
Randomly Surreal (Numbers)

Prof Matthew Roughan, FIEEE, FACM
Director TRC, Uni Adelaide
<matthew.roughan@adelaide.edu.au>

1 of 83

11/2/2024 2

Why?
Julia is the cool new kid on the programming block

o It’s fast

o It’s clean

So I should know it, but you need to do, to know
o I wanted a task

o Shouldn’t be easy

o Should make a contribution

✗

11/2/2024 3

11/2/2024 4

Recursion
I wanted a job that would be painful in Matlab

11/2/2024 5

Surreal Numbers

1

0 ∅

0

∅ ∅

value

XR

XL

parent

A surreal number x is
• A left and right set of surreal

numbers {XL | XR}
• Such that no element of XL is ≥
	any element of XR

We can represent a surreal number as a
DAG
 Directed
 Acyclic
 Graph
With left and right labels on the edges.
 Note that empty sets are OK, so
 0 = { | } is always the root

11/2/2024 6

The dyadic canonicals

Day 0

Day 1

Day 2

Day 3

-1
0∅

-1
0∅

-2
-1∅

-1/2
0-1

-3
-2∅

-3/2
-1-2

-3/4
-1/2-1

1
0 ∅

-1
0 ∅

-1/4
0-1/2

1/2
0 1

3
2 ∅

2
1 ∅

3/2
1 2

3/4
1/2 1

0
∅∅

1/4
0 1/2

Every dyadic 𝑘/2! can be constructed using the “dyadic tree”
 I am only working with dyadic, but …
There are multiple constructions for numbers, but I call this canonical and
indicate by and overling

11/2/2024 7

But They Get
Complicated Real Fast

3/2

5/4 7/4

5/4

3/4 1 3/2 7/4

7/4

3/4 3/2

1/2

1

3/2

3/2

1/2 2

1

0 ∅

0

∅ ∅

1 ∅

0

111

0

111

111

2

0

2111111

2

1/2

1/2

3/4

3/41/2

3/4

Addition
𝑥 + 𝑦 = 𝑋! + 𝑦 ∪ 	𝑥 + 𝑌!	 𝑋"+ 𝑦 ∪ 	𝑥 + 𝑌_𝑅}

So

1 + ½ =
{{{∅ | ∅} | {{∅ | ∅} | ∅}}, {{∅ | ∅} | ∅} | {{{∅ | ∅} | ∅} | ∅}}

 And
!
"
+ !

"
⇒

11/2/2024 8

So I Wrote a Package
https://github.com/mroughan/SurrealNumbers.jl

But how do you check a package?
o There isn’t an existing one to compare to

o The existing examples are either

• Too simple

• Too complex*

o Goal: Create random ensemble with controlled complexity

* = complexity ≈ generation

11/2/2024 9

Synthesis Algorithm (abbrev.)
for i = 1 to m do ◃ create a new clade 𝑪𝒊

for j = 1 to n do ◃ create a new surreal 𝒙 𝒊𝒋

Generate a number of parents 𝒏𝒑 ∼ 𝑫𝒑 𝝀
Select a set of 𝒏𝒑 surreals from 𝑪 𝒊$𝟏

according to the weighting w(g(x))

Sort the parents into a list P
Choose a split point 𝒔 ∼ 𝑫𝒔(𝒏𝒑)

𝑿𝑳 ← { 𝑷 𝟏,… , 𝒔 }

𝑿𝑹 ← { 𝑷 𝒔 + 𝟏,… , 𝒏𝒑 }

𝒙 𝒊𝒋 ← 𝑿𝑳 𝑿𝑹}

end for

end for

11/2/2024 10

Generation Distribution
Naively you might expect generation to grow with I

• Injecting more “depth” into each generation

With weighting distribution 𝒘 𝒈 ∝ 𝜶𝒈 there is a push back
We can show

𝑷 𝒈 𝒙 ≤ 𝒌 = 𝒆4𝝀𝜶𝒌

• Has a geometric tail

• Expectation

≈ 𝟏
678 𝜶

(log 𝝀) − 𝑬𝟏(𝝀) + 𝜸

11/2/2024 11

Node-size

11/2/2024 12

Convergence (in a weak sense)

11/2/2024 13

Conclusion
We did it to debug

o Found 1 bug (1 in a 10 billion cases triggered the bug)

o Hash function in package has a bad feature (will fix)

What next
o Seems interesting

• Generalize

• More maths to come, e.g., distributional properties

• Maybe useful in generating hypotheses about the surreals

https://github.com/mroughan/SurrealNumbers.jl

11/2/2024 14

Extra Result
Hashes

11/2/2024 15

Extra Result
Edges

11/2/2024 16

Extra Result
Convergence (n=population size, g_0= starting max gen)

11/2/2024 17

Extra Results
Expectation

11/2/2024 18

Extra Results
Convergence time

