What has the Riemann Zeta Function got to do
with Satellite Lifetimes

Matt Roughan <matthew.roughan®@adelaide.edu.au>
The University of Adelaide

2025


<matthew.roughan@adelaide.edu.au>

What are we doing today?

This talk arises out of a weird conjunction:
> Satellite lifetimes
» Quantile-based distributions
» The Polylogarithm Distribution



Satellite Lifetime Motivation

> Satellite lifetimes are big business
» more satellites being launched than ever before
» StarLink has launched over 7,000 in less than 10 years
> roughly $1 million (AU) per satellite
> Satellite lifetime controlled by
> failures
> fuel (loss from station keeping)
» planned end-of-lifetime
» If the planned end-of-lifetime could be longer, a lot of money
could be saved



Satellite Lifetime Data (Batthula et al., 2022)
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Satellite Lifetime Data (Batthula et al., 2022)
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Satellite Lifetimes

» We see

>
>
>

somewhat heavy-tail lifetime, but

truncated around 10 years (planned lifetime)

try to reduce space junk (estimates of around 30,000 objects
larger than 10cm)

» Seems like satellites might be being junked early

>

given more fuel, they could potentially live longer

» Weibull fit isn't doing great

>
>

>

Weibull and its generalisations are commonly used here

we want to hypothesize about the distribution if the artificial
constraint were removed

we want to do model identification not just model fitting



Quantile-based distributions

Mostly when we teach distribution theory, we
P start with discrete RVs defined using PMFs, e.g., geometric
» move onto continuous with PDFs
P note that these aren't always useful so we do CDFs

But we leave CDFs till late because they aren't intuitive???



Quantile-based distributions

Quantile-based distributions are an alternative

» Maybe it's more intuitive???

v

» when we report distributions we often use quantiles, e.g.,
median, IQR, box plots, ...
» mean and variance of little use for heavy-tailed distributions

We don’t have to create new variants by generalising existing
distribution (which is what most of the satellite lifetime work
has done)

These types of distributions have interesting properties
They are easy to simulate from

Easy to create classes of estimators



Quantile-based distributions

Roughly!, the quantile function is

Q(p) = FH(p),
where F(-) is the Cumulative Distribution Function (CDF).
Notes:
» For convenience Q(0) and Q(1) are defined to be support
» @ is non-decreasing and left-continuous
> We'll put parameters in subscripts, e.g., Qs
>

Q can easily add scale and location parameters, i.e.,

Qs,a,6(v) = a+ bQs(v)
» Simulation is by taking X; ~ U(0,1) and then

Ys = QS(XI)

'Actually, @(u) = inf{x € R | F(x) > u} for 0 < u < 1.



Quantile-based distributions — a question?

Does anyone have a reference for the following:

1

E[h(Y)] = /0 h(Qy(p))dp,



Quantile-based distributions examples

Distribution Parameters Quantile Function Support
Uniform(a, b) a<b Q(p) =a+ p(b—a) [a, b]
Exponential()) A>0 Q(p) = In(l —p) [0, 00)
Normal(u, o) o>0 Q(p) = u+ o d1(p) R
Logistic(u, s) s>0 Q(p)=pu+s In( ) R




The Tukey-\ distribution

Lo —(1-p)], ifA#£0,

p)
log ﬁ , if A\ =0,

Qlp;A) = {

where ) is the shape parameter.

It is unusual because:
> )\ > 0, the distribution has finite support; and

> )\ <0, the distribution has infinite support.

Notes:

» The distribution is symmetric about 0

P It interpolates across distributions: e.g.,
> )\ = —1: approximately Cauchy (heavy tailed)
> X =0: logistic
> )\ = 0.14: approximately normal
» X =1: uniform

> We don't have closed forms for many of its bits and pieces for

all \, but the numerical calculations aren't hard



The Tukey-\ distribution
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Alternatives?

» There aren't a lot of other distribution families defined by
their quantile (though we often have closed forms for the
quantile after the fact)

P In particular the Tukey-\ is symmetric — is there a one-sided
variant (other than trivial functional transformation)



The Polylogarithm Distribution (PLD)

So let’s define a one-sided (non-negative) distribution

P> Exponential is a good starting point

@x(p) = —In(1 —p)/A

» It's natural to generalise the log function with the
polylogarithm?

00 pk
QS(P) = Lis(P) = Z Ea (1)
k=1

where 0 < p<1landséeR.

» When s = 1 we get the power series for the exponential
distribution with A = 1 (as above)

2We can extend the polylogarithm to complex arguments and parameters
and outside of the range of the sum’s convergence through analytic
continuation, but we won’t need that here.



Polylogarithms

» Already used in some distributions, e.g.,
P Zeta distribution characteristic and probability generating
functions
» Fermi-Dirac and Bose-Einstein integrals
» Has a strong relationship to other important functions, e.g.,
» The Riemann zeta function

Lis(1) = ¢(s), for Re(s) > 1
» Bernoulli polynomials
» Polygamma functions
» Has lots of known properties

“...almost all the formulas relating to it, have something
of the fantastical in them, as if this function alone among
all others possessed a sense of humor.”, Don Zagier, 2007.



