
discovered that the Nile had long periods of larger floods,
followed by similar periods of drought. Processes with this
behaviour are unintuitive compared to short-range dependent
(SRD) processes. In particular, the mean of an LRD process
is not as useful a characterisation of such workloads. Com-
monly, an incoming LRD workload will result in heavy-tailed
queueing behaviour, resulting in periods where the queue will
fill to an extreme extent.

We show the arrival process can be modelled as a hetero-
geneous superposition of individual vendor arrival processes,
each modelled as a fractal renewal process. Such processes
and their related models have been heavily used in modelling
internet traffic workloads over the last two decades [26], [47],
[48]. The model used here requires an additional dimension
of heterogeneity of the individual input processes in order to
match the non-Gaussian marginal distribution.

Finally we show the impact of such an arrival process
on the management of vulnerabilities. We show, through
simulation, that the median delay for a vulnerability to be
processed by NIST can be extremely long, adding additional
resources for this task during a burst is suggested in the long
term. In the short term, however, an alternative strategy can
yield significant improvement. Typically, workloads are treated
using the FIFO (First In - First Out) queue discipline. This is



Fig. 1: Number of CVE Entries Disclosed per Month from 1999 to 2018. The CVE arrivals can be split into three distinct
eras: (1) from 1999 to 2005, (2) from 2005 to 2017 and (3) from 2017 to date. The highlighted section shows the build up
from establishment of the CVE process to the standardisation within the security community in 2005.

simple and is widely considered fair. However, in this problem,
fairness is not the criteria of interest. A LIFO (Last In - First
Out) queue has the advantage that most tasks have shorter
waiting times. This comes at the cost of higher maximum
waiting times but arguably this is a better situation. If all
vulnerabilities take a long time to be processed, then all can
be exploited. If most are processed quickly, then the majority
never become fully-fledged threats. We show that the median
delay in processing vulnerabilities is reduced from 2 days to
a few hours by changing the queueing discipline.

II. BACKGROUND AND RELATED WORK

A. CVEs

Common Vulnerability and Exposures (CVE) is a dictionary
of publicly known security vulnerabilities [46] launched in
September 1999, to improve operability between different
vulnerability databases, and centralise all publicly known
information. The dictionary gained prominence as the primary
information source for vulnerabilities, after recommendation
of CVE for use within government agencies in 2002 by
NIST [30]. It was standardised in 2005 after the National
Vulnerability Database was introduced and adopted the CVE
dictionary as the source of truth for the existence of a
vulnerability [46].

Time series modelling of vulnerability disclosures has been
performed with the intention of discovering properties and
providing accurate predictions of future volume [18], [21],
[22], [33], [37], [41]–[43]. Researchers have developed time
series models to model various trends [18], [22], [33], [37],
[41], [43] and cycles [18], [21], [37] across the entire life of the
CVE process. However, none of these studies have considered
the strong correlations or identified LRD in the data.

Seasonality has been identified and modelled by several
authors [18], [21], [37], who discovered weekly [21] and

yearly [18], [37] cycles. The trend has been modelled lin-
early by Haldar and Mishra [18], however the conclusion
of Roumani et al. [37] is that a linear trend cannot predict
the number of disclosures and concluded the current value
of the series was the most significant factor in predicting
disclosures. Most of these studies have modelled all vulnera-
bilities disclosed to NIST, however Roumani et al. models the
vulnerability disclosures for separate families of web browsers:
Chrome, Internet Explorer, Firefox, Opera and Safari. Many
studies have modelled the time series using Auto Regressive
Integrated Moving Average models [22], [33], [37], [41], [43]
and Exponential Smoothing techniques [18], [37].

Generative models have also been used to model emer-
gence of vulnerabilities using exponential [18], [34], [35],
gamma [22] and Weibull distributed [20] interarrival times.
Exponential distributions were selected as modelling assump-
tions for Markov Chain models [34], [35] or an input to
a queueing model [18]. The gamma distribution was used
to model the time between disclosures as assessed by an
individual analyst, as a measure of the likelihood of discovery
of zero-day vulnerabilities [22]. This dataset is highly variable
with only 20% of the analysts discovering over 60% of the
vulnerabilities and 90% of the analysts discovering less than
10 vulnerabilities. Modelling vulnerability discovery using
Weibull distributions [20] only considers 4 common operating
systems and uses non heavy-tailed Weibull distributions. We
show that modelling interarrival times with heavy tailed distri-
butions generates LRD in the observed vulnerability disclosure
time series.

