
Polylogarithms in Julia

Prof Matthew Roughan, FIEEE, FACM
Director TRC, Uni Adelaide
<matthew.roughan@adelaide.edu.au>

1

11/2/2024 2

Why?
Julia is the cool new kid on the programming block

o It’s fast

o It’s clean

So I should know it, but you need to do, to know
o I wanted a task

o Shouldn’t be easy

o Should make a contribution

✗

11/2/2024 3

Polylogarithm function

o Converges
𝑧 < 1 or 𝑧 ≤ 1 and 𝑅𝑒 𝑠 ≥ 2

o Analytic continuation to complex plane
• Except pole at 𝑧 = 1 for 𝑅𝑒 𝑠 < 2

𝐿𝑖! 𝑧 = %
"#$

%
𝑧"

𝑘!

11/2/2024 4

Polylogarithms

-2 -1 0 1 2
-2

-1

0

1

2

−1

−0.5

0

0.5

1
phase/π

real(z)

im
ag

(z
)

Integer s, real z
s = −2

11/2/2024 5

Polylogarithm Why?
Lots of uses and relationships

o Generalisation of log (s=1)

o Riemann zeta function, …

o Fermi-Dirac integrals, …

o Probability
o Moment generation function of zeta distribution

o Part of probability mass fn for “Good” distribution

o Moments of exponential-logarithm distribution

”almost all the formulae
relating to it, have
something of the
fantastical in them, as if
this function alone
among all others
possessed a sense of
humor.” Zagier, 2007

11/2/2024 6

o Should be simple, but actually it’s a big mess

• No-one explains it all

• Lots of errors in the “literature”
• Most is unpublished

o Almost no code available
• Arbitrary precision code (Mathematica)

v slow

v proprietary

• Code for s=2,3, or real z, or some other restricted domain

• Python: integer s (or non-integral s for |z|<1)

• Matlab: integer s (mostly, but seems some exceptions)

• R: integer s>-4, z real, |z|<1

Polylogarithm Calculations

11/2/2024 7

So I Wrote a Package
https://github.com/mroughan/Polylogarithms.jl

The easy bit is the calculation
 once you correct all the errors

The hard bit is working out what to do where, and how much

11/2/2024 8

Polylogarithm Calculations

𝐿𝑖! 𝑧 = *
"#$

%
𝑧"

𝑘!

𝐿𝑖! 𝑧 = 2!&$ 𝐿𝑖! √𝑧 + 𝐿𝑖! −√𝑧

𝐿𝑖! 𝑧 = Γ 1 − 𝑠 −ln	𝑧 !&$ +	*
"#'

%
𝜁 𝑠 − 𝑘

𝑘! (ln	𝑧)"

𝐿𝑖!() 𝑧 =
ln	𝑧 *&$

𝑛 − 1 ! 𝑄*&$(𝐿, 𝜏) +	*
"#'

%
𝜁 𝑛 + 𝜏 − 𝑘

𝑘! (ln	𝑧)"

𝑧 < 1

ln 𝑧 < 2	𝜋

1. Series around 𝒛 = 𝟎

2. Series around 𝒛 = 𝟏

3. Series around 𝒔 = 𝒏 > 𝟎

4. Duplication formula

11/2/2024 9

Choosing the right sequence

11/2/2024 10

Some results: accuracy

11/2/2024 11

Some results: performance
Dataset* Julia Mathematica 𝜻 𝒔
[-1,1] 30.3 𝜇𝑠 1606.9 𝜇𝑠 1.0 𝜇𝑠
[-8,8] 41.3 𝜇𝑠 1790.0 𝜇𝑠 1.0 𝜇𝑠
[-1000,1000] 143.2 𝜇𝑠 1890.0 𝜇𝑠 0.8 𝜇𝑠

* = z drawn from a square in complex plane

Times measured on Intel i9-10900K CPU running in Julia v1.4.2 with v0.10.3 of the
SpecialFunctions package, using a single core, running under Linux Mint 19.3.

11/2/2024 12

Conclusion
It works

But not 100%

• Failures for Re(s)>8 and large z

• Probably bad cancellation

• There’s another formula to try – didn’t work the first time but
improvement in the underlying Julia package might help

https://github.com/mroughan/Polylogarithms.jl

https://arxiv.org/pdf/2010.09860.pdf

12/2/2024 13

Extras: I didn’t tell you everything
Stopping criteria

o Sequence needs to be decreasing (in magnitude)

o Relative size of summation term ≤ 0.5 𝑎. (a=1.0e-12)

Extra functions

𝑄* 𝐿, 𝜏 = 𝑐*,' 𝐿 + 𝜏 𝑐*,$ 𝐿 + …
 where 𝐿 = 	ln(−ln 𝑧)
 c is complicated and recursive, but only need a few terms

𝑐",$ = 𝐻" − 𝐿

𝑐",% = −𝛾% −
& "'% () !

*
	− +!

,
	− & " ("'%)

*
𝑐",* = 𝑐𝑜𝑚𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑑	…

11/2/2024 14

Speed is important
I wanted a job that would be painful in Matlab

