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What are we doing today?

This talk arises out of a weird conjunction:

I Satellite lifetimes

I Quantile-based distributions

I The Polylogarithm Distribution



Satellite Lifetime Motivation

I Satellite lifetimes are big business
I more satellites being launched than ever before
I StarLink has launched over 7,000 in less than 10 years
I roughly $1 million (AU) per satellite

I Satellite lifetime controlled by
I failures
I fuel (loss from station keeping)
I planned end-of-lifetime

I If the planned end-of-lifetime could be longer, a lot of money
could be saved



Satellite Lifetime Data (Batthula et al., 2022)
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Satellite Lifetime Data (Batthula et al., 2022)
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Satellite Lifetimes

I We see
I somewhat heavy-tail lifetime, but
I truncated around 10 years (planned lifetime)
I try to reduce space junk (estimates of around 30,000 objects

larger than 10cm)

I Seems like satellites might be being junked early
I given more fuel, they could potentially live longer

I Weibull fit isn’t doing great
I Weibull and its generalisations are commonly used here
I we want to hypothesize about the distribution if the artificial

constraint were removed
I we want to do model identification not just model fitting



Quantile-based distributions

Mostly when we teach distribution theory, we

I start with discrete RVs defined using PMFs, e.g., geometric

I move onto continuous with PDFs

I note that these aren’t always useful so we do CDFs

But we leave CDFs till late because they aren’t intuitive???



Quantile-based distributions

Quantile-based distributions are an alternative
I Maybe it’s more intuitive???

I when we report distributions we often use quantiles, e.g.,
median, IQR, box plots, ...

I mean and variance of little use for heavy-tailed distributions

I We don’t have to create new variants by generalising existing
distribution (which is what most of the satellite lifetime work
has done)

I These types of distributions have interesting properties

I They are easy to simulate from

I Easy to create classes of estimators



Quantile-based distributions

Roughly1, the quantile function is

Q(p) = F−1(p),

where F (·) is the Cumulative Distribution Function (CDF).
Notes:

I For convenience Q(0) and Q(1) are defined to be support

I Q is non-decreasing and left-continuous

I We’ll put parameters in subscripts, e.g., Qs

I Q can easily add scale and location parameters, i.e.,

Qs,a,b(u) = a + bQs(u)

I Simulation is by taking Xi ∼ U(0, 1) and then

Ys = Qs(Xi )

1Actually, Q(u) = inf{x ∈ R | F (x) ≥ u} for 0 < u < 1.



Quantile-based distributions – a question?

Does anyone have a reference for the following:

E [h(Y )] =

∫ 1

0
h
(
QY (p)

)
dp,



Quantile-based distributions examples

Distribution Parameters Quantile Function Support
Uniform(a, b) a < b Q(p) = a + p(b − a) [a, b]

Exponential(λ) λ > 0 Q(p) = − 1
λ ln(1− p) [0,∞)

Normal(µ, σ) σ > 0 Q(p) = µ+ σΦ−1(p) R

Logistic(µ, s) s > 0 Q(p) = µ+ s ln
(

p
1−p

)
R



The Tukey-λ distribution

Q(p;λ) =

{
1
λ

[
pλ − (1− p)λ

]
, if λ 6= 0,

log
(

p
1−p

)
, if λ = 0,

where λ is the shape parameter.

It is unusual because:

I λ > 0, the distribution has finite support; and

I λ ≤ 0, the distribution has infinite support.

Notes:

I The distribution is symmetric about 0
I It interpolates across distributions: e.g.,

I λ = −1: approximately Cauchy (heavy tailed)
I λ = 0: logistic
I λ = 0.14: approximately normal
I λ = 1: uniform

I We don’t have closed forms for many of its bits and pieces for
all λ, but the numerical calculations aren’t hard



The Tukey-λ distribution
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Alternatives?

I There aren’t a lot of other distribution families defined by
their quantile (though we often have closed forms for the
quantile after the fact)

I In particular the Tukey-λ is symmetric — is there a one-sided
variant (other than trivial functional transformation)



The Polylogarithm Distribution (PLD)

So let’s define a one-sided (non-negative) distribution

I Exponential is a good starting point

Qλ(p) = − ln(1− p)/λ

I It’s natural to generalise the log function with the
polylogarithm2

Qs(p) = Lis(p) =
∞∑
k=1

pk

ks
, (1)

where 0 ≤ p < 1 and s ∈ R.

I When s = 1 we get the power series for the exponential
distribution with λ = 1 (as above)

2We can extend the polylogarithm to complex arguments and parameters
and outside of the range of the sum’s convergence through analytic
continuation, but we won’t need that here.



Polylogarithms

I Already used in some distributions, e.g.,
I Zeta distribution characteristic and probability generating

functions
I Fermi–Dirac and Bose-Einstein integrals

I Has a strong relationship to other important functions, e.g.,
I The Riemann zeta function

Lis(1) = ζ(s), for Re(s) > 1

I Bernoulli polynomials
I Polygamma functions

I Has lots of known properties

“...almost all the formulas relating to it, have something
of the fantastical in them, as if this function alone among
all others possessed a sense of humor.”, Don Zagier, 2007.



