

Randomly Surreal (Numbers)

Prof Matthew Roughan, FIEEE, FACM
Director TRC, Uni Adelaide
matthew.roughan@adelaide.edu.au

TELETRAFFIC
RESEARCH
CENTRE

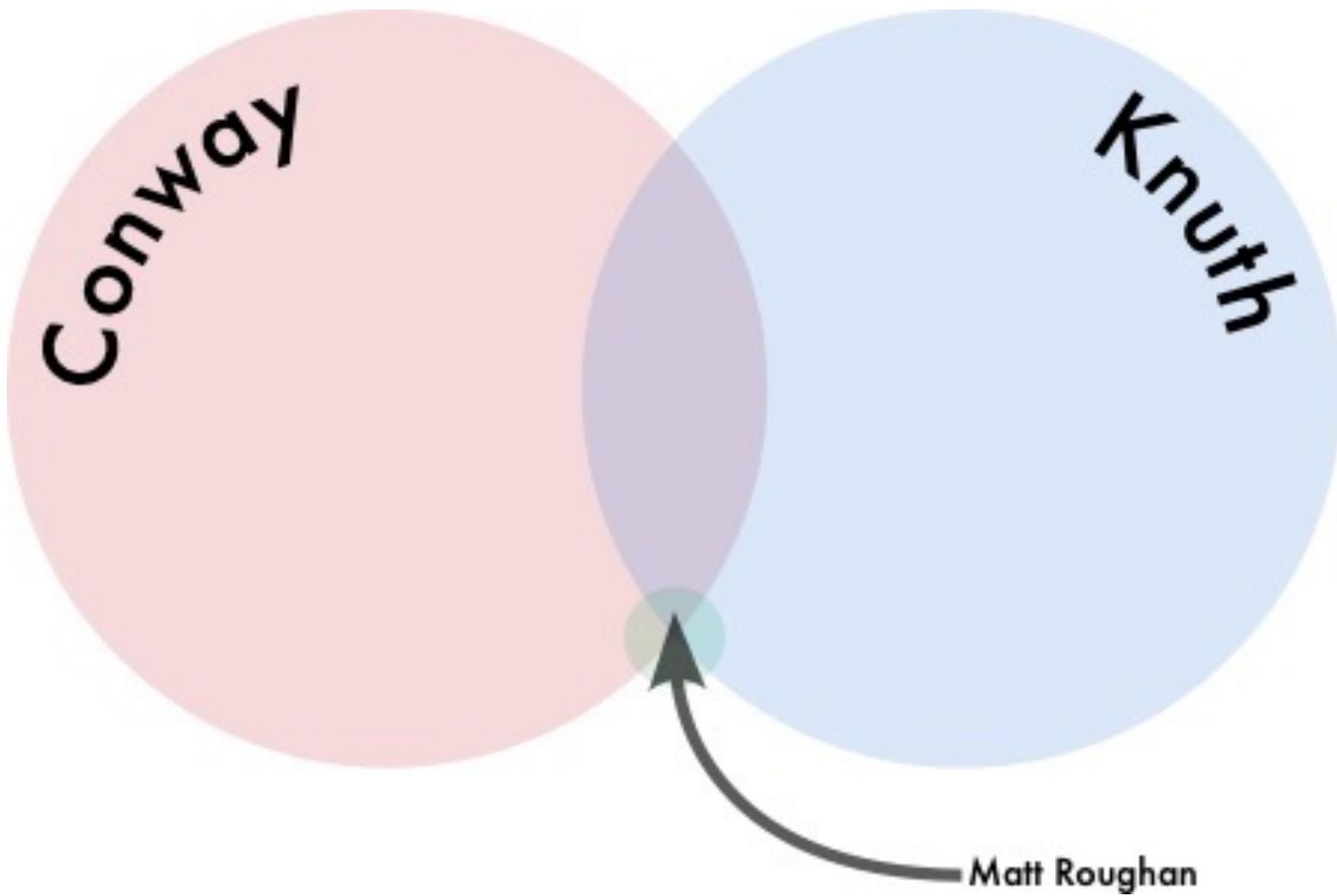
Why?

