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e From unsollicited traffic
Detecting Outages using Internet Background Radiation.
Andréas Guillot (U. Strasbourg), Romain Fontugne (I1J),
Pascal Mérindol (U. Strasbourg), Alberto Dainotti (CAIDA),
Cristel Pelsser (U. Strasbourg). Under submission.

e From large-scale traceroute measurements
Pinpointing Anomalies in Large-Scale Traceroute
Measurements. Romain Fontugne (I1J), Emile Aben (RIPE
NCC), Cristel Pelsser (University of Strasbourg), Randy Bush
(11, Arrcus). IMC 2018.

e From highly distributed permanent TCP connections
Disco: Fast, Good, and Cheap Outage Detection. Anant Shah
(Colorado State U.), Romain Fontugne (I1J), Emile Aben
(RIPE NCC), Cristel Pelsser (University of Strasbourg), Randy
Bush (IlJ, Arrcus). TMA 2017.



Understanding Internet health? (Motivation)

e To speedup failure identification and thus recovery

e To identify weak areas and thus guide network design
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Understanding Internet health? (Problem 1)

Manual observations and operations

Traceroute / Ping / Operators’' group mailing lists

e Time consuming

Slow process

Small visibility

— Our goal: Automaticaly pinpoint network disruptions
(i.e. congestion and network disconnections)



Understanding Internet health? (Problem 2)

A single viewpoint is not enough

5 Operator
'_) Traceroute
— Our goal: mine results from deployed platforms

— Cooperative and distributed approach
— Using existing data, no added burden to the network

5/61



Understanding Internet health? (Problem 3)

Identify the right granularity

ooooooooooooo

Japanese traffic for the March 2011 earthquake, Miyagi prefecture
(top) and nationwide (bottom) Cho et al., CoNext 2011



Outage detection from unsollicited
traffic



Dataset: Internet Background Radiation

Internet

P1 is advertised to
the Internet
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Dataset: Internet Background Radiation
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Internet

Scans, responses P1 is advertised to
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Dataset: Internet Background Radiation

Spoofed traffic

Sends traffic with
source in P1
‘
Scans, responses P1 is advertised to
to spoofed traffic the Internet

Internet
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Dataset: Internet Background Radiation

Spoofed traffic

spoofed traffic
source in P1

Internet

Scans responses P1is advertlsed to
to soofed traffic the Internet
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Dataset: IP count time-series (per country or AS)

Use cases: Attacks, Censorship, Local outages detection
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Figure 1: Egyptian revolution

= More than 60 000 time series in the CAIDA telescope data.
We use drops in the time series are indicators of an outage.



Current methodology used by IODA

Day

Night

Warning

Alarm

Detecting outages using fixed thresholds
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Day

Night

Outage Detection Threshold

Detecting outages using dynamic thresholds
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Outage detection process
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Outage detection process
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utage detection process
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e When the real data is outside the prediction interval, we raise
an alarm.

e We want a prediction model that is robust to the seasonality
and noise in the data.
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The SARIMA model

S : Seasonal — Remove trends
AR : AutoRegressive (p)

| : Integrated — Normalize mean and variance
MA : Moving Average (q)
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Figure 2: Original time series
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T RIMA model

S : Seasonal — Remove trends
AR : AutoRegressive (p)

| : Integrated — Normalize mean and variance
MA : Moving Average (q)
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Figure 2: Our original time series
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Figure 3: Differentiated time series — removed non-stationarity 13 /61



The SARIMA model

S : Seasonal

AR : AutoRegressive (p) — Predict based on past values
| : Integrated

MA : Moving Average (q) — Predict based on past errors
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°
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Figure 2: Differentiated time series — removed non-stationarity
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Our approach

1 Splitting the 2 Finding the 3 Detection on
data set best parameters the test set
e Training with
different p and
g to predict the
validation set

Training Validation Test
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Figure 3: Different data sets
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Our approach

1 Splitting the 2 Finding the 3 Detection on
data set best the test set
parameters

e Minimizing the
regression error
(best p and q)

a Training Validation Test
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Figure 3: Making predictions on the validation set (AR =4, MA = 1)
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Our approach

1 Splitting the 2 Finding the 3 Detection on
data set best parameters the test set

e Detecting and
correcting
outages

Training Validation Test
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Figure 3: Predicting and inpainting the test set to preserve the integrity
of the model
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utage detection

Definition of an outage

e Points below the prediction interval

Training Validation
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Figure 4: Analyzing the test set with the best model (AR =4, MA=1)
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Validation: ground truth

