

Polylogarithms in Julia

Prof Matthew Roughan, FIEEE, FACM
Director TRC, Uni Adelaide
[<matthew.roughan@adelaide.edu.au>](mailto:matthew.roughan@adelaide.edu.au)

TELETRAFFIC
RESEARCH
CENTRE

Why?

Julia is the cool new kid on the programming block

- It's fast
- It's clean

So I should know it, but you need to do, to know

- I wanted a task
- Shouldn't be easy
- Should make a contribution

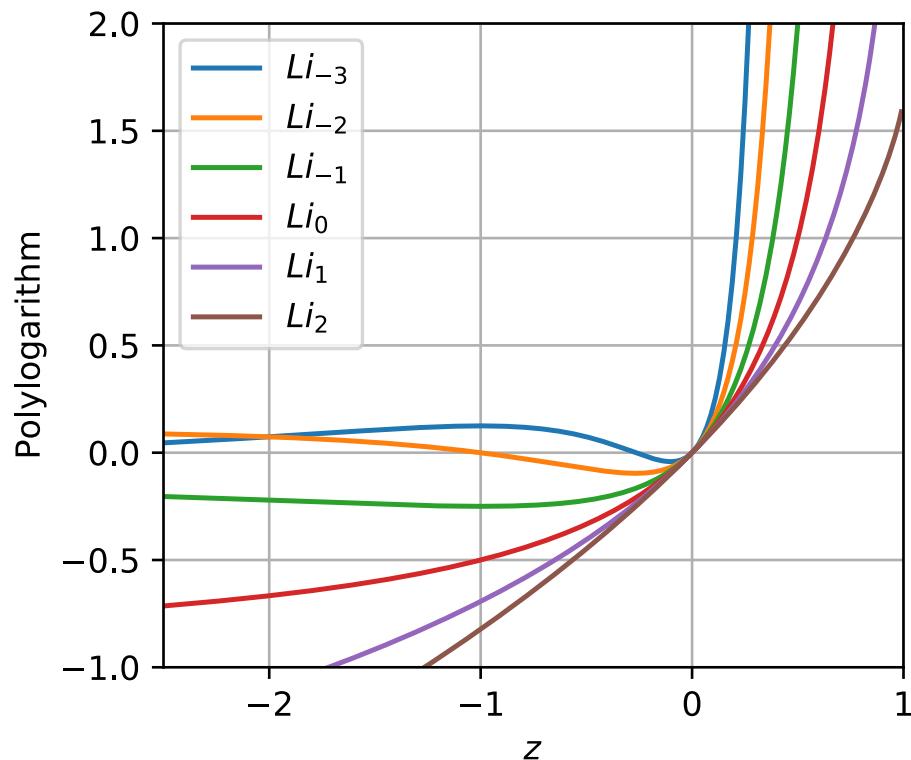
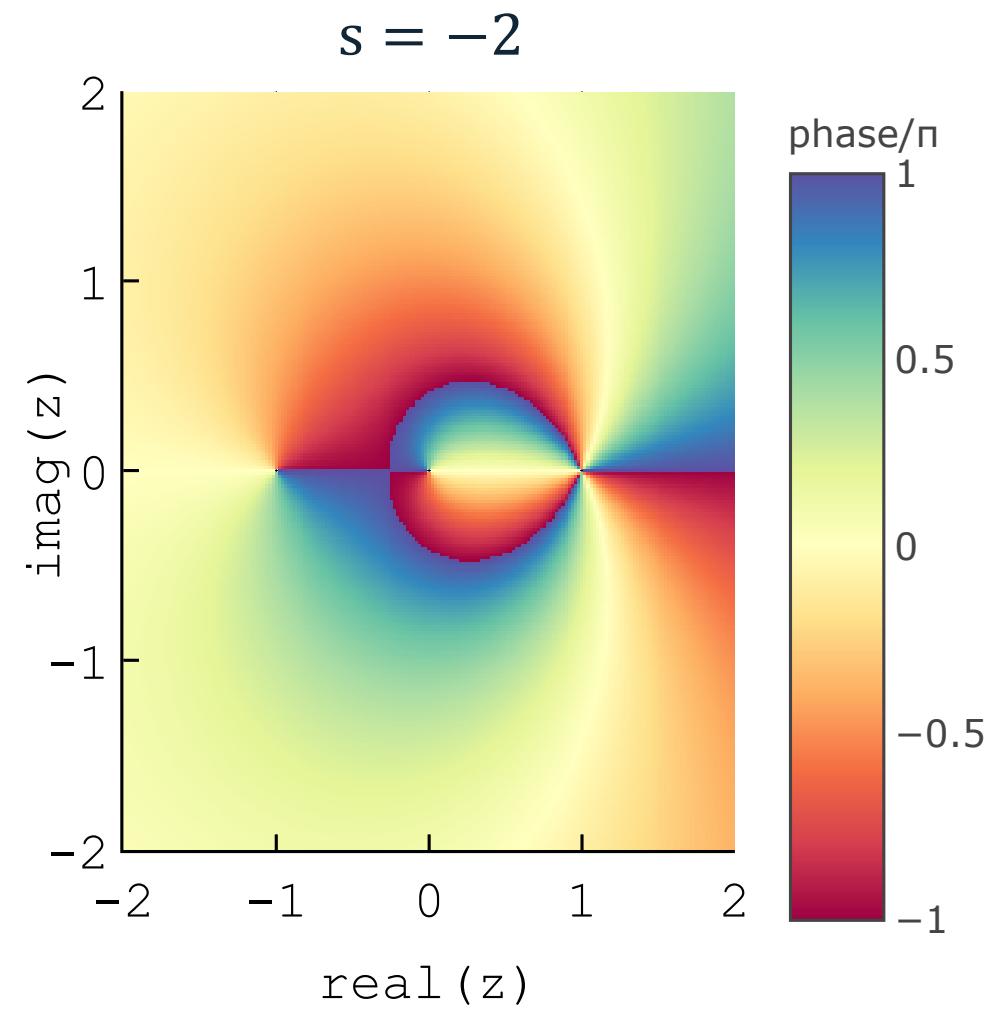
Polylogarithm function