Julia is the cool new kid on the programming block

- It's fast
- It's clean

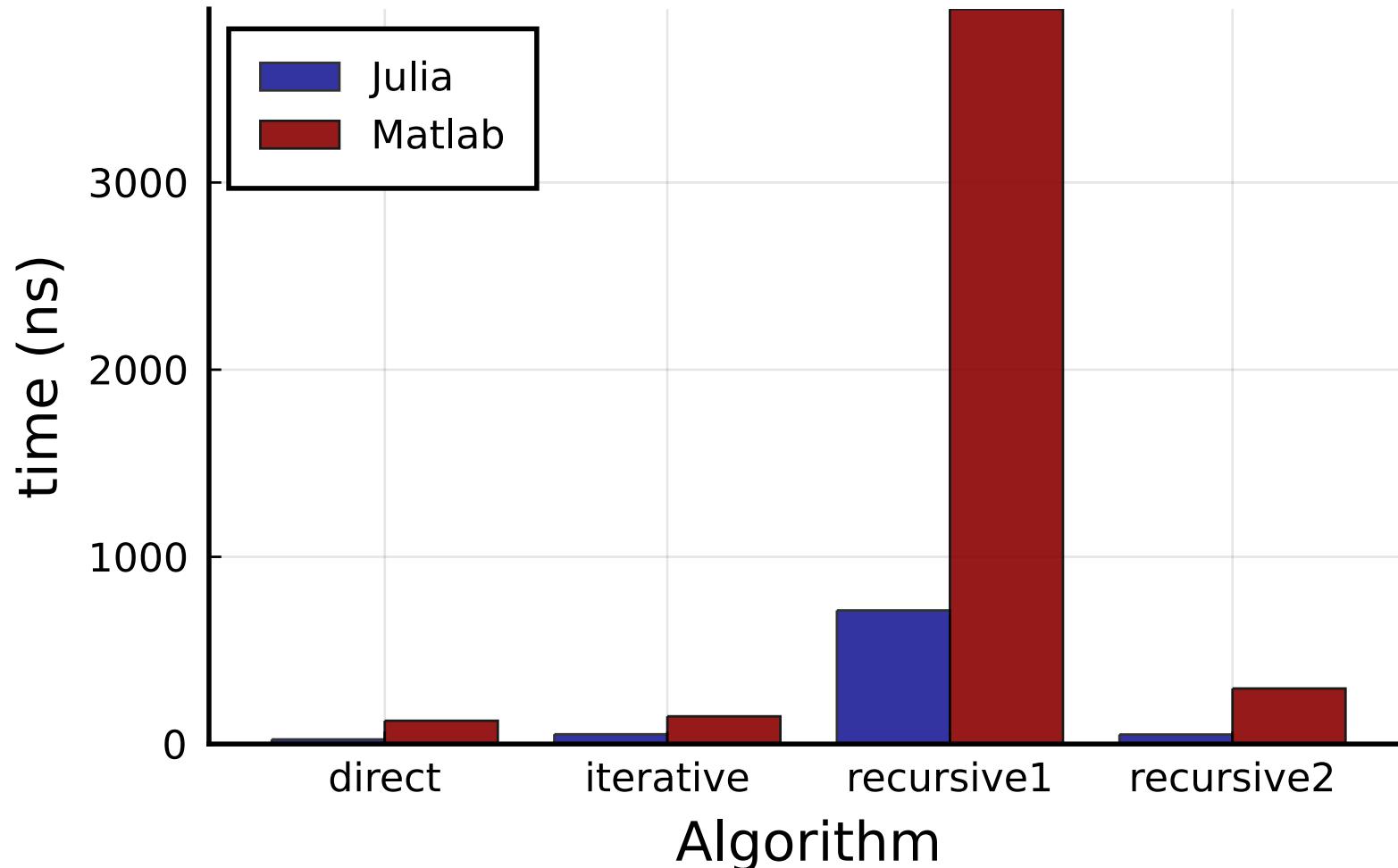
So I should know it, but you need to do, to know

- I wanted a task
- Shouldn't be easy
- Should make a contribution



Recursion

I wanted a job that would be painful in Matlab



Surreal Numbers

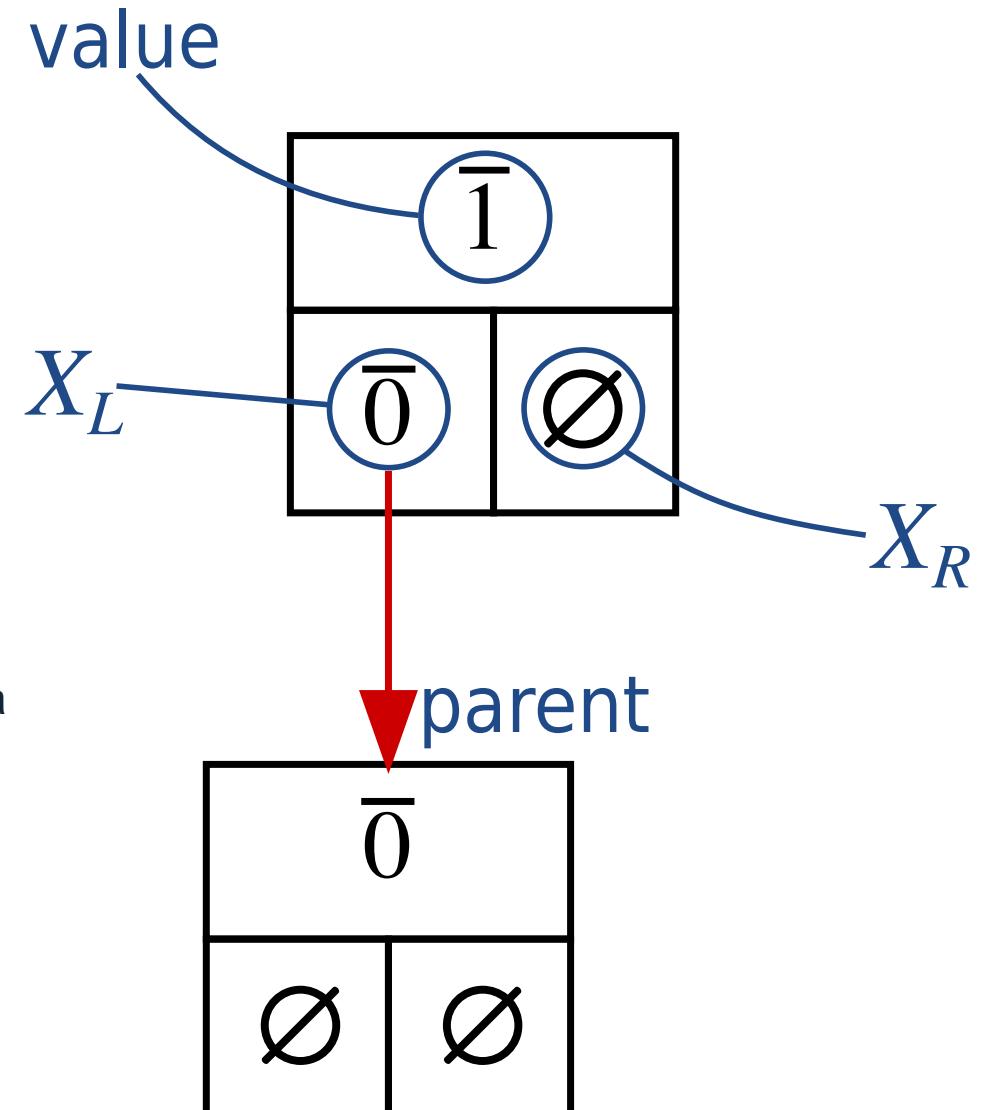
A surreal number x is

- A left and right set of surreal numbers $\{X_L \mid X_R\}$
- Such that no element of X_L is \geq any element of X_R