Characteristics

e 130 known outages
e Multiple spatial scales

e Countries
e Regions
e Autonomous Systems

e Multiple durations (from an hour to a week)

e Multiple causes (intentional or non intentional)
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Evaluating our solution

Objectives
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Figure 5: ROC curve
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Goal

e Detecting worldwide Internet outages

Data Source
e Internet background radiation, a passive source with global
coverage
Solution used

e SARIMA, a time series forecasting technique



Outage detection from large-scale
traceroute measurements




Dataset: Traceroutes from RIPE Atlas

Actively measures Internet connectivity

e Ethernet port

e Automatically perform active
measurements: ping, traceroute,
DNS, SSL, NTP and HTTP P Goeshce

e All results are collected by RIPE
NCC
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RIPE Atlas: coverage

9300+ active probes!

® Connected
Disconnected
® Abandoned

SOUTH >
\]\lrl‘lb " “
oa ® b ¢ s
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- o®
®

21/61



RIPE Atlas: traceroutes

Two repetitive large-scale measurements
e Builtin: traceroute every 30 minutes to all DNS root servers

(= 500 server instances)

e Anchoring: traceroute every 15 minutes to 189 collaborative

Servers

Analyzed dataset

e May to December 2015
e 2.8 billion IPv4 traceroutes

e 1.2 billion IPv6 traceroutes



nitor delays with traceroute?

Traceroute to “www.target.com”

~$ traceroute www.target.com

traceroute to target,

0.775 ms
0.351 ms
2.833 ms
3.

4 Target 447 ms

Probe

30 hops max,

0.779 ms
0.365 ms
3.201 ms
3.863 ms

0

0.
Sho
5

byte packets
ms
ms
ms

Round Trip Time (RTT) between B and C?
Report abnormal RTT between B and C?



Monitor delays traceroute?

Challenges: 300 Traceroutes from CZ to BD
. ; ; . . 3
250 1 ,
e Noisy data 2000 , , S | § ]
E L]
= 150 | : . . l |
100} . 1
50| I ,
0 R -~ a 8 l g
0 2 4 6 8 10 12

Number of hops
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Monitor delays with traceroute?

300 i Trgceroute§ from C; to BD i .

250

200} : ! -.l'l

L]
150 | : :

.

L]

100 -

RTT (ms)

50| : :
Challenges: oL 8 o a2 8 8 l ‘ ‘ ‘

Number of hops

e Noisy data

e Traffic
asymmetry

e Packet loss

x Dropped packet
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What is the RTT between B and C?

~$ traceroute www.target.com
traceroute to target, 30 hops max, 6@ byte packets
1 A 0.775 ms 0.779 ms ©0.874 ms

2B 0.351 ms 0.365 ms 0.364 ms
3 NG 2.833 ms 3.201 ms 3.546 ms
4 Target 3.447 ms 3.863 ms 3.872 ms

/\B/\

721D
QP < &—w
Probe Target

RTTc - RTTg = RTT¢g?



What is the RTT between B and C?

’$’ <= Return path
T— 8%
Pro '\‘7\ /}‘/ Target

] ""‘
*

‘. D

0."

RTTc - RTTg = RTTcg?

e No!
e Traffic is asymmetric

e RTTg and RTT¢ take different return paths!
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What is the RTT between B and C?

» Forward path

\(- = Return path
/\_/\ L

|7
Probe \/\ / Target

’

RTTc - RTTg = RTTcg?

e No!
e Traffic is asymmetric
e RTTg and RTT¢ take different return paths!

o Differential RTT: Acg = RTT¢c — RTTg = dgc + &
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Problem with differential RTT

» Forward path

<= Return path

>/

ﬁh

&
Probe \/\ o Target

’

*

Monitoring A over time:

30 -
20 -

10
0

ARTT

Time

— Delay change on BC? CD? DA? BA?7??
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Proposed Approach: Use probes with different return paths

Differential RTT: Acg = xg
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Proposed Approach: Use probes with different return paths

Differential RTT: Acg = {x0,x1}
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Proposed Approach: Use probes with different return paths

Differential RTT: A = {Xo,Xl,X27X3,X4}

& &
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*
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A
71N
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Po Y., R Target
* +*
* *
0‘ 1 1 *
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Proposed Approach: Use probes with different return paths

Differential RTT: Acg = {x0, x1, X2, X3, X4 }

& @ @

Median Acp: e Stable if a few return paths delay change

e Fluctuate if delay on BC changes
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Median Diff. RTT: Tierl link, 2 weeks of data, 95 probes

130.117.0.250 (Cogent, Zurich) - 154.54.38.50 (Cogent, Munich)
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e Stable despite noisy RTTs e Normally distributed

(not true for average)
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Detecting congestion

72.52.92.14 (HE, Frankfurt) - 80.81.192.154 (DE-CIX (RIPE))

B 25/[§ } Median Diff. RTT

£ 15L|== Normal Reference

% 10(| * * Detected Anomalies

’g 5

s O

5 -5 12000
-10
°

w?