B. Stochastic Arrival Processes

Queues have been studied since Erlang developed models of
telephony networks to understand the probability that a tele-
phone call is blocked [15]. An arrival process is a stochastic
process {Xt}t∈T , where Xi denotes the time between the



(i − 1)th and ith arrivals. For telephony models the arrival
process of jobs is modelled using a Poisson process, i.e.
exponentially distributed interarrival times. Extensive work
has been done modelling telecommunication systems with
this assumption, with a single source with exponentially dis-
tributed interarrivals [15] or a superposition of multiple arrival
sources [40].

An important class of arrival process models, for strongly
correlated data, are LRD models. A time series, Xt, with
an autocorrelation function, ρ(k) for a lag k, has LRD if∑∞
k=0 ρ(k) = ∞ [6]. Otherwise, we say the time series is

SRD. LRD models were developed for telecommunication
data by Berger and Mandelbrot when studying errors within
telephone networks [7]. LRD models were developed as ex-
isting models with exponentially distributed interarrival times,
did not have properties such as self similarity on multiple
time scales and high variance in ethernet packet flows [26].
Models of ethernet network data, with strong correlations
and extreme values, utilised interarrival times with power-law
interarrival times to replicate the large observed variance and
self-similarity [5], [11], [26], [38]. It was shown that a super-
position of many on/off processes with power-law distributed
interarrival times generates LRD from multiple sources [45].
LRD arrival processes for queues have been shown to behave
qualitatively different from SRD processes [16], [32], [36].
These models show the influence of heavy tailed distributions
in different parts of a queueing system increases the queue
length required for finite queues, and the mean time to traverse
the system, in response to the bursty traffic.

Queueing models to describe the vulnerability disclosure
process were considered by Haldar and Mishra [18], who
modelled emergence of vulnerabilities and expected time to
patching, using a multiple server queue. They assume vulner-
ability arrivals come from an infinite pool of sources; and,
that patches are developed by a fixed finite amount of servers
k and selected from a queue of unmitigated vulnerabilities.
Improvements can be made by considering patches to be
developed by the vendor only.

III. ARRIVAL PROCESS OF VULNERABILITIES

A. Data

The observed arrival process for CVEs from 1999-2018 is
shown in Figure 1. We split the process into three eras: the
establishment era from 1999-2005; the standardisation era
from 2005-2016; and the current era from 2017-present. We
define a process Y (n), as the number of disclosed vulnera-
bilities in a week n, this time resolution was chosen due to
weekly cycles and low confidence in the accuracy of disclosure
times. The marginal distribution of the second era of Y (n) is
shown in Figure 2. The mean and variance of the number of
disclosed CVEs per week for the marginal distribution of this
time series are 113.64 and 3324.54 respectively. We fitted a
Normal distribution of the observed marginal distribution with
a Kolmogorov-Smirnov test statistic value of 0.10, and p-value
of 0.000015, hence we rejected the hypothesis of Gaussian
distributed data. A Log-Normal distribution was fitted to the

Fig. 2: Marginal distribution of the second era of CVE entry
time series, 2005-2017. Normal and Log-Normal distributions
are shown fitted to the observed observed data.

Fig. 3: Complementary Cumulative Distribution Function
(CCDF) of the marginal distribution of the second era of
the CVE entry time series on a log-log scale. A fitted Log-
Normal distribution is shown, with a power-law tail emerging
at approximately 320 disclosures.

observed marginal distribution, with a Kolmogorov-Smirnov
test statistic value of 0.04, and corresponding p-value of
0.32. So we cannot reject the hypothesis that the marginal
distribution is Log-Normal.

The tail of the marginal distribution is heavier than a
standard Log-normal distribution. Figure 3 shows the Comple-
mentary Cumulative Distribution Function (CCDF) on a log-
log scale. The tail diverges from Log-Normal at approximately
320 disclosures in a week. The large bursts of disclosures that
have been observed in Figure 1, are responsible for the heavy
tail. Given these observations, we will model the marginal
distribution as a Log-Normal distribution with a heavy tail, as
it provides a parsimonious description for the simulation in
Section V.

This data is the aggregation of 17,619 vendors that have
contributed CVEs since 1999. The distribution of the number
of disclosed CVEs per vendor is shown in Figure 4, with the x-
axis the rank (i.e. vendors ordered by number of CVEs) vs. the
normalised frequency of their occurrence. This distribution is
highly variable with a small number of vendors contributing a
large proportion of the CVEs. For example, the top 10 vendors
account for 31% of all CVEs and the top 100 account for



Fig. 4: Zipf distribution fitted to the observed rank of vendors
vs. the number of CVEs entries on a log-log scale. Showing a
good fit to a power-law, indicating that the vendor distribution
is highly heterogeneous.