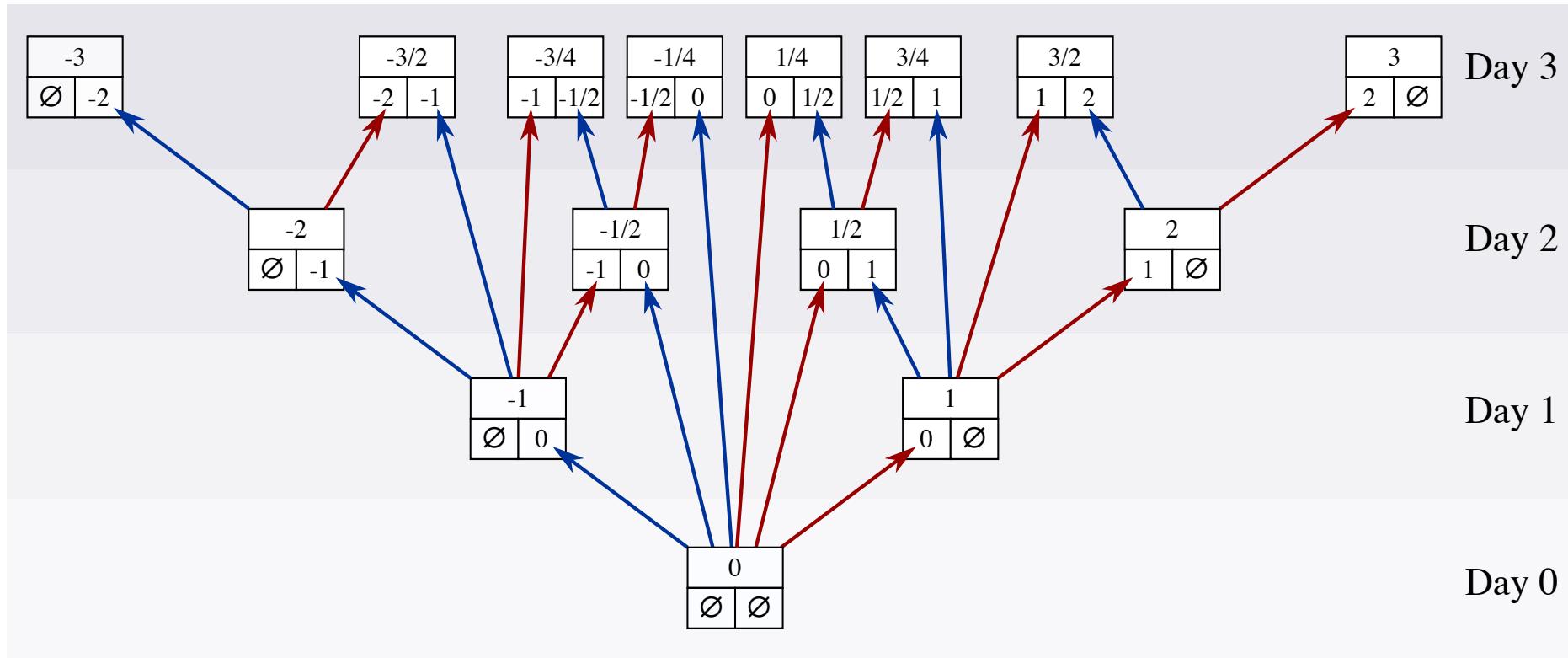
We can represent a surreal number as a
DAG

Directed
Acyclic
Graph

With left and right labels on the edges.
Note that empty sets are OK, so $0 = \{\mid\}$ is always the root



The dyadic canonicals



Every dyadic $k/2^n$ can be constructed using the “dyadic tree”

I am only working with dyadic, but ...

There are multiple constructions for numbers, but I call this canonical and indicate by and overline

But They Get Complicated Real Fast

Addition

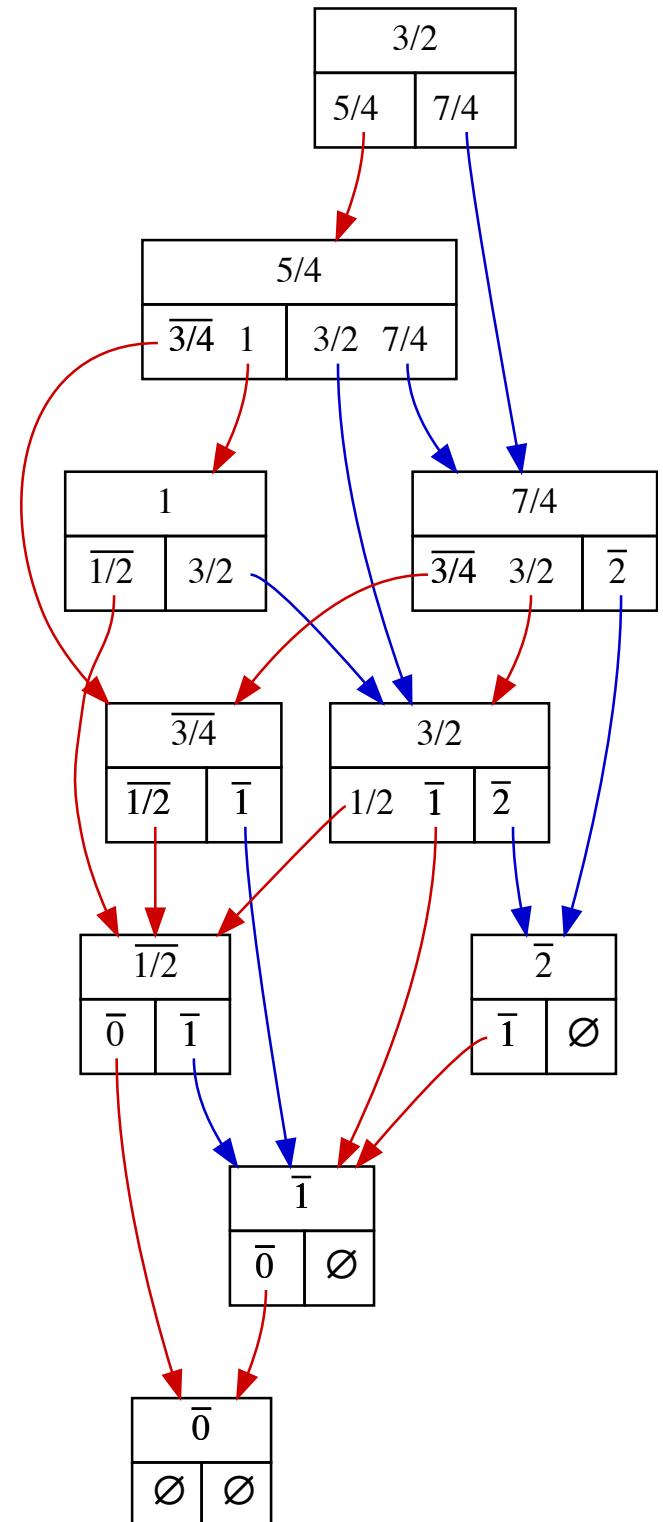
$$x + y = \{X_L + y \cup x + Y_L \mid X_R + y \cup x + Y_R\}$$

