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Why?
Julia is the cool new kid on the programming block

o It’s fast

o It’s clean

So I should know it, but you need to do, to know
o I wanted a task

o Shouldn’t be easy

o Should make a contribution

✗
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Recursion
I wanted a job that would be painful in Matlab
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Surreal Numbers
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A surreal number x is
• A left and right set of surreal 

numbers {XL | XR}
• Such that no element of XL is ≥
	any element of XR

We can represent a surreal number as a 
DAG
 Directed
 Acyclic
 Graph
With left and right labels on the edges.
 Note that empty sets are OK, so
 0 = { | } is always the root
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The dyadic canonicals
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Every dyadic 𝑘/2! can be constructed using the “dyadic tree”
 I am only working with dyadic, but …
There are multiple constructions for numbers, but I call this canonical and 
indicate by and overling
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But They Get 
Complicated Real Fast
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Addition 
𝑥 + 𝑦 = 𝑋! + 𝑦 ∪ 	𝑥 + 𝑌!	 𝑋"+ 𝑦 ∪ 	𝑥 + 𝑌_𝑅}

So 

1 + ½ = 
{{{∅ | ∅} | {{∅ | ∅} | ∅}}, {{∅ | ∅} | ∅} | {{{∅ | ∅} | ∅} | ∅}} 

                                                 And  
!
"
+ !

"
⇒
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So I Wrote a Package
https://github.com/mroughan/SurrealNumbers.jl

But how do you check a package? 
o There isn’t an existing one to compare to

o The existing examples are either

• Too simple

• Too complex*

o Goal: Create random ensemble with controlled complexity

* = complexity ≈ generation
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Synthesis Algorithm (abbrev.)
for i = 1 to m do ◃ create a new clade 𝑪𝒊

for j = 1 to n do ◃ create a new surreal 𝒙 𝒊𝒋

Generate a number of parents 𝒏𝒑 ∼ 𝑫𝒑 𝝀
Select a set of 𝒏𝒑 surreals from 𝑪 𝒊$𝟏

according to the weighting w(g(x)) 

Sort the parents into a list P
Choose a split point 𝒔 ∼ 𝑫𝒔(𝒏𝒑)

𝑿𝑳 ← { 𝑷 𝟏,… , 𝒔 }

𝑿𝑹 ← { 𝑷 𝒔 + 𝟏,… , 𝒏𝒑 }

𝒙 𝒊𝒋 ← 𝑿𝑳 𝑿𝑹}

end for

end for
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Generation Distribution
Naively you might expect generation to grow with I

• Injecting more “depth” into each generation

With weighting distribution 𝒘 𝒈 ∝ 𝜶𝒈 there is a push back
We can show

𝑷 𝒈 𝒙 ≤ 𝒌 = 𝒆4𝝀𝜶𝒌

• Has a geometric tail

• Expectation

≈ 𝟏
678 𝜶

(log 𝝀) − 𝑬𝟏(𝝀) + 𝜸
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Node-size
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Convergence (in a weak sense)
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Conclusion
We did it to debug

o Found 1 bug (1 in a 10 billion cases triggered the bug)

o Hash function in package has a bad feature (will fix)

What next
o Seems interesting

• Generalize

• More maths to come, e.g., distributional properties

• Maybe useful in generating hypotheses about the surreals

https://github.com/mroughan/SurrealNumbers.jl
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Extra Result
Hashes
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Extra Result
Edges
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Extra Result
Convergence (n=population size, g_0= starting max gen)
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Extra Results
Expectation
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Extra Results
Convergence time