Significant RTT changes:

Confidence interval not overlapping with the normal reference
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Packet loss

, & (2]

Probe Target

Worst case: router is not responding

e Cannot obtain RTT values
e Need to identify the faulty link
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Packet forwarding model

Learn usual paths from past traceroutes:

Past traceroutes
O-:/\\i

- TN
— <> 4
%

— — e N\
“\/‘f_/\ S

/\_/% Model
1 00% 0% 100%
20%




Identifying faulty links

In case of packet loss:

—’—"e
—x

Query the model for the expected next hop

/B/% Model
@ 100% 100%
\\ K\J

— Link AB is dropping packets!
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Analyzed dataset

e Atlas builtin/anchoring measurements
e From May to Dec. 2015
o Observed 262k IPv4 and 42k IPv6 links

We found a lot of congested links!
Let's see only two significant examples
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Study case: DDoS on DNS root servers

Two attacks: A omcame ot s AT TR e e wioue

Networks

Internet's root servers take hit in DDoS attack

PY N oV 30t h 20 1 5 Who's testing the limits of the DNS system?

8Dec 2015 1 2310, Kieren McCarty i cks | Vulnerabilties

o Dee. lstt 201 s ((@The Hacker News

m PR————
A I ost a I I servers crkocemmmnema B someone Just Tried to Take Down Internet's
Mo i o he ot s rceve . iy .
e camecsons maeaume. Backbone with 5 Million Queries/Sec
- e s

are anycas t N

Ubmatey the operators afected byt e Gur 157 Y = v o0 Bwes
proper analysis i now underway 0 iscow

Of perhaps most concern s th fact hat 1
dealwith such an atack,  umber o the s

e Congestion at e TSI e bocibone

Due o the et desion,the servers e

the 531 sites? e

DNS Root Servers Hit by a
o s ok e csn 50 Massi A k
e Found 129 assive Cyber Attac

instances altered
by the attacks

Someone just DDoSed one of the most criical organs of the Internet anatomy - The
Internet's DNS Root Servers

Early last week, a flood of as many as 5 Million queries per second hit many of the Internet's
DNS (Domain Name System) Root Servers that act as the authoritative reference for mapping
‘domain names to IP addresses and are a total of 13 in numbers.

The attack, commonly known as Distributed Denial of Service (DDoS) atack, took place on
two separate occasions.

The first DDoS attack to the Internet's backbone oot servers launched on November 30 that

lasted 160 minutes (almost 3 hours), and the second one started on December 1 that lasted
almost an hour.

Massive Attacks Knocked Many of the 13 Root Servers Offline

35/61

‘The DDOS attack was able to knock 3 out of the 13 DNS root servers of the Internet offline for a



Observed congestion

193.0.14.129 (K-root) - 74.208.6.124 (1&1, Kansas City)

12
B ‘g { 1 Median Diff. RTT
E  ¢l|=1 Normal Reference
% 4% * Detected Anomalies i
-
$ o0
-4
&P © 2 & %10\6 9@\6 @@\5 \”&\6
o e e e RGeS ¢
% 72.52.92.14 (HE, Frankfurt) - 80.81.192.154 (DE-CIX (RIPE)) e Certain servers are
25¢(§ § Median Diff. RTT
20
;

= Normal Reference aﬂ:eCted Only by one
attack

e Continuous attack in

Russia

Differential RTT (ms)
NOEODND©D

)
)

3
2
2
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Unaffected root servers

193.0.14.129 (K-root) - 212.191.229.90 (Poznan, PL)

0.14 ‘ ‘
3 o012}
- B T g 8
= oo MY H R S
£ ool 1 { Median Diff. RTT ”1 I HT
% _8:32: = Normal Reference i
-0.04 ‘ ‘ :
o° o° o o° o o°
o ®* N @ o " w? ’ o # o ’

Very stable delay during the attacks

e Thanks to anycast!

e Far from the attackers
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Study case: Telekom Malaysia BGP leak

GOVERIHENT T

itnews

Australia's internet hit hard by
massive Malaysian route leak

Telekom Malaysia apologises for BGP
bungle.