So

$1 + \frac{1}{2} =$

$$\{\{\{\emptyset \mid \emptyset\} \mid \{\{\emptyset \mid \emptyset\} \mid \emptyset\}\}, \{\{\emptyset \mid \emptyset\} \mid \emptyset\} \mid \{\{\{\emptyset \mid \emptyset\} \mid \emptyset\} \mid \emptyset\}\}$$

$$\text{And } \frac{3}{4} + \frac{3}{4} \Rightarrow$$



So I Wrote a Package

<https://github.com/mroughan/SurrealNumbers.jl>

But how do you check a package?

- There isn't an existing one to compare to
- The existing examples are either
 - Too simple
 - Too complex*
- Goal: Create random ensemble with controlled complexity

* = complexity \approx generation

Synthesis Algorithm (abbrev.)

```
for i = 1 to m do ▵ create a new clade  $C_i$ 
    for j = 1 to n do ▵ create a new surreal  $x_{\{ij\}}$ 
        Generate a number of parents  $n_p \sim D_p(\lambda)$ 
        Select a set of  $n_p$  surreals from  $C_{\{i-1\}}$ 
            according to the weighting  $w(g(x))$ 
        Sort the parents into a list  $P$ 
        Choose a split point  $s \sim D_s(n_p)$ 
         $X_L \leftarrow \{ P[1, \dots, s] \}$ 
         $X_R \leftarrow \{ P[s+1, \dots, n_p] \}$ 
         $x_{\{ij\}} \leftarrow \{ X_L | X_R \}$ 
    end for
end for
```

Generation Distribution

Naively you might expect generation to grow with I

- Injecting more “depth” into each generation

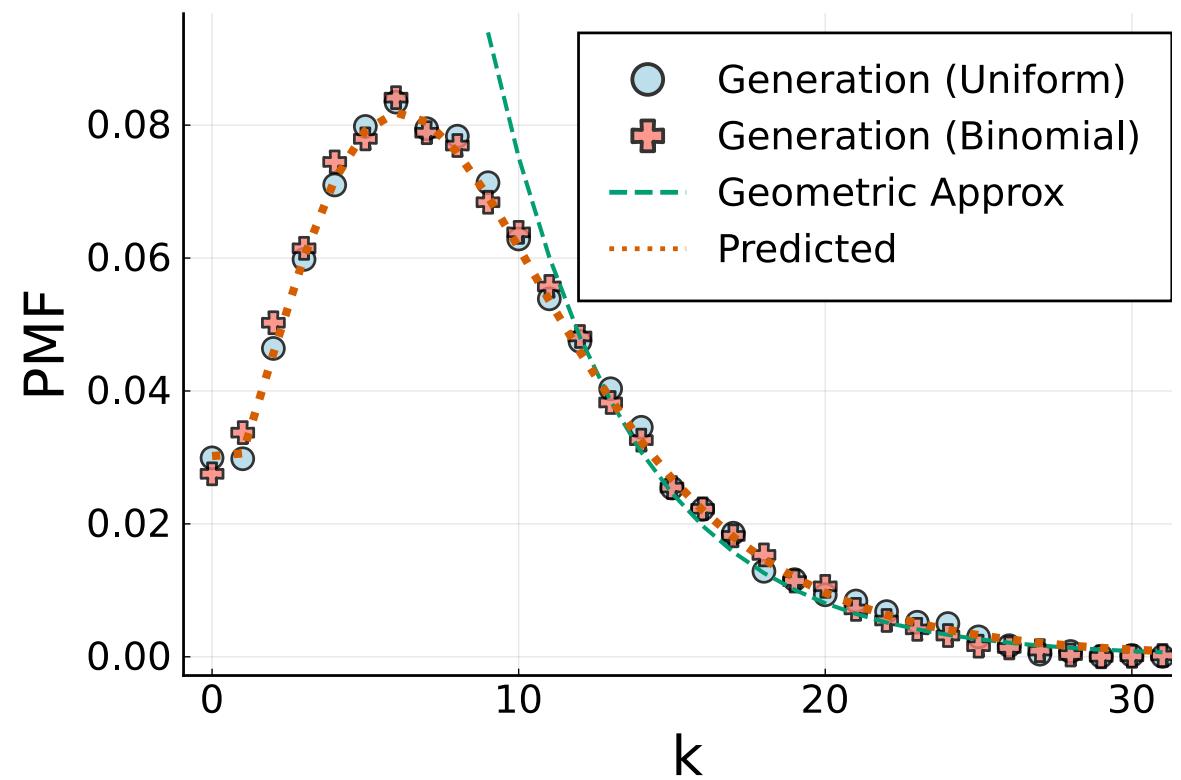
With weighting distribution $w(g) \propto \alpha^g$ there is a push back