54% of all CVEs. A Zipf distribution has a probability mass
function for the kth ranked vendor,

p(k; s,N) ∼ 1

ks
.

As p(k; s,N) decays as a power of s, rank vs. frequency
forms a straight line on a log-log plot. Figure 4 shows a fitted
Zipf distribution to the volume of disclosed vulnerabilities per
vendor. As the rank vs. frequency plot follows a power law, we
conclude that the vendors are highly heterogeneous and best
modelled by using an aggregation of non-identical sources, in
contrast to typical internet traffic models [5], [11], [26], [38].

The arrival process shown in Figure 1, can be decomposed
into individual vendor disclosure processes. These arrival
processes are not identical, as they have very different rates
of disclosure. We model each vendor disclosing a maximum
of one batch of disclosures per day.

B. Measurement of Long Range Dependence

We suspect that the process of number of disclosures may be
LRD, due to the high variation observed. For a stationary LRD
process the autocorrelation function, which is defined as

ρ(k) =
E[(X(n+ k)− E[X])(X(n)− E[X])]

σn+kσn
,

asymptotically decays as a power-law, i.e, ρ(k) ≈ cρ|k|−a for
a ∈ (0, 1), as k →∞.

LRD and statistical self-similarity are measured using the
Hurst parameter, defined by Hurst to describe the time series
of the water level of the Nile River [19]. It takes values
between 0 and 1, and if 0.5 < H < 1 the process exhibits
LRD [6]. The Hurst parameter and the exponent parameter of
the autocorrelation function are related, a, H = (1+a)/2 [6].

The Hurst parameter has been measured in a variety of
ways, for instance as the log-linear regression on the autocor-
relation function. To estimate the Hurst parameter we use the
MATLAB code provided online by Veitch [1], implementing
the wavelet-based estimator of Abry and Veitch [3].
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Fig. 5: Log-scale diagram vs. the average of wavelet coef-
ficients at that octave. The blue bars are the 95% confidence
intervals of the variance of wavelet coefficients. The linear
regression on the average wavelet coefficients is shown in red,
and the slope of the red line is 2H - 1. From this, the H
parameter is estimated to be 0.66, with a confidence interval
of [0.58, 0.74].

The code performs a discrete wavelet transformation of the
input data, decomposing the sequence in terms of wavelet basis
functions on a dyadic grid in the transform space. In this space
an octave corresponds to a log2-scale, and hence when we
calculate the variance of detail coefficients, dx(j, k), across
a given octave, j, we obtain a measure of burstiness at that
scale. Plotting the log-variances across octaves creates a log-
scale diagram. LRD and self-similarity are characterised in
this diagram by a straight line, which has a slope of 2H-1.

Thus we can estimate H by performing linear regression on
the log-scale plot. 95% Confidence intervals are calculated for
each octave in the plot, which enable us to be able to assess
the accuracy of the regression. Figure 5 shows the log-scale
diagram for the number of disclosed vulnerabilities, with 95%
confidence intervals shown as the blue bars at each octave and
a linear fit shown in red. The estimate of the Hurst parameter
is 0.66 with a confidence interval of [0.58,0.74], and the linear
regression is contained within the 95% confidence intervals at
each octave, indicating an excellent fit to the data. From this
we conclude that the process is LRD. Therefore to construct
mathematical models we must incorporate LRD and hence
our choice of fractal renewal processes, a common generative
model for LRD.

IV. MODEL DEFINITION

We define an arrival process that is parsimonious while
generating the observed properties of the previous section,
long range dependence, a heavy-tailed marginal distribution,
and a highly heterogeneous vendor arrival processes.

It has been established that heavy-tailed marginal distri-
butions or LRD can be generated by the superposition of



simpler arrival processes [27], [45]. However, it is unusual
to see both of these phenomena, especially in conjunction
with the heterogeneity of the individual processes. We elect to
define a renewal process model with heavy-tailed distributions,
to induce the observed LRD. This approach was chosen as
these provide parsimonious models of LRD data, which are
simpler and require fewer parameters. This is in contrast to
other possibilities such as Markov Arrival Processes, and in
particular Markov Modulated Poisson Processes or Phase type
distributions.