@ [T wwwhbgpmon.netimas

Massive route leak caus

es Internet slowdown

posted by 4

Earlier today a massive route leak initiated by Telekom Malaysia (A54788) caused significan
network problems for the global routing system. Primarily affected was Level3 (AS3549 -
formerly known as Global Crossing) and their customers. Below are some of the details as
we know them now.

Starting at 08:43 UTC today June 12th, AS4788 Telekom Malaysia started to announce abo
179,000 of prefixes to Leval3 (AS3549, the Global crossing AS), whom in turn accepted

J S [F s ameomarisiobcors asge rarmeri IR QMIGI01=
:’ AVYD earcn a
T ~ $
7 () Dyn Research ; v

S, | S

o . R T | (G | D | BRI |

gl S
Y Global Collateral Damage of TMnet [o—
: leak i
a onEDE JER—
B s o bdlah suomczon
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Study case: Telekom Malaysia BGP leak

Level3
(GBLX)

Seattle=

e
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Study case: Telekom Malaysia BGP leak

L=vel3
(G3LX)
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Study case: Telekom Malaysia BGP leak

oogle ™
' *BGP

Eevels Leak

Seattle=

<
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Study case: Telekom Malaysia BGP leak

Not only with Google... but about 170k prefixes!
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Congestion in Level3

Rerouted traffic has congested Level3 (120 reported links)

e Example: 229ms increase between two routers in London!

67.16.133.130 - 67.17.106.150

300§ § Median Diff. RTT 1
200] | == Normal Reference
* % Detected Anomalies 1

Differential RTT (ms)
@
o

50| I 1
0 — T y T lT e -
50 L Tt ‘ ‘ ‘ ‘
s s B 5
S o o ) . oo o o
3\5(\ 30(\ o 3\)(\ 5\)‘\ 5\)(\
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Congestion in Level3

Reported links in London:

() Delay increase
. Delay & packet loss

Level 3 Global Crossing
London TATA
London
+54ms

Level 3

New York City +229ms +75ms
+61m

+107ms

Level 3 20ms Level 3
Global Crossing Amsterdam
Saint Croix

— Traffic staying within UK/Europe may also be altered
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But why did we look at that?

Per-AS alarm for delay

{0 AS3549, Level 3 Global Crossing

100
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AS3356, Level 3 Communications
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Figure 8: Delay change magnitude for all moni-
tored IP addresses in two Level(3) ASs.



And forwarding too!

Per-AS alarm for forwarding

AS3549, Level 3 Global Crossing

"o W W \o wo W
ol o P o A% 2%
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Magnitude (forwarding anomaly)
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Figure 9: Forwarding anomaly magnitude for all
monitored IP addresses in two Level(3)ASs.
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Monitor delays with the Atlas platform

e Billions of (noisy) traceroutes

Detect and locate Internet congestion

e Robust statistical analysis
e Diverse root causes: remote attacks, routing anomalies, etc...

e Give a lot of new insights on reported events

On going work with RIPE NCC:

e Online detection and reports for network operators
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Outage detection from highly dis-
tributed permanent TCP connec-
tions




Proposed Approach

Disco:

e Monitor long-running TCP
connections and synchronous
disconnections from related

network /area

e We apply Disco on RIPE Atlas
data, where probes are widely
distributed at the edge and behind
NATs/CGNs providing visibility
Trinocular may not have

— Outage = synchronous disconnections from the same

topological /geographical area
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Assumptions / Design Choices

Rely on TCP disconnects

e Hence the granularity of detection is dependent on TCP
timeouts

Bursts of disconnections are indicators of interesting outage

e While there might be non bursty outages that are interesting,
Disco is designed to detect large synchronous disconnections
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Proposed System: Disco & Atlas

RIPE Atlas platform

e 10k probes worldwide

e Persistent connections with

RIPE controllers

_> Announce disconnect
event for probe P3
on live stream and log

e Continuous traceroute
measurements
(see outages from inside)

— Dataset: Stream of probe connection/disconnections
(from 2011 to 2016)
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1. Split disconnection
stream in sub-streams
(AS, country,
geo-proximate
50km radius)

(1)

(2)

2. Burst modeling and
outage detection

3. Aggregation and

(3)

outage reporting

Disco Overview

Atlas probes disconnections

2/‘:;

— e LS

—
Time

Country Geo-prox.