PLD: Properties

It has properties similar to the Tukey-λ
I It has both finite and infinite support

I For s > 1 the distribution has finite support
I For 0 < s ≤ 1 it has infinite support but finite expectation
I For s ≤ 0 the expectation is infinite

I For certain parameters we get other distributions
I for s ≥ 8, it closely approximates the uniform distribution,
I for s ' 1.6, it approximates the (non-negative) triangular

distribution,
I for s = 1.0, it is exactly the exponential distribution,
I for s = 0.0, it is exactly an inverse beta distribution, and
I for large negative s, it approximates a generalised extreme

value distribution with infinite mean.



PLD: CDFs
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PLD: PDFs
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PLD: Mean and Variance
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PLD: Support

Lis(0) = 0

lim
z→1

Lis(z) =

{
ζ(s), for s > 1,
∞, otherwise,

Hence

supp(Xs) =

{
[0, ζ(s)], for s > 1,
[0,∞) , otherwise.



PLD: Mode and Median

I The mode is always at 0.0
This can be derived from the fact that second derivative of
the quantile function

Q ′′s (p) =
Lis−2(p)− Lis−1(p)

p2
,

is positive for all real s and 0 ≤ p because the polylogarithm
function is decreasing with respect to s for 0 < p < 1.

I The median is (trivially) Qs(0.5)



PLD: Expectation

E [Ys ] =

∫ 1

0
Lis(x)dx

= lim
T→1

∞∑
k=1

1

ks

∫ T

0
xkdx

= lim
T→1

∞∑
k=1

T k+1

ks(k + 1)

=

{ ∑∞
k=1

1
ks(k+1) , for s > 0,

∞, otherwise.
(2)



PLD: Expectation (Convergence Bound)

The sum is bounded by the Riemann zeta function

ζ(s + 1)− 1 =
∞∑
k=1

1

(k + 1)s+1

≤
∞∑
k=1

1

ks(k + 1)

≤
∞∑
k=1

1

ks+1

= ζ(s + 1). (3)

Where we know that the ζ(s + 1) is finite when Re(s) > 0



PLD: Expectation (Part II)

When s is close to zero the series converges very slowly /
However, we use integration by parts with d

dz Lis(z) = Lis−1(z)/z
to get

E [Xs ] = ζ(s + 1)− E [Xs+1] ,

so that we can calculate in a faster converging region



PLD: Higher Moments

I Tricky (numerically) but doable
I Care about singularity at z = 1 needed for s ≤ 1
I Need to use an alternative series expansion around z = 1 that

uses the Riemann zeta function

I Can prove bounds on finiteness of moments
I Interval [1− 1/n, 1− 1/(n + 1)) has moments up to n all

finite, and the (n + 1)th moment infinite.



PLD: Fitting

I One of the aims here is that fitting the parameter replace
model identification

I We should use a fitting process matched to the definition

I We are working in the context of lifetime estimations, i.e.,
non-negative distributions (e.g., assume support starts at 0
and we don’t need a location parameter)

I For Tukey-λ folks use a probability-plot-correlation-coefficient
(PPCC) chart, but its visual and doesn’t allow for a scale
parameter

I Instead use L-statistics, which are a linear combination of
order stats



PLD: Fitting

I Match ratio of IQR to median to the data (it’s insensitive to
scale), i.e., choose ŝ to match

IQR

m
=

Qs(0.75)− Qs(0.25)

Qs(0.5)
.

The function is strictly increasing, so the search for ŝ is
almost trivial.

I Then match scale parameter by taking Qb,s = bQs with

b̂ =
m̂

Qŝ(0.5)
.

I Generalise to α and 1− α percentiles



PLD: Fit on simulated data
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Back to Satellite Data
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Back to Satellite Data

I Fit using α = 0.25 resulting in
I shape ŝ ' −1.88 (so heavy-tailed, infinite mean)
I scale b̂ ' 38.05 (median 197 days)

I Much better fit to the body
I that’s what we want here
I we want to model normal behaviour, because tail is artificially

truncated



What does it all mean?

I Planned fuel depletion is killing satellites before the hardware
wears out

I Extrapolation suggests that, given a satellite survives until 10
years, its chance of surviving an additional 10 years would be
over 90%. An additional 10 years and it only drops to 86%.

I If sufficient fuel were available, satellite lifetimes might be
easily doubled or even tripled
I current fuel accounts for around 10–25% of satellite mass at

launch



Conclusion

I Quantile-defined distributions have some interesting properties

I Polylogarithm is an ideal function to use in the quantile
definition because (i) so much is known about it, (ii) it is just
well-behaved enough, without being boring.

I Satellite lifetimes could be greatly extended with
comparatively little cost



Extra Slides



A Lemma

E [h(Y )] =

∫ 1

0
h
(
Q(p)

)
dp

Proof.
Take random variable X ∼ U(0, 1), and note that (where it exists)
the expectation of a function g(x) of a random variable is given by

E [g(X )] =

∫
g(x)dFX .

Then note that we can create a random variable Y with quantile
function Q(p) by taking Y = Q(X ) and hence when the integral
exists

E [h(Y )] =

∫
h
(
Q(x)

)
dFX =

∫ 1

0
h
(
Q(p)

)
dp.



PDF from Quantile

The density function f (x) can be computed by noting

dF−1

dp

∣∣∣∣
F−1(p)=x

= 1/f (x).

Where a search is needed to find the point where F−1(p) = x .
Then the derivative can be derived using the derivative of the
polylogarithm function

f (x) =
p

Lis−1(p)

∣∣∣∣
Lis(p)=x

.