We begin by defining a model for the arrival times of
an individual vendor. Renewal processes are used to model
the time between successive events such as time between
phone calls, packet arrivals and component failures. A re-
newal process is a sequence of arrival times, (Sn)n∈N. Where
we define Sn =

∑n
i=1Xi, as the sum of the interarrival

times with X1, X2, X3, X4, . . . a sequence of positive, in-
dependent and identically distributed random variables, such
that 0 < E[Xi] < ∞ for all i. There are two different
random processes of interest, the arrival time process and
the counting process. The arrival time process (Sn)n∈N is
a point process on [0,∞). The counting process counts the
number of arrivals up to a particular time, t, and is defined
as N(t) =

∑∞
n=1 1Sn≤t = sup{n : Sn ≤ t}. Fractal

renewal processes are a subset of renewal processes where
the interarrival times, Xi, follow a power-law probability
distribution [29], which has probability density function

f(x) =
α− 1

xmin

(
x

xmin

)−α
.

This distribution exhibits scaling properties since,

f(cx) =
α− 1

xmin

(
cx

xmin

)−α
= c−αf (x) .

Fractal renewal processes exhibit self-similarity due to this
power-law scaling property [28]. We choose fractal renewal
processes to model the individual vendors to capture the large
variation, burstiness and to generate LRD in the superposition
of many vendors.

As each vendor is different, we need a sequence of inter-
arrivals for vendor i, is given by process {V (i)

j }j∈N, which is
sampled from a power law distribution, V (i), with

Pr(V (i)
j ≤ x|αi) = 1−

(
x

xmin(i)

)−αi
,

with arrival times given by,

S
(i)
j =

j∑
k=0

V
(i)
j .

At each arrival time multiple CVEs can be disclosed by a
vendor. That is, at time S(i)

j a batch of B(i)
j CVEs is disclosed

by vendor j with support on N. Where,

Pr(B(i)
j ≤ x|βi) = 1− ζ(βi, x)

ζ(βi, xmin(i))
,

where,

ζ(β, x) =

∞∑
n=0

(n+ x)−β .

The exponents of the power-law distribution for both the batch
size, βi,and the interarrival time, αi, are vendor dependent,
to model heterogeneous vendors. Due to the heterogeneity
in the number of disclosed vendors as shown in Section III,
we selected non-identical distributed vendors to generate the
observed properties.

We now define, W (i)
k as the number of disclosed vulnera-

bilities for a vendor i in week k. Let T be the length of one
week,

W
(i)
k =

∞∑
j=1

B
(i)
j 1{(k−1)T≤V (i)

j ≤kT}
,

and let
∗
Wk be the superposition of the vendor processes. Then

for M vendors,

∗
Wk =

M∑
i=1

W
(i)
k ,

=

M∑
i=1

∞∑
j=1

B
(i)
j 1{(k−1)T≤V (i)

j ≤kT}
.

From this generic framework, we define 3 different stationary
renewal process models to test the influence of different
features of the models. The developed models are:
• Heterogeneous interarrival distribution exponents,
αi,with identical batch size distributions;

• Identical interarrival distributions, with heterogeneous
batch distribution exponents, βi;

• Heterogeneous interarrival distribution xmin(i) parameter,
with identical batch size distributions.

A. Heterogeneous interarrival distribution exponents

In this model the parameter of the interarrival distribution, αi,
for a vendor is sampled from a log-normal distribution. This
distribution is fitted to the exponents of the observed vendor
interarrival times. The form of the log-normal distribution
used, the probability density function has the following form,

p(x) =
1

(x− µ)σ
√
2π
e−

log(
x−µ
θ

2
)

2σ2 ,

where µ, σ and θ are the location, shape and scale parameters
respectively.

The fitted parameters for the log-normal model are a shape
parameter of 0.537, a location parameter of 1.159 and a scale
parameter of 1.537. A chi-squared test was used to determine
whether this is a suitable model for the interarrival exponent
distribution. The hypothesis that the distribution was taken
from a log-normal distribution could not be dismissed with
a chi-squared value of 18.795 and a p-value of 0.470. The
xmin parameter for the interarrival distribution is fixed at 1 day,
based on the observed exploit data. The batch size distribution



in this model is the same for each vendor, which has β value
of 2.75, chosen to replicate the average value of the fitted
exponents from the observed batch sizes, and xmin of 1.
The expected number of vulnerabilities disclosed in a time, T ,
and number of vendors, M , is

E[
∗
Wk] = E

 M∑
i=1

∞∑
j=1

B
(i)
j 1{(k−1)T≤V (i)

j ≤kT}


=

TME[B]∫∞
αmin

E[V |α]dα
,

for the log-normal probability density function f(α) of pa-
rameter α.