PLD: Properties

It has properties similar to the Tukey-A
» It has both finite and infinite support

» For s > 1 the distribution has finite support
» For 0 < s <1 it has infinite support but finite expectation
» For s < 0 the expectation is infinite
P For certain parameters we get other distributions
» for s > 8, it closely approximates the uniform distribution,
» for s ~ 1.6, it approximates the (non-negative) triangular
distribution,
» for s = 1.0, it is exactly the exponential distribution,
for s = 0.0, it is exactly an inverse beta distribution, and
» for large negative s, it approximates a generalised extreme
value distribution with infinite mean.

v



PLD: CDFs

cumulative distribution function

0 1 2 3 4 5
X

Calculated using a Golden Section search (280 pseconds).



PLD: PDFs
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PLD: Mean and Variance
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PLD: Support

Lis(0) = 0

lim Lis(z) =

z—1

Hence
supp(X;) = { {8: ES{]’

for s > 1,
otherwise,

for s > 1,
otherwise.



PLD: Mode and Median

» The mode is always at 0.0
This can be derived from the fact that second derivative of
the quantile function

Q' (p) = Lis2(P)p—2 Lisfl(p)v

is positive for all real s and 0 < p because the polylogarithm
function is decreasing with respect to s for 0 < p < 1.

» The median is (trivially) Qs(0.5)



PLD: Expectation

1
E[Ys]—/ Lis(x)dx
0
lim i ! /T “d
= 1l - X ax
Tole—~ ks Jo

i i Tk+1
= 1m —
T~ ks(k 4+ 1)

:{ Zf’:lm, for s >0,

o0, otherwise.



PLD: Expectation (Convergence Bound)

The sum is bounded by the Riemann zeta function

1
(k+1)st1

NE

((s+1)—-1=
k=1

> 1
= kz_:l (k+1)
=1
<D e
k=1
=((s+1). (3)

Where we know that the ((s + 1) is finite when Re(s) > 0



PLD: Expectation (Part Il)

When s is close to zero the series converges very slowly ®

However, we use integration by parts with %Lis(z) = Lis—1(2)/z
to get

E[X]=((s +1) = E[Xs4a],

so that we can calculate in a faster converging region



PLD: Higher Moments

» Tricky (numerically) but doable
» Care about singularity at z =1 needed for s < 1
» Need to use an alternative series expansion around z = 1 that
uses the Riemann zeta function
» Can prove bounds on finiteness of moments

» Interval [1 —1/n,1—1/(n+ 1)) has moments up to n all
finite, and the (n + 1)th moment infinite.



PLD: Fitting

» One of the aims here is that fitting the parameter replace
model identification

> We should use a fitting process matched to the definition

> We are working in the context of lifetime estimations, i.e.,
non-negative distributions (e.g., assume support starts at 0
and we don’t need a location parameter)

» For Tukey-\ folks use a probability-plot-correlation-coefficient
(PPCC) chart, but its visual and doesn't allow for a scale
parameter

» Instead use L-statistics, which are a linear combination of
order stats



PLD: Fitting

» Match ratio of IQR to median to the data (it's insensitive to
scale), i.e., choose § to match

IQR  Q:(0.75) — Q+(0.25)
m Qs(0.5) ’

The function is strictly increasing, so the search for § is
almost trivial.

» Then match scale parameter by taking Qp s = bQs with

3>

b=

@s(0.5)°

P> Generalise to a and 1 — « percentiles



PLD: Fit on simulated data

—&— s estimate
154 === true value
—%— b estimate

estimate

Positive bias for large s, but the distributions here are nearly
identical (uniform).



Back to Satellite Data
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Back to Satellite Data

» Fit using o = 0.25 resulting in
> shape § ~ —1.88 (so heavy-tailed, infinite mean)
» scale b ~ 38.05 (median 197 days)

» Much better fit to the body

» that's what we want here
> we want to model normal behaviour, because tail is artificially
truncated



What does it all mean?

» Planned fuel depletion is killing satellites before the hardware
wears out

» Extrapolation suggests that, given a satellite survives until 10
years, its chance of surviving an additional 10 years would be
over 90%. An additional 10 years and it only drops to 86%.

» If sufficient fuel were available, satellite lifetimes might be
easily doubled or even tripled

» current fuel accounts for around 10-25% of satellite mass at
launch



Conclusion

» Quantile-defined distributions have some interesting properties

» Polylogarithm is an ideal function to use in the quantile
definition because (i) so much is known about it, (ii) it is just
well-behaved enough, without being boring.

> Satellite lifetimes could be greatly extended with
comparatively little cost



Extra Slides



A Lemma

1
E[H(Y)) = | h(Q(r) dp

Proof.
Take random variable X ~ U(0, 1), and note that (where it exists)
the expectation of a function g(x) of a random variable is given by

Bl(X)] = [ g(x)dFx

Then note that we can create a random variable Y with quantile
function Q(p) by taking Y = Q(X) and hence when the integral
exists

1
E[H(Y)] = [ h(@0)dFx = [ h(Q(p)) .



PDF from Quantile

The density function f(x) can be computed by noting

dF 1
dp

=1/f(x).

F~=(p)=x

Where a search is needed to find the point where F~1(p) = x.
Then the derivative can be derived using the derivative of the
polylogarithm function