We can show

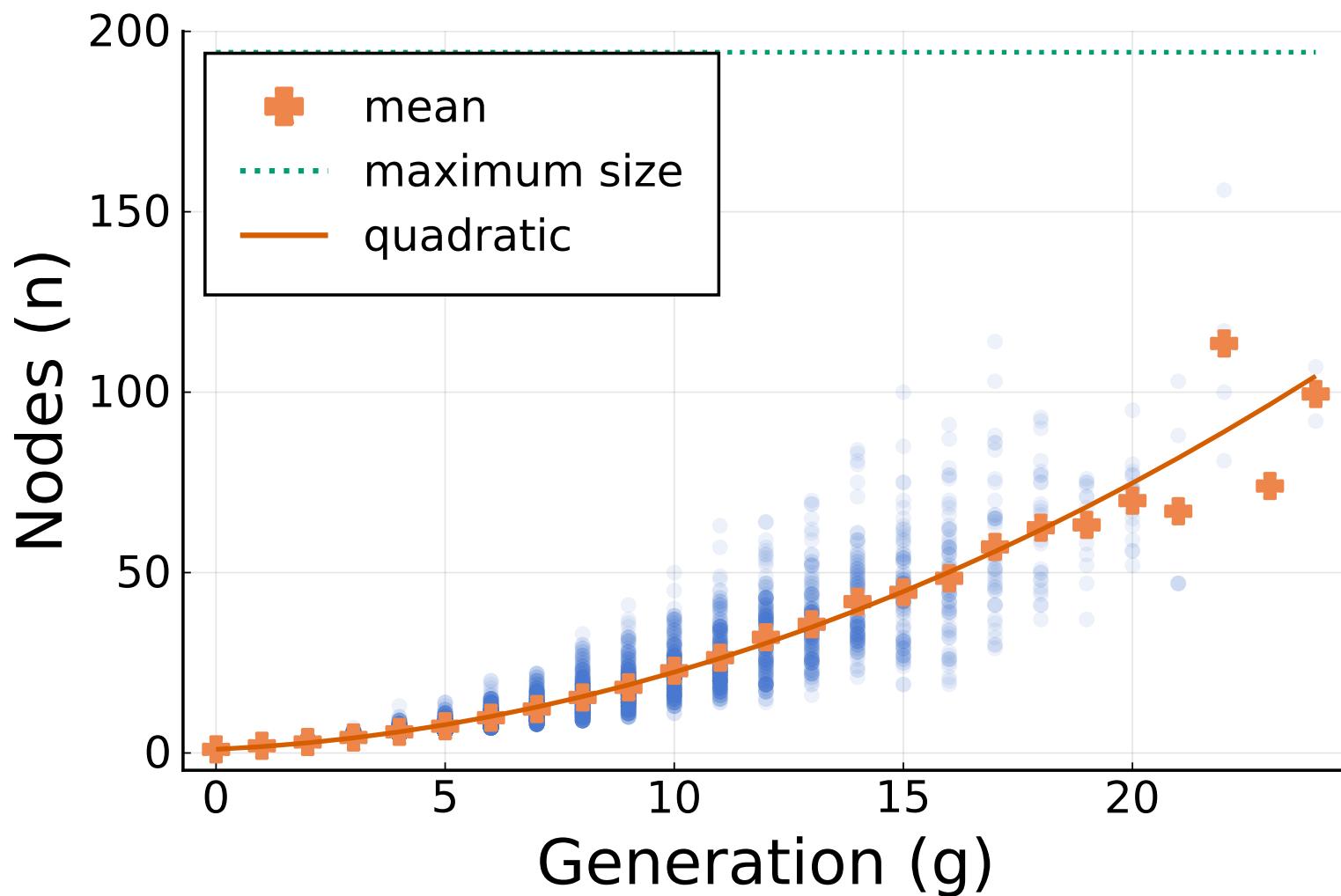
$$P\{ g(x) \leq k \} = e^{-\lambda \alpha^k}$$