B. Heterogeneous batch distribution exponents
To test the whether the long range dependence is induced
by high variation in the batch size distribution, a model
was developed with identical interarrival distributions of the
vendors and different batch size distributions. In particular
their exponents are sampled from the log-normal model of the
parameter space which was fitted to the observed batch size
distribution. The interarrival distributions had a fixed exponent,
α, for all vendors of 2.5, which was selected to replicate the
exponent fitted to interarrivals for all vendors, and xmin of 1.
This process has an expected number of vulnerabilities in a
time period T of

E[
∗
Wk] = E

 M∑
i=1

∞∑
j=1

B
(i)
j 1{(k−1)T≤V (i)

j ≤kT}


=
TM

∫∞
βmin

E[B|β]dβ
E[V ]

,

for log-normal probability density function f(β) of parameter
β.

C. Heterogeneous Interarrival Distribution xmin

A model was developed with identical batch size exponents
and identical interarrival exponents of the power law dis-
tributions, however the xmin parameter of the interarrival
distribution is distributed with a log-normal distribution. From
the observed data, the hypothesis of a log-normal distribution
of the xmin’s could not be rejected, with a chi-squared value of
15.8 and a p-value of 0.67. In this case, the interarrival distri-
bution exponent was fixed at 2.5 for all vendor processes, with
the xmin parameter sampled from the log-normal distribution
and the batch size distribution had an exponent of 3.25 and
an xmin of 1.
This process has an expected number of disclosures in a time
period T of

E[
∗
Wk] = E

 M∑
i=1

∞∑
j=1

B
(i)
j 1{(k−1)T≤V (i)

j ≤kT}


=

TME[B]∫∞
1
E[V |xmin]f(xmin)dxmin

,

for log-normal probability density function f(xmin) of param-
eter xmin.

V. SIMULATION

Simulations of the three different models, defined in Sec-
tion IV, were built to test the LRD of the vendor processes.
In addition to the power-law distributed models we defined
Poisson process models, with exponentially distributed in-
terarrivals, to compare the influence of SRD models. Each
simulation consists of 200 heterogeneous vendors, whose
parameters were sampled from the fitted Log-Normal distri-
butions. 200 vendors were selected as the top 200 vendors
are responsible for over 60% of all disclosed vulnerabilities
and account for most of the variation in the time series. For
simplicity, we assumed a constant number of vendors in the
simulation. They were simulated as discrete event simulations
in continuous time. The continuous process was then quantised
and aggregated to weekly intervals.

We use the Hurst parameter, mean and variance to compare
the different models to the second era of observed arrival
process, as shown in Figure 1. The process is modelled as
a delayed renewal processes [12], with the first arrival is
distributed as, G, and all subsequent arrivals being distributed
as, F , where

G(x) =
1

E[X]

∫ x

0

1− F (t)dt.

Hence, the first arrival distribution for a power-law distributed
random variable is

G(x) =
x−αmin

α− 1
(1− x−α+2), if α > 2.

To understand the model performance and the influence of
the log-normal parameter distributions, we define null models
where the parameter is sampled from a uniform distribution
on an interval between the maximum and minimum observed
values from the dataset.

A. Results

The mean, variance and Hurst parameter of the simulations
are shown in Table I. The aggregated arrivals of the het-
erogeneous interarrival exponent model are shown in Fig 8,
all of these processes exhibit high variation with large bursts
occurring regularly, with the largest bursts appearing for the
heterogeneous batch exponent model. Varying the xmin pa-
rameter results in a distance of least xmin between subsequent
arrivals, which results in a low number of vulnerabilities being
disclosed in a week. This doesn’t reflect the reality of the un-
derlying vendors such as Microsoft, although they eventually
developed a monthly disclosure cycle for most vulnerabilities,
serious vulnerabilities are disclosed when discovered and the
minimum interarrival time is daily [2].