$$Li_s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^s}$$

- Converges
 - $|z| < 1$ or $|z| \leq 1$ and $Re(s) \geq 2$
- Analytic continuation to complex plane
 - Except pole at $z = 1$ for $Re(s) < 2$

Polylogarithms

Integer s , real z



Polylogarithm Why?

Lots of uses and relationships

- Generalisation of \log ($s=1$)
- Riemann zeta function, ...
- Fermi-Dirac integrals, ...
- Probability
 - Moment generation function of zeta distribution
 - Part of probability mass fn for “Good” distribution
 - Moments of exponential-logarithm distribution

”almost all the formulae relating to it, have something of the fantastical in them, as if this function alone among all others possessed a sense of humor.” Zagier, 2007

Polylogarithm Calculations

- Should be simple, but actually it's a big mess
 - No-one explains it all
 - Lots of errors in the “literature”
 - Most is unpublished
- Almost no code available
 - Arbitrary precision code (Mathematica)
 - ❖ slow
 - ❖ proprietary
 - Code for $s=2,3$, or real z , or some other restricted domain
 - Python: integer s (or non-integral s for $|z|<1$)
 - Matlab: integer s (mostly, but seems some exceptions)
 - R: integer $s>-4$, z real, $|z|<1$

So I Wrote a Package

<https://github.com/mroughan/Polylogarithms.jl>

The easy bit is the calculation
once you correct all the errors

The hard bit is working out what to do where, and how much

Polylogarithm Calculations

1. Series around $z = 0$

$$Li_s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^s} \quad |z| < 1$$

2. Series around $z = 1$

$$Li_s(z) = \Gamma(1-s)(-\ln z)^{s-1} + \sum_{k=0}^{\infty} \frac{\zeta(s-k)}{k!} (\ln z)^k$$
$$|\ln z| < 2\pi$$