- Has a geometric tail
- Expectation

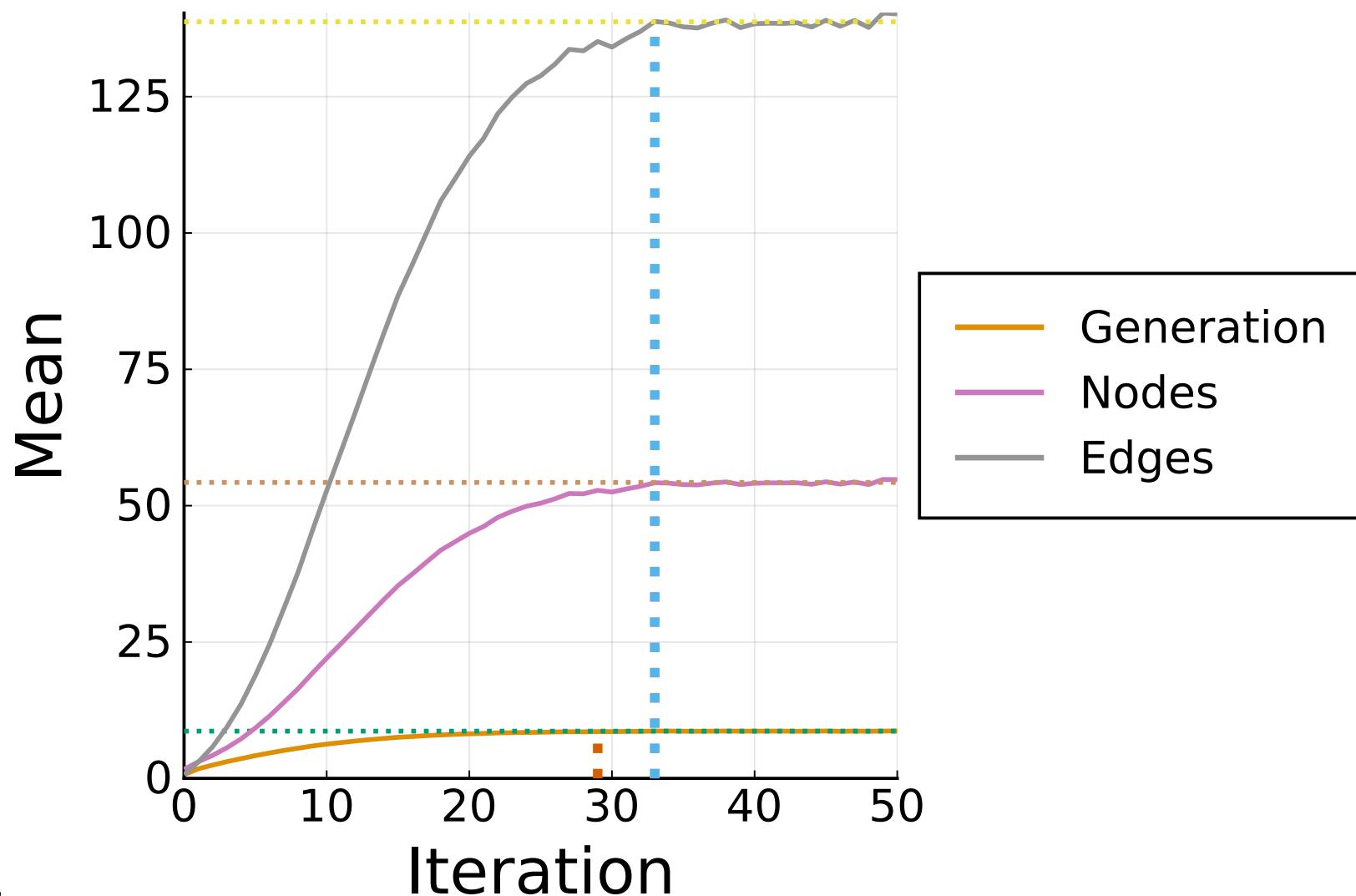
$$\approx \frac{1}{\log \alpha} (\log(\lambda) - E_1(\lambda) + \gamma)$$



Node-size



Convergence (in a weak sense)



<https://github.com/mroughan/SurrealNumbers.jl>

Conclusion

We did it to debug

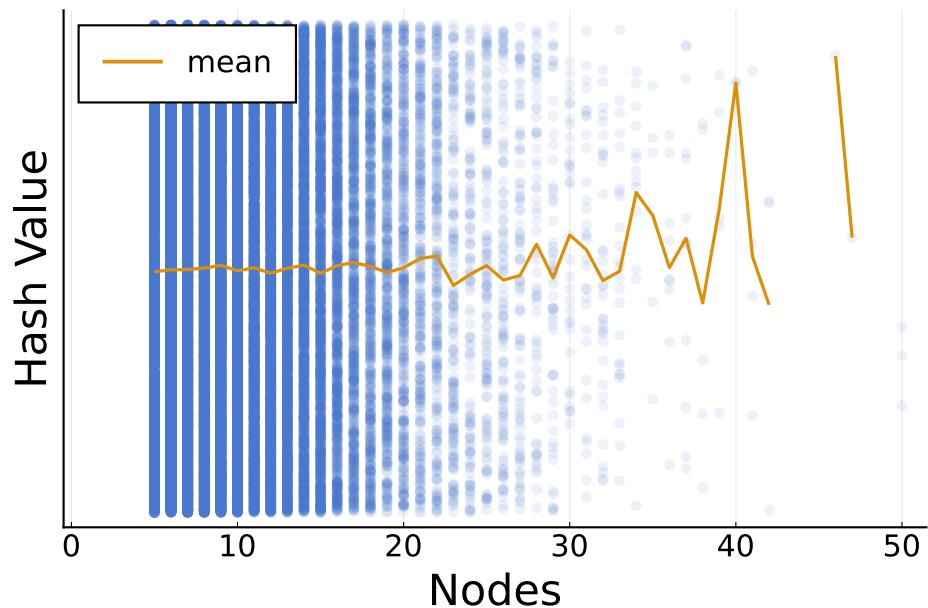
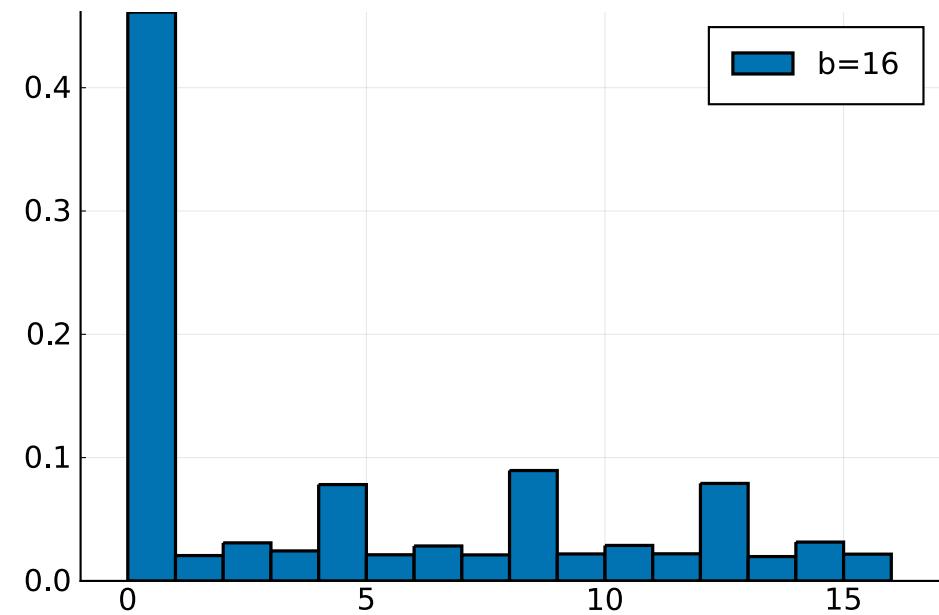
- Found 1 bug (1 in a 10 billion cases triggered the bug)
- Hash function in package has a bad feature (will fix)