The mean of the heterogeneous interarrival and batch
exponent models, are a good fit for the observed mean.
Hence, the dynamics of the process cannot be captured by
the heterogeneous xmin model as the mean is not possible
to generate enough CVE disclosures with fixed minimum



Time Series H CI Mean Variance
Observed CVE Process 0.66 [0.58, 0.74] 113.6 3324.5
Interarrival L-N 0.56 [0.52, 0.59] 119.1 406.0
Exponent U 0.56 [0.53, 0.6] 159.6 436.5

Batch L-N 0.45 [0.42, 0.48] 119.6 65 738.9
Exponent U 0.57 [0.54, 0.61] 158.6 2 403 758.7

Interarrival L-N 0.52 [0.48, 0.55] 15.3 42.1
xmin U 0.49 [0.45, 0.52] 9.3 39.1

Poisson L-N 0.50 [0.47, 0.54] 43.4 141.86
Interarrivals U 0.49 [0.46, 0.53] 15.3 67.5

TABLE I: Simulated values of H with 95% Confidence
Intervals (CI), mean and variance for all three models with
Log-Normal (L-N) or Uniform (U) distributed parameter dis-
tributions. The results show that the heterogeneous interarrival
exponent model generates LRD with an exponent in the confi-
dence interval of the observed data Hurst parameter estimate.

durations between arrivals. The variance of the marginal
distribution is not a robust measure due to infinite variance of
the underlying vendor interarrival models, however the hetero-
geneous interarrival exponent model is the best fit. The Hurst
parameter wavelet estimator regression plots for all models
are shown in Figure 9. These show that the heterogeneous
batch exponent model can not be reliably be used to estimate
the H parameter, as there is high variability for the octaves
in the wavelet domain. However, more reliable estimates can
be made for the interarrival exponent and xmin models. The
estimates of the Hurst parameter with the interarrival xmin
model are approximately 0.5, with both of the confidence
intervals containing the boundary from short range dependence
to long range dependence. Hence for these models we can
conclude that the heterogeneous xmin model does not exhibit
long range dependence in its time series.

The heterogeneous interarrival exponent model exhibits long
range dependence with the 95% confidence intervals of the
H parameter estimate of the simulated and observed data
overlapping. The null model for the heterogeneous interarrival
exponent, has a low likelihood for its regression due to the
linear fit going outside of the confidence intervals in the
wavelet domain, implying that the log-normally distributed
parameter selection is a better fit for the observed data. Hence,
to model the emergence of LRD the heterogeneous interarrival
exponent model with Log-Normal parameter distribution is a
suitable model.

After rejecting all models except for the heterogeneous
interarrival exponent model, we examine the marginal distribu-
tion of the superposed time series, which is shown in Figures 7
and 6. This shows that at approximately 160 disclosures
per week, a power-law tail emerges from this distribution.
The Kolmogorov-Smirnov statistic for the log-normal fit is
0.042. The emergence of the heavy tail shows that the infinite
variance power-law distributions from the renewal processes
have resulted in long range dependence in the superposed time
series.

In comparison to the LRD models, the SRD interarrival
model is unable to generate the same number of vulnerabil-
ities. These models, as expected did not generate a heavy
tail with Hurst parameters estimated close to 0.5 and did
not produce bursts of arrivals in the same volume as LRD

Fig. 6: Marginal distribution of the superposed arrival time
series for the heterogeneous interarrival exponent model. A
fitted Log-Normal distribution fit is shown, with good agree-
ment to the simulated data. The shape of the resulting marginal
distribution is similar to Figure 2, the marginal distribution of
the observed data.

Fig. 7: CCDF for the marginal distribution of the simulated
superposed arrival time series on a log-log scale for the
heterogeneous interarrival exponent model. A power-law tail
emerges at approximately 160. Compare this to Figure 3, with
a similar pattern emerging and a reasonable fit to the observed
data, on the logarithmic scale of the models.

models. Other SRD models, such as Markov Arrival Processes
mentioned in Section IV can accurately model the system,
however this comes at the cost of a large number of parameters
and a less parsimonious model description.

VI. QUEUEING SIMULATION

All disclosed CVEs are analysed by NIST to populate CVSS
metrics and release important information about the nature of
a vulnerability. When prioritising work to mitigate different
vulnerabilities it is important to understand the likely impact
due to a vulnerability, and how they can be exploited. For
example, an organisation’s risk posture may not allow any
potential remote exploits, and in the language of CVSS, they
would not want to allow any exploit with an AttackVector
metric value of NETWORK. End users require vulnerabilities
to be processed quickly to access information about the risk
to a product due to exploit of a vulnerability. However, it was
shown in Feutrill et al. [17] that the median time to exploit
is less than the median time to process certain classes of
vulnerabilities by NIST, as defined by their CVSS metrics.