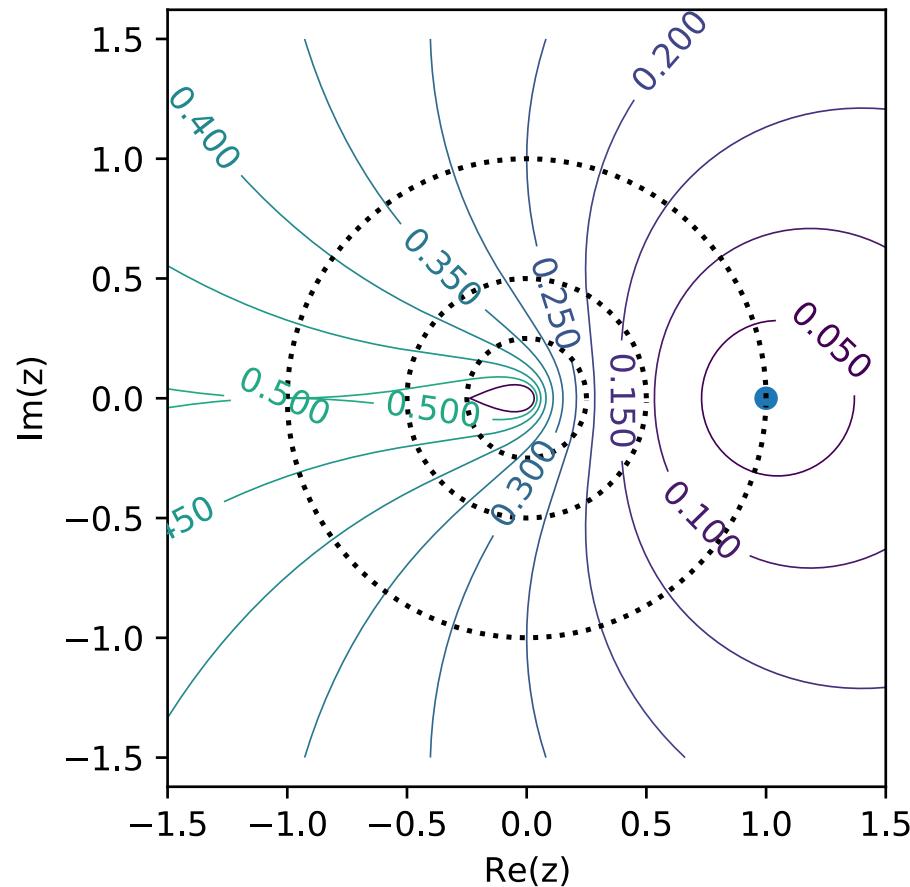
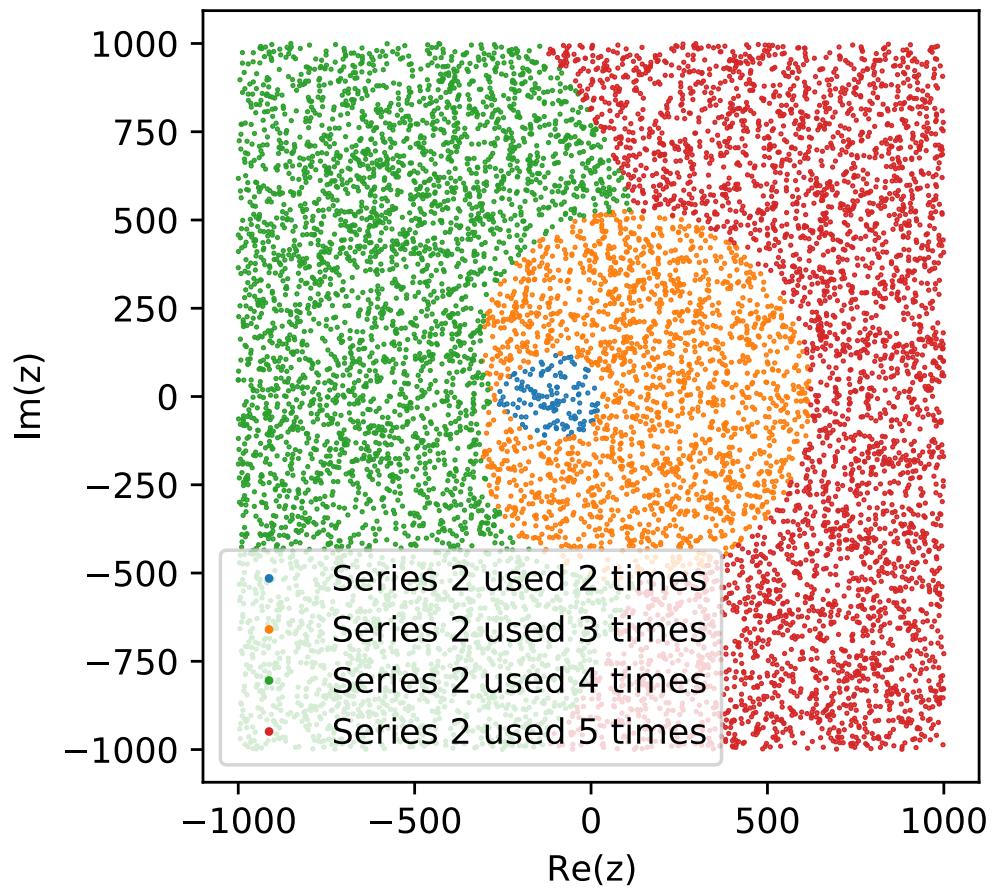
3. Series around $s = n > 0$