What next

- Seems interesting
 - Generalize
 - More maths to come, e.g., distributional properties
 - Maybe useful in generating hypotheses about the surreals

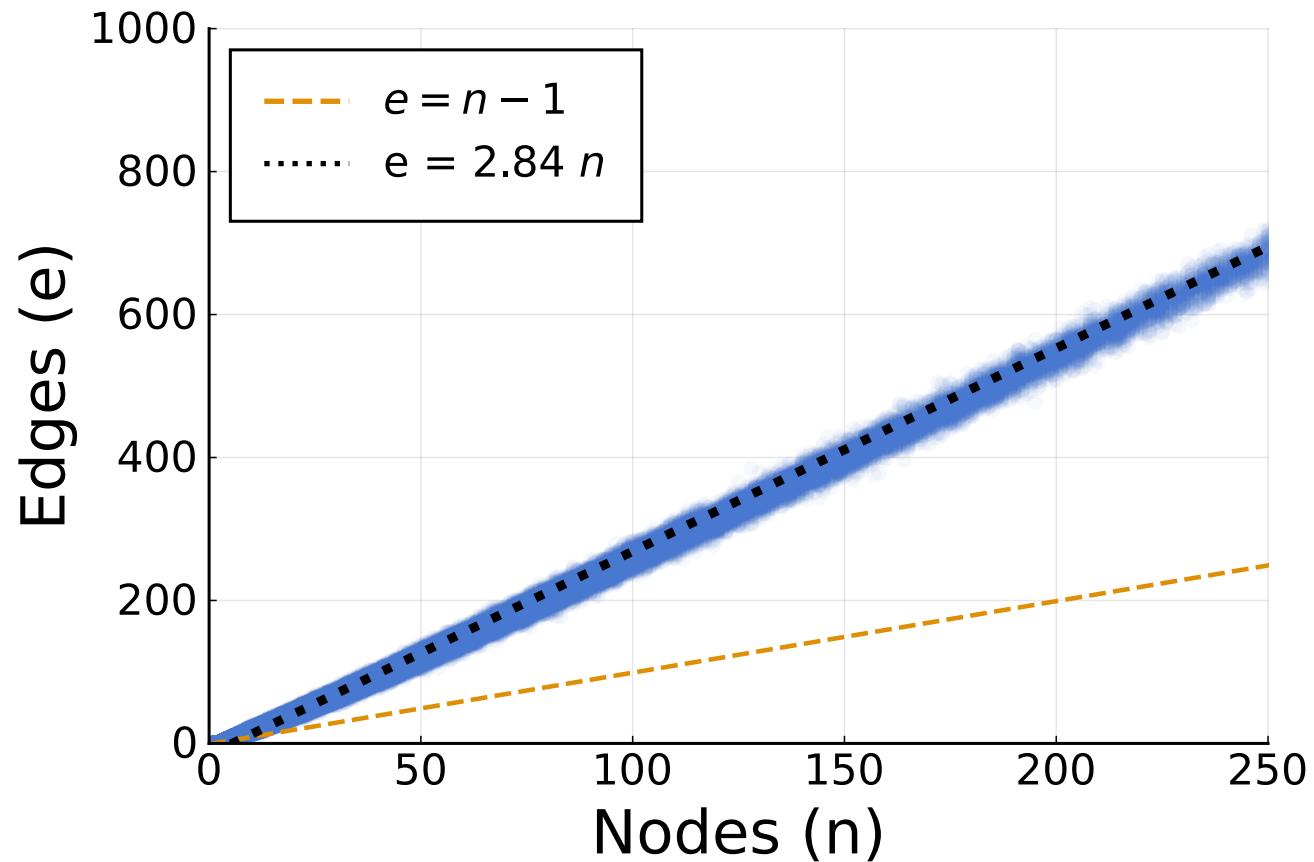
Extra Result

Hashes



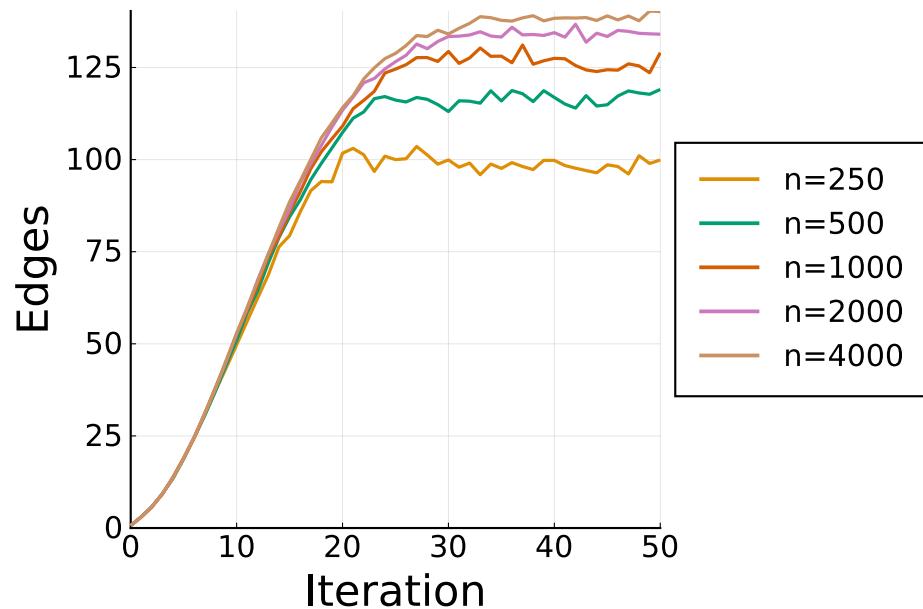