Fig. 8: Simulated time series of the superposed arrival process generated from the heterogeneous interarrival exponent model.
This has similar features of LRD and burstiness exhibited by Figure 1, the observed CVE entry time series.

Hence, we would like to be able to find a better strategy to
process and disclose CVSS metrics for a vulnerability.

We have built a queueing model to analyse this problem.
The arrival process is a superposition of independent but
not identical fractal renewal processes with heterogeneous
interarrival exponents, as found in Section V. To compare
the results of LRD and SRD processes, we have also used
a Poisson process model with heterogeneous exponentially
distributed interarrival processes and discrete power-law batch
sizes. We assume, for simplicity, one server and a deterministic
service time, i.e.every vulnerability takes the same time to
process. In Kendall’s notation, this is a

∑
iGIi/D/1 queue.

A simulation of this queue was built using the Powerlaw
library [4] to generate power-law distributed random samples
and the SciPy [23] package to simulate exponential random
variables, with the intention of estimating the probability of a
vulnerability being analysed by NIST before the median time
to exploit. To ensure we have a stable queue, the arrival rate
must be less than the average service rate [9]. From the model
definition, the mean number of arrivals in a week is 119.140,
so an initial service rate (given a single server model) was
assumed of processing 120 vulnerabilities a week, which, in
the simulation, fits the observed median of approximately 2
days [17].

A well established fact from queueing theory is that chang-
ing the order of service from First In - First Out to Last In
- First Out does not change the mean waiting time, however
this can have a large impact on the tail of the distribution [25].
Hence, we evaluate the impact of changing queueing discipline
on the median waiting time. This is not a pre-emptive policy,
once a job has been commenced from the queue it runs until
completion and will not re-enter the queue at any stage.

Strategy Mean Median 95th Percentile Maximum

FIFO 394 109 1689 5459

LIFO 394 1.4 154 315 282

FIFO - SRD 4.0 0.8 12.6 421.5

LIFO -SRD 4.0 0.4 12.1 646.8

TABLE II: Comparison of mean, median, 95th percentile and
maximum waiting time (hours) for First In - First Out (FIFO)
and Last In - First Out (LIFO) strategies. There is a large
decrease in the median time to process and 95th percentile, at
the cost of a larger maximum. The improvement was greater
for LRD arrivals than SRD arrivals.

The results of the queueing simulation are shown in Table II.
The mean waiting time was not effected by the change of
queue discipline however the waiting time distribution changed
dramatically. The median of the waiting time distribution was
reduced from 109 hours to 1.4 hours, and maximum waiting
time increasing two orders of magnitude. However, the LIFO
queueing discipline had a lower waiting time than the FIFO
queueing discipline until the 98th percentile.

We analysed the probability of an individual vulnerability
being processed before the mean waiting time, and the median
time to exploit, for the entire dataset, since 2010 and since
2017. These results are shown in Table III. Using a LIFO
queueing discipline, the probability of being processed before
the median exploit time for vulnerabilities disclosed since
2017 increased from 0.58 to 0.96. For the SRD arrival model,
as there were less extreme bursts of arrivals the queue was
not overwhelmed to the same extent as in the LRD case. The
results show that a Poisson process interarrival model still
shows improvement from moving from a FIFO to a LIFO
queueing discipline, however the effect is less extreme than
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(a) Heterogeneous Interarrival exponent - Log-Normal.
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(c) Heterogeneous Batch exponent - Log-Normal.
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(d) Heterogeneous Batch exponent - Uniform.
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(e) Heterogeneous Interarrival xmin - Log-Normal.
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(f) Heterogeneous Interarrival xmin - Uniform.

Fig. 9: Log-scale diagrams vs. the average of wavelet coefficients at that octave, compare to Figure 5. No reliable estimation of
Hurst parameter is possible for the heterogeneous batch model, as shown in (c) and (d), indicating no long range dependence
is present in the times series. No long range dependence is generated in the heterogeneous interarrival xmin model, with
the estimates of the Hurst parameter being around 0.5. The null model from the heterogeneous interarrival exponent model
has a couple of octaves with wavelet coefficient values being outside of the linear regression fit, indicating that this is not a
good estimator for the Hurst parameter. Hence, the model which best generates the behaviour of interest is the heterogeneous
interarrival exponent model with log-normally distributed parameters.