Burst Level

>
>

Time

Outage:
.Start time
.End time
.AS123, geo-prox. 456
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hy Burst Modelin

Goal: How to find synchronous disconnections?

Probes disconnection

e Time series conceal rgy ¢ ¥ ¥

r T T
1min 2min 3min

N .

temporal characteristics Disconnections / minute

1

I T T ™>

3/min

e Burst model estimates

disconnections arrival

Burst modeling

_]I — EL. ‘

I T T ™

rate at any time

Burst Level

Implementation: Kleinberg burst model!

1J. Kleinberg. “Bursty and hierarchical structure in streams”, Data Mining
and Knowledge Discovery, 2003.
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Burst modeling: Example

e Monkey causes blackout in
Kenya at 8:30 UTC June,

s 7th 2016
MONKEY CAUSES NATIONWIDE
_ KENYA POWER BLACKOUT e Same day RIPE rebooted
= = e =
h controllers

Connected

Burst level probe count
=

Kenya probes

”0 ‘ : :
L ]—I T T I I|.|—L| LI

6 F | —
2 . Kenya probes 1
07Jun 07Jun 07Jun 07Jun 07Jun 07Jun 07Jun
08:00 10:00 12:00 14:00 16:00 18:00 20:00
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Outage detection:
e Atlas probes disconnections from 2011 to 2016
e Disco found 443 significant outages

Outage characterization and validation:

e Traceroute results from probes (buffered if no connectivity)

e Qutage detection results from Trinocular



Validation (Traceroute)

Comparison to traceroutes:

e Probes in detected outages can reach traceroutes destination?
— Velocity ratio: proportion of completed traceroutes in
given time

0.35 :
0.30 Il Normal [
0.25 mEmm Outage | |
0.20 i
0.15 i
0.10 i
0.05 i

0.00
0.0 0.5 1.0 1.5 2.0

R (Average Velocity Ratio)

Probability Mass Function

— Velocity ratio < 0.5 for 95% of detected outages 53 /61



Validation (Trinocular)

Comparison to Trinocular (2015):

e Disco found 53 outages in 2015

e Corresponding to 851 /24s (only 43% is responsive to ICMP)
Results for /24s reported by Disco and pinged by Trinocular:

e 33/53 are also found by Trinocular
e 9/53 are missed by Trinocular (avg time of outages < 1hr)
e Other outages are partially detected by Trinocular

23 outages found by Trinocular are missed by Disco

e Disconnections are not very bursty in these cases

— Disco’s precision: 95%, recall: 67% 54 /61



Outage Characterization (1)

Percentage of traceroutes reaching their target:

#Outages

100% 1-50% 51-70%  71-100% No
Complete Inomplete Inomplete Inomplete Traceroute

Traceroutes during outage

e In most cases probes lost complete connectivity
e For cases in 1-70%, probes have limited connectivity to local
targets (e.g. anycasted services)

e Complete lack of traceroute in case of power outage
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Outage Characterization (2)

Traceroutes allow us to
identify faulty hops

e Learn typical paths

210.428.17*

and identify expected sl 1070
103.7@51.125 103.7@%8.61*
hop 114.130.1.29 103.7.828.61**
103.7@51.101 103.7.398.61°
12520995133 125.8.1.33 103.7.28.61°+
® Found SeVeraI 103.7.28.61
182.792¢8.234 125.291.33* 103.7.24B61°

forwarding loop
Example: TWC outage
in 2014

e 73% of traceroutes

Connected
probe count
nNWHaD
38883
T

<

B

revealed a forwarding —TWC probes -

10
o 18 ]
loo e Bl b ]
p 5 10F I__L_ (b)
@ 6  TWG probes — 1
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Example of geo-proximate outage

Amsterdam outage (2017)

e Disco's detection correlated with network problems between
two network elements of a large provider

Amsterdam « Offline probes
(POWGI’ Outage) e Online probes

Some probes outside Amsterdam lost
connectivity due to same upstream
overloaded network
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Disco: Outage Detection using long-lived TCP connections

e Fast:

e Passive monitoring
e Processed 6 years of data in 103 minutes

e Good:

e Precise location of outages in space and time
e 95% precision, 67% recall

e Cheap:

e Generates no measurement packet
e Monitor beyond NATs



Conclusions and perspectives

We proposed 3 different techniques to detect outages for 3
different sources of data

e Each source of data has its own coverage, noise, properties
e |dentifying the suitable model is a challenge

e There is no subsequent ground truth to validate the results

59 /61



60 /61



Into this

http://ihr.iijlab.net
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