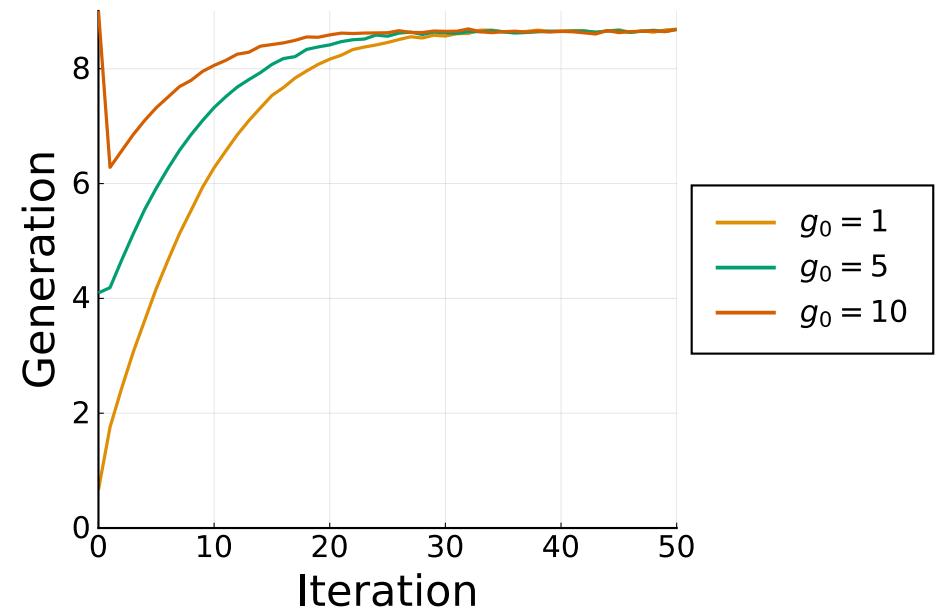
Extra Result

Edges



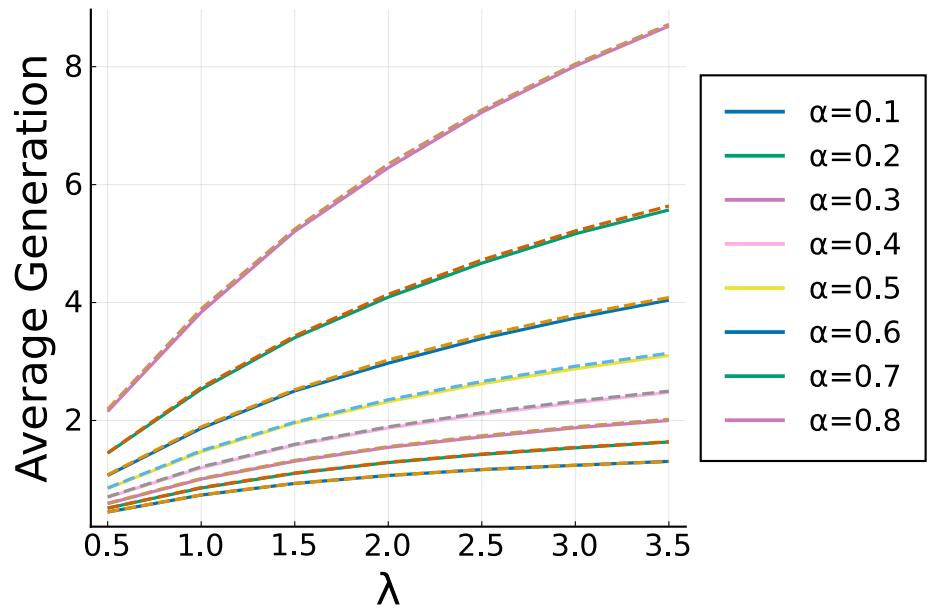
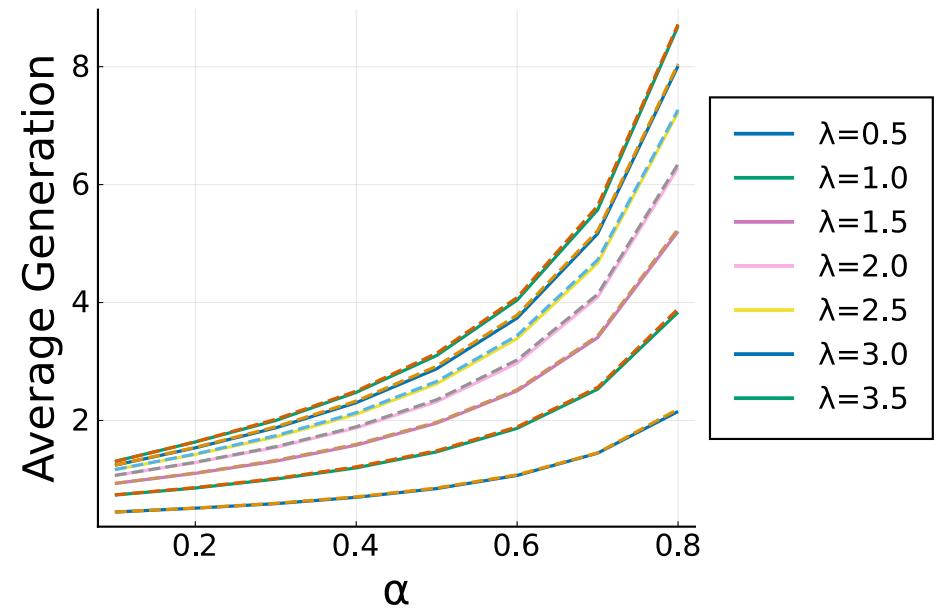
Extra Result

Convergence (n=population size, g_0= starting max gen)



Extra Results

Expectation



Extra Results

Convergence time