Strategy Pr(X < E[X])
Pr(X < m) Pr(X < m) Pr(X < m)

Exploits Exploits Exploits

All time Since 2010 Since 2017

FIFO 0.70 0.89 0.77 0.58

LIFO 0.97 0.98 0.98 0.96

FIFO - SRD 0.86 0.99 0.99 0.99

LIFO - SRD 0.88 0.99 0.99 0.99

TABLE III: Comparison of probability of being less than
mean, E[X], and median, m, time to exploit. The probability of
being processed before median time to exploit decreases using
a LIFO queue discipline. There is a dramatic performance
increase for LRD processes, and a smaller effect for SRD
processes.

for LRD models with only an improvement in probability of
being processed before mean time to exploit, shifting from
0.86 to 0.88 and a negligible change in the probability of
being processed before the median time to exploit.

VII. DISCUSSION

We have discovered that the time series of vulnerability
disclosures exhibits long range dependence. This was shown
by the heavy tail of the marginal distribution of the arrival
process and an estimated Hurst parameter, from the wavelet
estimator [3], of 0.66. In addition, we have shown that the
different vendors are well modelled by a Zipf distribution
for the total number of disclosed vulnerabilities. Hence, the
heterogeneity in the vendors is also a key feature of the arrival
process and models must incorporate this variation.

We built a stochastic model of the arrival process to
accurately model the observed properties. Instead of mod-
elling the appearance of vulnerabilities as being discovered
according to a geometrically distributed discrete model [34],
[35] or arriving from a pool of sources with exponentially
distributed interarrival times [18] we defined an independent
fractal renewal process for each vendor with the power-
law exponent sampled from a log-normal distribution. The
superposition of these renewal processes with non-identical
interarrival distributions was able to generate the observed long
range dependence and a log-normal marginal distribution with
a heavy tail.

The discovery of long range dependence in this process
has implications for how we accurately measure and model
vulnerability processes. An implication is that strong positive
correlations exist in the time series, hence frequent large
bursts are expected i.e. there is a higher chance of a large
number of vulnerabilities being disclosed the week after a
large number of vulnerabilities. For example, in Figure 1,
the months of September and October of 2014, a large surge
of vulnerabilities occurred including a serious vulnerability
named Shellshock [31], which was publicly disclosed and with
a patch released 10 days later [31]. The availability of vulnera-
bility information is important for security teams to effectively
understand the risk posed by particular vulnerabilities and to
prioritise work to mitigate these potential threats. If serious
vulnerabilities are disclosed within a large burst, there is a

risk that crucial information is not released until several days
after a threat is being exploited. The long range dependence
discovered in the process suggests an underlying complexity
in the security ecosystem, which has been shown in other
domains such as finance [49], internet traffic [26], [47], [48],
biological systems [24], meteorology [44] and hydrology [19].

The heavy tail of the marginal distribution of the arrival
process has large effects on the availability of the CVSS
metrics. A queueing model was built to model the impacts
from the bursts of vulnerabilities, and to test different queueing
disciplines to investigate whether the median time to process
vulnerabilities could be reduced. The waiting time distribution
for vulnerability processing was shown to have a heavy tail
due to the heavy tail distribution of the superposition of the
vendor arrival processes. However, by changing the order in
which the vulnerabilities are processed we were able to show
that improvements could be made by serving the most recently
arrived vulnerability first and reduce the median waiting time
from 2 days to less than 2 hours. This comes at the cost of the
maximum time for a vulnerability being increased, and higher
processing time from 98th percentile and above. In contrast to
this result, there was a much smaller performance increase for
short range dependent processes by using a LIFO discipline,
indicating that this strategy has the best performance to handle
large bursts in arrivals, such as from the long range dependent
models. We believe this strategy would be able to increase
the availability of security information by processing most
vulnerabilities sooner. Many vulnerability prediction models
have been built that utilise the CVSS information [8], [10],
[13], [14] and the utility of these models is reduced by not
having relevant security information available at the time of
prediction.

VIII. CONCLUSION

This paper shows that the time series of public vulnerability
disclosures has the statistical property of long range depen-
dence. This is characterised by behaviour such as burstiness,
high variation and slow convergence of estimators, making
traditional analysis techniques difficult. We have shown that
this time series can be well modelled by a superposition
of independent but not identically distributed fractal renewal
processes. Due to the long range dependence, delays for pro-
cessing vulnerabilities by NIST dramatically increase during
bursty periods. We have shown that changing the order of
service from FIFO to LIFO reduces median waiting time, with
the probability of a vulnerability being processed before the
median exploit time since 2017 increasing from 0.58 to 0.96.
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