$$Li_{s+\tau}(z) = \frac{(\ln z)^{n-1}}{(n-1)!} Q_{n-1}(L, \tau) + \sum_{k=0}^{\infty} \frac{\zeta(n+\tau-k)}{k!} (\ln z)^k$$

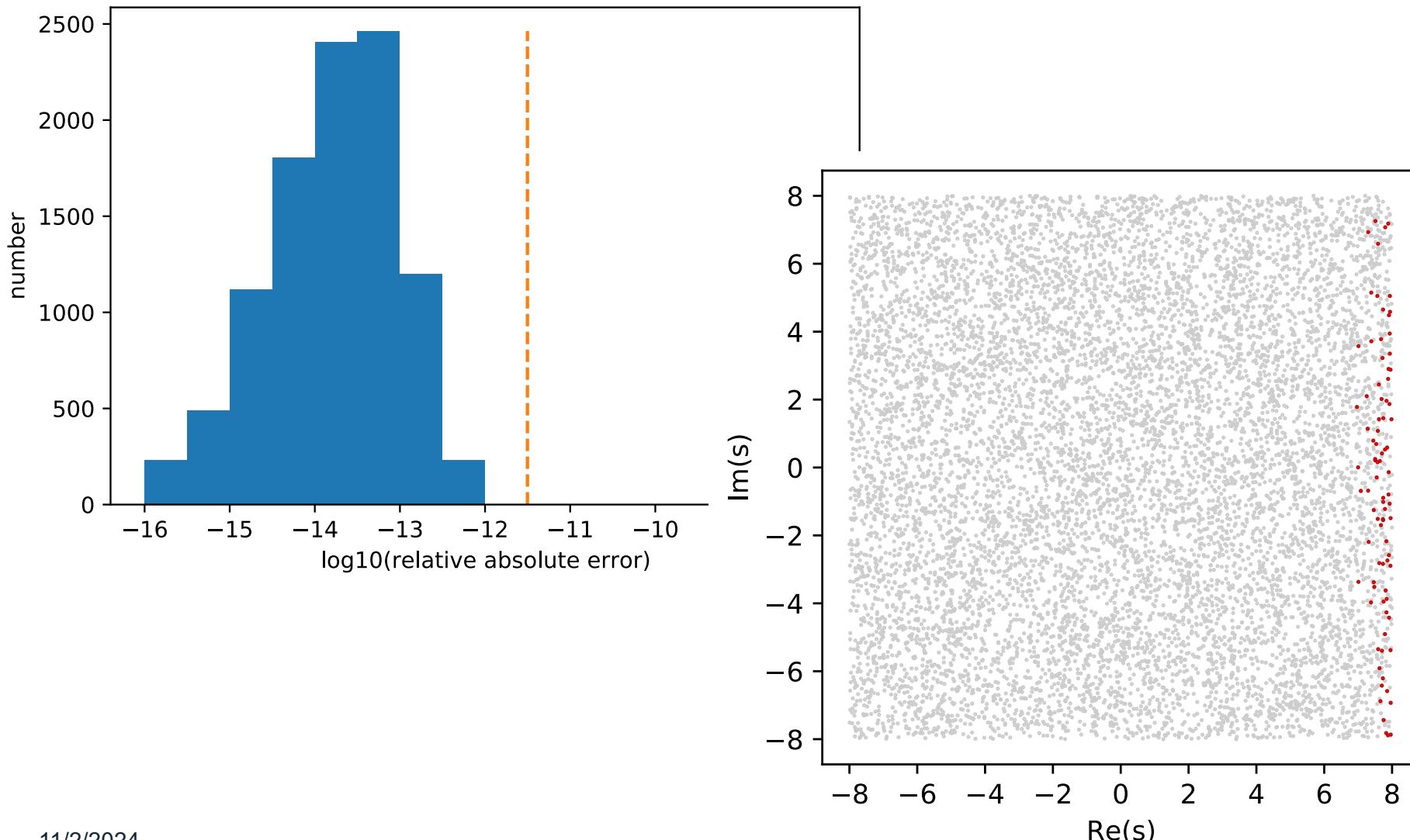
4. Duplication formula

$$Li_s(z) = 2^{s-1} [Li_s(\sqrt{z}) + Li_s(-\sqrt{z})]$$

Choosing the right sequence



Some results: accuracy



Some results: performance

Dataset*	Julia	Mathematica	$\zeta(s)$
[-1,1]	30.3 μs	1606.9 μs	1.0 μs
[-8,8]	41.3 μs	1790.0 μs	1.0 μs
[-1000,1000]	143.2 μs	1890.0 μs	0.8 μs

* = z drawn from a square in complex plane

Times measured on Intel i9-10900K CPU running in Julia v1.4.2 with v0.10.3 of the SpecialFunctions package, using a single core, running under Linux Mint 19.3.

<https://github.com/mroughan/Polylogarithms.jl>

Conclusion

It works

But not 100%

- Failures for $\operatorname{Re}(s) > 8$ and large z
- Probably bad cancellation
- There's another formula to try – didn't work the first time but improvement in the underlying Julia package might help

<https://arxiv.org/pdf/2010.09860.pdf>

Extras: I didn't tell you everything

Stopping criteria

- Sequence needs to be decreasing (in magnitude)
- Relative size of summation term $\leq 0.5 a$. ($a=1.0e-12$)

Extra functions

$$Q_n(L, \tau) = c_{n,0}(L) + \tau c_{n,1}(L) + \dots$$

$$\text{where } L = \ln(-\ln(z))$$

c is complicated and recursive, but only need a few terms

$$c_{n,0} = H_n - L$$

$$c_{n,1} = -\gamma_1 - \frac{(\psi(n+1)-L)^2}{2} - \left(\frac{\pi^2}{6} - \frac{\psi^{(1)}(n+1)}{2} \right)$$

$$c_{n,2} = \text{complicated} \dots$$

Speed is important

I wanted a job that would be painful in Matlab

